MACHINE LEARNING FOR DECISION-MAKING IN THE REMANUFACTURING OF WORN-OUT GEARS AND BEARINGS
DOI:
https://doi.org/10.7166/32-3-2636Abstract
Mechanical industries use rotating mechanical equipment in their day to day operations. The equipment suffers from wear and tear, and is usually discarded as scrap. But is there a way to recover some of this equipment and reuse it? This paper uses machine learning to capture and analyse the wearing damage of bearings and gears to determine whether they can be redeemed. Finite element analysis is conducted on worn-out spur gears and pillow bearings in order to facilitate feature extraction in image processing algorithms. This converts the actual gears, bearings, and seals into CAD files. The decision-making system is designed, and it uses these CAD files to decide on the optimum manufacturing process to restore redeemable components. The mechanical components of the system are designed using SOLIDWORKS. MATLAB, Proteus software, and the Arduino micro-controller are used for the system application design and simulation. The results from tests conducted on a worn-out gear and bearing show that the gear is 4% non-redeemable, while the bearing is 60.2% non-redeemable. The decision taken by the system is to redeem the gear and to discard the bearing.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.