REXS : A financial risk diagnostic expert system
DOI:
https://doi.org/10.7166/3-1-443Abstract
ENGLISH ABSTRACT: Artificial intelligence techniques are rapidly emerging as important contributors to more effective management. One of the greatest growth areas probably lies in the use of Expert System methodology for supporting managerial decision processes.
Existing Decision Support Systems often attempt to apply analytical techniques in combination with traditional data access and retrieval functions. One of the problems usually encountered while developing such decision support systems is the need to transform an unstructured problem environment into a structured analytical model. Using an expert system approach to strategic decision making in such unstructured problem environments may provide significant advantages.
The financial Risk diagnostic EXpert System (REXS) concentrates on Financial Risk Analysis. Based on a Forecasting Model the system will, with the support of several expert system knowledge bases, attempt to evaluate the financial risk of a business and provide guidelines for improvement.
AFRIKAANSE OPSOMMING: Tegnieke gebaseer op Kunsmatige Intelligensie toon tans die belofte om belangrike bydraes te maak tot meerBestaande Besluitsteunstelsels poog dikwels om analitiese tegnieke en lradisionele datatoegang- en onttrekkingsfunksies te kombineer. Een van die probleme wat gewoonlik ondervind word gedurende die ontwikkeling van '0 besluitsteunstelsel bestaan uit die behoefte om 'n ongestruktueerde probleemomgewing te transformeer na 'n gestruktueerde analitiese model. 'n Ekspertstelselbenadering lot strategiese besluitneming in 'n ongeSlruktureerde probleemomgewing mag betekenisvolle voordele inhou.
Die "financial Risk diagnostic EXpert System (REXS)" konsentreer op fmansiele risiko-analise. Uitgaande vanaf 'n Vooruitskattingsmode~ en deur gebruik te maak van verskeie ekspertstelselkennisbasisse, poog die stelsel om die fmansiele risiko van 'n onderneming te evalueer en riglyne vir moontlike verbetering voor te stel.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.