DIAGNOSIS PREDICTION USING KNOWLEDGE GRAPHS
DOI:
https://doi.org/10.7166/34-3-2941Abstract
Consultations between doctors and patients form the basis of the interaction between both parties, and lay the groundwork for administering appropriate treatment. Advances in machine learning, information, and communication technologies have enabled healthcare practitioners to enhance the manner in which data are captured and analysed during these information-rich meetings.
The true potential of clinical data can only be realised if clinical data sources are synthesised in an appropriate data-representation and modelling approach. One such approach is the so-called knowledge graph (KG). The aim in this paper is to model consultation-related data in a KG and thereafter employ graph machine-learning techniques to identify missing links between entities in the graph through link prediction, thereby providing additional decision support to doctors. A case study data set comprising a list of patients, their respective conditions, and their medications forms the basis of the algorithmic analysis that is carried out.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.