USING MACHINE LEARNING TO PREDICT THE NEXT PURCHASE DATE FOR AN INDIVIDUAL RETAIL CUSTOMER

Marli Droomer, James Bekker

Abstract


Targeted marketing has become more popular over the last few years, and knowing when a customer will require a product can be of enormous value to a company. However, predicting this is a difficult task. This paper reports on a study that investigates predicting when a customer will buy fast-moving retail products, by using machine learning techniques. This is done by analysing the purchase history of a customer at participating retailers. These predictions will be used to personalise discount offers to customers when they are about to purchase items. Such offers will be delivered on the mobile devices of participating customers and, ultimately, physical, general paper-based marketing will be reduced.


Keywords


Marketing, machine learning, retail

Full Text:

PDF


DOI: https://doi.org/10.7166/31-3-2419

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Marli Droomer, James Bekker


ISSN 2224-7890 (on-line) ; ISSN 1012-277X (print)


Powered by OJS and hosted by Stellenbosch University Library and Information Service since 2011.


Disclaimer:

This journal is hosted by the SU LIS on request of the journal owner/editor. The SU LIS takes no responsibility for the content published within this journal, and disclaim all liability arising out of the use of or inability to use the information contained herein. We assume no responsibility, and shall not be liable for any breaches of agreement with other publishers/hosts.

SUNJournals Help