A MACHINE LEARNING FRAMEWORK FOR DATA-DRIVEN DEFECT DETECTION IN MULTISTAGE MANUFACTURING SYSTEMS
DOI:
https://doi.org/10.7166/35-2-3008Abstract
Economic transformation and escalating market competitiveness have prompted manufacturers to adopt zero-defect manufacturing principles to lower production costs and maximise product quality. The key enabler of zero-defect manufacturing is the adoption of data-driven techniques that harness the wealth of information offered by digitalised manufacturing systems in order to predict errors. Multi-stage manufacturing systems, however, introduce additional complexity owing to the cascade effects associated with stage interactions. A generic modular framework is proposed for facilitating the tasks associated with preparing data emanating from multi-stage manufacturing systems, building predictive models, and interpreting these models’ results. In particular, cascade quality prediction methods are employed to harness the benefit of invoking a stage-wise modelling approach. The working of the framework is demonstrated in a practical case study involving data from a multistage semiconductor production process.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.