ESTIMATING THE RELIABILITY OF CONDITION-BASED MAINTENANCE DATA USING CONTEXTUAL MACHINE-SPECIFIC CHARACTERISTICS
DOI:
https://doi.org/10.7166/32-3-2625Abstract
In the mining industry, inter-connected machinery operates under harsh conditions 24 hours a day. Naturally, this degrades their state, and can lead to premature breakdowns and production losses. Condition-based maintenance (CBM) is a strategy that plans maintenance schedules depending on the condition of the equipment, and aims to improve decision-making processes. Data collected from machinery for CBM purposes must be reliable to avoid negative impacts on the maintenance strategy. Data reliability can be estimated by comparing multiple data streams; however, they are not always available, and can be expensive. This study aims to estimate the isolated and contextual reliability of single-source CBM data by applying multiple data analytics techniques. An application is designed to analyse current data on a machine level and to determine combined reliability. A case study implementation shows the difference in reliability classification accuracy between the isolated and contextual methods, highlighting the need for them to be combined.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.