A NEW MULTIVARIATE NONLINEAR MODEL TO HANDLE THE VOLATILITY TRANSMISSION
DOI:
https://doi.org/10.7166/25-3-821Keywords:
time series, nonlinear model, Particle swarm optimization (PSO), BEKK model, GARCHAbstract
Price volatility of stocks is an important issue in stock markets. It should also be taken into account that the stochastic nature of volatility affects decision-makers’ minds to a great extent. Therefore, predicting price volatility could help them make proper decisions. In this paper, a new multivariate fractionally integrated generalised autoregressive conditional heteroscedasticity (MFIGARCH) model is proposed to handle the price volatility in stocks. In this model, a long-term parameter is considered and estimated along with other parameters. In estimating the parameters of this nonlinear model, the maximum likelihood estimation method, which could be solved by standard econometric packages, is applied. However, these packages are no longer efficient when the size of the model increases. Thus meta-heuristic approaches, which stochastically seek optimal or near-optimal solutions, were used. In this paper, the well-known Particle Swarm Optimisation (PSO) meta-heuristic method is used for solving the suggested multivariate FIGARCH model. Hence the main objective of this paper is to introduce a new model for addressing the stock price volatility (i.e., the development of FIGARCH to create the MFIGARCH model) and to apply an efficient estimation method (i.e. PSO) for finding the parameters of the problem.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.