ENHANCING DISTRACTED DRIVER DETECTION WITH HUMAN BODY ACTIVITY RECOGNITION USING DEEP LEARNING
DOI:
https://doi.org/10.7166/34-4-2983Abstract
Deep learning has become popular owing to its high accuracy and ability to learn features automatically from input data. Various approaches are proposed in the literature to detect distracted drivers. However, the performance of these algorithms is typically limited to image datasets that have a similar distribution to the training dataset, which makes it difficult to apply them in real-world scenarios. To address this issue, this paper proposes a robust approach to detecting distracted drivers, based on recognising the unique body movements involved when a driver operates a vehicle. Experimental results indicate that this method outperforms current deep learning algorithms for detecting distracted drivers, resulting in a 6% improvement in classification accuracy and a two-fold improvement in overall performance (F1 score).
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.