CLASSIFICATION AND PREDICTION OF WAFER PROBE YIELD IN DRAM MANUFACTURING USING MAHALANOBIS-TAGUCHI SYSTEM AND NEURAL NETWORK
DOI:
https://doi.org/10.7166/30-1-1627Keywords:
feature selection, wafer acceptance test, engineering information systemAbstract
Wafer yield is a key indicator to pursuing excellence in semiconductor manufacturing. With the increased wafer size, the enhanced complexity and precision of wafer fabrication is possible. Using monitoring to improve the process by predicting the yield has become an important quality issue. Most research uses the number of wafer defects, the area of the wafer, and fixed statistical distribution to predict the yield. Such methods fail to establish a high yield model due to the random and system-wide distribution of wafer defects. This study proposes the Mahalanobis-Taguchi system (MTS) to determine the key variables from the wafer acceptance test (WAT), and establish a classification model of yield grade. The general regression neural network (GRNN) was used to build a predicted model of the wafer probe yield from selected common variables. A real case from a Taiwan manufacturer of dynamic random-access memory (DRAM) is used as an example. It can get the 82 key and significant sequence variables of the WAT, with classification precision of over 90% and the R2 of the GRNN prediction model at 0.73. Through demonstration, the result can effectively increase the yield and reduce the quality cost in DRAM manufacturing.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.