A MULTI-OBJECTIVE COAL INVENTORY MANAGEMENT MODEL USING MONTE CARLO COMPUTER SIMULATION
DOI:
https://doi.org/10.7166/27-4-1560Keywords:
stockpile, multi-objective optimisation, simulationAbstract
The ability of a coal-fired power station to meet its generation targets is influenced by periods of coal shortage. In this article, we propose a multi-objective inventory model to assist with the management of coal stockpiles. The model is applicable to power utilities with a network of two or more coal-fired power stations. The aim is to determine the near-optimal amount of coal inventory to stockpile at each station in the network. A Monte Carlo coal stockpile simulator is used to incorporate stochastic uncertainty into the stockpile levels, while a metaheuristic uses the simulator as an estimator of two objective functions. The metaheuristic finds good values for the coal stockpile level at each power station in the network. The algorithm for multi-objective optimisation using the cross-entropy method is proposed as a suitable metaheuristic. A hypothetical case study is used to validate the inventory model and to showcase the optimisation results.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.