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ABSTRACT 

 
The trade-off between time, cost, and quality is one of the important problems of project 
management. This problem assumes that all project activities can be executed in different 
modes of cost, time, and quality. Thus a manager should select each activity’s mode such 
that the project can meet the deadline with the minimum possible cost and the maximum 
achievable quality. As the problem is NP-hard and the objectives are in conflict with each 
other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic 
algorithm, is implemented as the optimisation method. The proposed algorithm provides 
project managers with a set of non-dominated or Pareto-optimal solutions, and enables 
them to choose the best one according to their preferences. A set of problems of different 
sizes is generated and solved using the proposed algorithm. Three metrics are employed for 
evaluating the performance of the algorithm, appraising the diversity and convergence of 
the achieved Pareto fronts. Finally a comparison is made between CellDE and another 
meta-heuristic available in the literature. The results show the superiority of CellDE.  
 

OPSOMMING 
 

‘n Balans tussen tyd, koste en gehalte is een van die belangrike probleme van 
projekbestuur.  Die vraagstuk maak gewoonlik die aanname dat alle projekaktiwiteite 
uitgevoer kan word op uiteenlopende wyses wat verband hou met koste, tyd en gehalte.  ‘n 
Projekbestuurder selekteer gewoonlik die uitvoeringsmetodes sodanig per aktiwiteit dat 
gehoor gegegee word aan minimum koste en maksimum gehalte teen die voorwaarde van 
voltooiingsdatum wat bereik moet word. 
 
Aangesien die beskrewe problem NP-hard is, word dit behandel ten opsigte van 
konflikterende doelwitte met ‘n multidoelwit metaheuristiese metode (CellDE).  Die 
metode is ‘n hibride-sellulêre genetiese algoritme.  Die algoritme lewer aan die 
besluitvormer ‘n versameling van ongedomineerde of Pareto-optimale oplossings vir 
voorkeurgedrewe besluitvorming.  Uiteenlopende probleme word opgelos deur die 
algoritme.  Drie verskillende waardebepalings word toegepas op die gedrag van die 
algoritme.  Die resultate bevestig die voortreflikheid van CellDE. 
 
 
 
 
 
 
 
 

                                                       
*Corresponding author 
 
 

http://sajie.journals.ac.za



 94 

1. INTRODUCTION 
 
Since the evolution of the critical path method, the time/cost trade-off problem has 
received more attention. There is a tradeoff between the cost and time of a project: 
solutions of shorter duration usually cost more, while solutions with low costs usually take 
longer [1, 2]. By crashing an activity in a project, its duration is reduced by allocating 
additional resources – money, for example – so a decision problem considered in the project 
management literature is to determine the activities for crashing and also the extent of 
crashing. In the discrete time/cost trade-off problem (DTCTP), activities can be executed in 
different sets of time and cost. In 1961, Kelley and Walker [3] proposed a technique based 
on a mathematical model. The model considered the assumption of linearity of the 
activity’s utility function, and could be solved using network flow methods. For nonlinear 
cases, activities with a nonlinear utility function are replaced with a series of r activities 
having linear utility functions. An alternative to what Kelley suggested is the SAM 
algorithm, which was proposed by Siemens [4]. This algorithm was designed with the 
purpose of reducing project duration at the minimum cost when it exceeds the predefined 
due date. Although SAM is simple and less time consuming, there is neither a guarantee of 
achieving an optimal solution, nor a way to determine the optimality of the achieved 
solution. Goyal [5] reconsidered SAM, and permitted a shortening of the activities that had 
been previously shortened. The problem was proved to be NP-hard in [6], and subsequently 
heuristic approaches were offered to optimise the problem. Babu and Suresh [7] suggested 
that crashing a project might also affect its quality. They developed three linear 
programming models with the assumption that both cost and quality are linear descending 
and ascending functions of time respectively. Each model contains a single objective for 
optimisation, and constrains the values of the other two objectives within desired levels. 
They evaluated the project quality using arithmetic mean, geometric mean, and the 
minimum qualities of a project’s activities. Evaluating the applicability of the technique 
proposed by Babu, the method was applied to an actual cement factory construction 
project in [8]. Analyzing the results, it was shown that there are budget thresholds at 
different quality levels of the time-cost curve. [2, 10 and 11] proposed meta-heuristic 
solutions for the discrete time, cost, and quality trade-off problem (DTCQTP). Combining 
electromagnetism theory with scatter search, Tareghian and Taheri [10] presented an 
approach to the inter-related integer programming models suggested in [9]. Rahimi and 
Iranmanesh [2] proposed a multi-objective PSO based algorithm, and compared it with a 
genetic algorithm (GA) for both small- and large-size problems.  
 
In this paper we find an approximation to the Pareto front for DTCQTP using a multi-
objective algorithm, and evaluate the performance using three different metrics. In 
contrast to other approaches, in which a single solution is offered to the Decision Maker 
(DM), here we suggest different alternatives, and give the DM the opportunity to choose the 
one that fits best according to his/her preferences. In the next section the problem is 
defined. The algorithm that is developed to produce the Pareto front is proposed in section 
3. In section 4, three performance metrics are presented, and a comparison between the 
Pareto sets achieved by the implemented CellDE [13] and a version of FastPGA [11] is made 
in section 5. Section 6 concludes our work. 
 
2. PROBLEM DEFINITION 
 
A project usually consists of different activities, where activity i can be executed in 
n different modes. If the time, cost, and quality of mode j of activity are denoted by ijt , 

ijc and ijq respectively, then in comparison with another mode k  (k > j) of this activity we 

should have: ijt < ikt , ijc > ikc and ijq < ikq . Table 1 shows a sample project with two 

activities that both can be executed in two modes. The project manager should select 
modes such that the project meets the deadline with the minimum possible total cost and 
maximum achievable quality. The mathematical model used here is similar to the one 
proposed in [11].  
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3. SOLUTION PROCEDURE 
 
Multi-objective algorithms provide a set of non-dominated solutions. A solution is non-
dominated if no other feasible solution is better with respect to all objectives, and moving 
from one non-dominated solution to another improves at least one objective but degrades 
one or more others. As evolutionary algorithms (EAs) deal with sets of solutions, they have 
been reckoned among the best alternatives for multi-objective problems. Their ability to 
handle complex problems, including those having features such as discontinuities, 
multimodality, disjoint feasible spaces, and noisy function evaluations, reinforces the 
potential effectiveness of EAs in multi-objective optimisation [13]. To solve the problem, a 
hybrid multi-objective cellular genetic algorithm called CellDE is implemented here. 
CellDE, developed by Durillo et al. [14], is a combination of MOCell, a multi-objective 
cellular genetic algorithm, and Generalized Differential Evolution 3, GDE3. It inherits good 
diversity from MOCell and convergence from GDE3 [14]. In the following, a brief description 
of cellular genetic algorithms as the base of CellDE, and the Differential Evolution method 
as the reproductive operator of CellDE, is presented.  
 

Activity 
Alternative 1 Alternative 2 

Time Cost Quality Time Cost Quality 

1 10 2000 0.96 14 1800 0.98 

2 11 2100 0.94 13 1900 0.99 

 
Table 1: Sample problem data 

 
3.1 Cellular GA 
 
Cellular optimisation models are structured EAs in which the population is decentralised. 
Using the concept of neighbourhood, individuals only interact with other nearby individuals. 
In the primitive cellular genetic algorithm, individuals are structured in a grid of d 
dimensions (d=1, 2, 3), and a neighbourhood is defined on it. Genetic operators perform the 
exploitation, while exploration is done by means of overlapped neighbourhoods [15].  
 

 
 

Figure 1: Cellular genetic algorithm 
 
3.2 Differential Evolution 
 
Differential Evolution is a parallel direct search method in which three parents collaborate 
to produce one offspring. All three parents are selected, using the selection operator, 
amongst the neighbours of the current individual. By adding the weighted difference vector 
of two of the parents to the third one, a new individual is generated [16]. The construction 
of the new individual in Differential Evolution is discussed further in 3.3.2.  
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3.3 CellDE 
 
Similar to other cellular genetic algorithms, after the creation of an empty front, 
individuals are settled in a 2-dimensional toroidal grid. Then, from among the nearby 
neighbours of the current individual, two are chosen and the trio of parents is formed. The 
pseudo-code of the CellDE algorithm is illustrated in Figure 2. In CellDE, one of the parents 
is the original individual, while in DE all three members are chosen from among the 
neighbours of the current individual. The other two parents are chosen from eight 
neighbours of the current individual using the selection operator. The new offspring’s 
vector is generated by adding a weighted difference vector between two of the parents to 
the third one (differentialEvolution function). If the original solution is dominated by the 
new individual, it will be replaced by the new one; but if both are non-dominated, then the 
neighbour with the worst crowding-distance is replaced (insert function). To compute the 
crowding-distance, all solutions are assigned a distance value. The boundary solutions 
(those that have the smallest or largest objective values) for each objective are set to 
infinite value, while the others are set to the normalised difference in the objective values 
of two successive solutions.  
 
In the next step, the offspring is added to the external archive (addToArchive function). 
Through a feedback mechanism implemented after each generation, some of the individuals 
in the population are randomly selected and replaced by a set of solutions in the archive 
(replaceIndividuals function).  
 

 
proc stepsUp (CellDE)                                //Algorithm parameters in 
‘CellDE’ 
population← randomPopulation ()             //Creates a random initial 
population 
archive← createFront ()               //Creates an empty Pareto front 
while !terminationCondition() do 
     for individuals← 1 to CellDE.populationSize do 
          neighborhood← getNeighbors(population, position(individual));         
          parent1← selection(neighborhood); 
          parent2← selection(neighborhood); 
          // parent1 and parent2 might be identical 
          while parent1=parent2 do 
               parent2← selection(neighborhood); 
          end while 
          offspring← differentialEvolution(position(individual),  
          position(individual),position(parent1), position(parent2)); 
          evaluateFitness(offspring); 
          insert(position(individual), offspring, population); 
          addToArchive(individual); 
     end for 
     population← replaceIndividuals(population, archive); 
end while 
end_proc stepsUp; 
 

 
Figure 2: The pseudo-code of the CellDE algorithm 

 
3.3.1 Chromosome representation   
 
We used the direct coding to represent the chromosomes. As a consequence, the produced 
solutions are always feasible. Each chromosome’s length is equal to the number of 
activities, and each allele’s value is an integer limited to the number of modes of the 
related activity.  
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3.3.2 Reproductive operator 
 
To produce new individuals, the differential evolution operator is used. This operator uses 
two parameters of CR and F, where CR is the crossover constant and F is the mutation’s 
scaling factor. The pseudo-code of producing new individuals is illustrated in Figure 3, 
where N, G, D are the population size, generation, and dimension of solution respectively. 
 
An example is presented next. Consider the following three parents: 
 
Parent 1     [5, 6, 7, 4, 9, 5] 
Parent 2     [1, 4, 1, 2, 5, 3] 
Parent 3     [3, 5, 1, 2, 1, 3]  

 
For CR= 0.5 and F= 0.5, and assuming all generated random values are less than CR, the 
offspring would be: 
 
Offspring     [5, 6, 4, 3, 3, 4]    

 
3.3.3 Termination criterion 
 
Different measures have been taken in the literature to set a stopping criterion, among 
which one may address the maximum number of generations, maximum CPU time, and/or 
convergence progress. The combination of two criteria is also employed in some cases; for 
example, the program stops if either the maximum generation or a designated value of the 
fitness is reached. In this paper, the maximum number of generations is considered as the 
termination criterion.  
 

// r1, r2, r3{1, 2,…, N}, randomly selected, except 
mutually different from i    
proc differentialEvolution (i, r1, r2, r3)  
jrand= floor(randi [0,1).D+1 
for (j = 1; j  D ; j = j+1) do 
     if (randi [0,1) < CR  j = jrand) then 

          i[j],Gu = [i],Grx 3 +F.( [i],Grx 1  - [i],Grx 2 )  

     else 

          i[j],Gu = i[j],Gx  

     end if 
end for 

return i,Gu  

end_proc differentialEvolution 
 

Figure 3: The pseudo-code of producing new individuals in DE 
 
3.3.4 Parameterisation 
 
Other considerations for the implemented CellDE are the following: 
 Population size: 100 individuals. For more information about the selection of the 

population size, we refer the reader to [17]. 
 Neighbourhood: individuals located at North, East, West, South, Northwest, Southwest, 

Northeast, and Southeast of the current solution. 
 Binary tournament selection: selects two individuals randomly. The one that is fitter is 

selected as a parent. 
 Reproductive operator: differential evolution. Tests for real values in range [0, 1] lead 

to selection of 0.05 for CR and 0.95 for F. More explanation for the values of CR and F 
is presented in [18]. 
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 Archive size: 100 individuals. 
 Feedback: 20 individuals. 
 Termination criteria: 100000 evaluations. 
 
4. PERFORMANCE METRICS 
 
Three metrics are implemented here for evaluating the performance of the developed 
algorithm. To calculate diversity and hypervolume, the Ideal and Nadir points should be 
calculated first. The vector that contains the best value of each objective in the objective 
space is considered as an Ideal point. The opposite of the Ideal point is the Nadir point, 
which contains the worst of objective values. In this problem, the Ideal point is a vector 
that contains the minimum possible time and cost, and the maximum achievable quality. As 
execution modes of activities are predefined, the Ideal and Nadir points can be calculated 
easily. A project completes at the minimum time when all the activities forming the critical 
path are executed in the modes with the minimum time, and it has the minimum cost when 
all the activities of a project are executed in the modes with the minimum cost. The same 
can be said about quality: a project has the maximum quality while all activities are 
executed in the modes with the maximum quality. A brief description of each metric is 
provided next.  
 
4.1 Hypervolume metric 
 
Zitzler and Thiele [19] introduced a metric called hypervolume, which measures the size of 
the space dominated by the Pareto front. Considering a cuboid between the Ideal and Nadir 
points, this indicator calculates the fraction of the cuboid that is dominated by the 
obtained non-dominated solutions. Since this metric is not free from arbitrary scaling of 
objectives, we evaluate this metric by using normalised objective function values. 
Furthermore, the achieved Pareto front is inverted, as we are minimizing cost, time, and 
the inverse of quality. 

 
Figure 4: A hypervolume indicator in the two-objective case 

 
4.2 Spread metric 
 
Diversity metric  was first introduced by Deb et al. [20] and computes the non-uniformity 
of spread through the Pareto front. It is defined as Equation (1). 
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where di is the Euclidean distance of two successive points. To define the successive points 
in 3-D space, the achieved front is normalised and then sorted through a lexicographical 
comparator. d  is the average of distances, and df and dl are the distances between 
bounding solutions. To define df and dl, the Euclidean distance between the first solution of 
sorted front and the Ideal point, and the last solution of the sorted front and the Nadir 
point, should be calculated respectively. In well distributed fronts  is zero, because di is 
equal to d and df = dl = 0, while in other cases  would be greater than zero.  
 
4.3 Coverage metric 
 
Comparing two Pareto sets achieved by the implemented CellDE and the FastPGA developed 
in [11], the coverage metric, first introduced in [19], is used (see Equation (2)). Zitzler and 
Thiele defined the function C(X, X), where Xand Xare two sets of decision vectors, which 
calculates the percent of points in Xthat are dominated by at least a point in X. In our 
problem a solution is dominated if there is at least one other individual with less cost and 
time, and greater quality.  
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5. COMPUTATIONAL EXPERIMENTS 
 
The CellDE algorithm was tested with multiple problems of different sizes, and the results 
were compared with the solutions obtained by the FastPGA [11], an adapted version of the 
original FastPGA [12] for the DTCQTP problem. Four types of networks, containing 30, 60, 
90, and 120 activities respectively, were downloaded from psplib1. The procedure 
implemented to generate the execution modes is the same as the one used in [9]. Each 
experiment was repeated 40 times in order to restrict the influence of random effects. The 
parameter settings used for the developed algorithm are described in 3.3.4, while the 
parameters’ values for the FastPGA are taken from the reference paper [11]. While the 
running times of two algorithms are similar, the results of the implemented performance 
metrics are presented in Tables 2, 3, and 4.  
 

#Activity CellDE FastPGA 

30 0.6740.076 0.6280.070 

60 0.6050.032 0.5700.081 

90 0.5680.019 0.5150.073 

120 0.5120.054 0.4620.065 
 

Table 2: Mean and standard deviation of the hypervolume metrics for the sample 
problems  

 

#Activity CellDE FastPGA 

30 0.4660.076 0.6620.051 

60 0.5110.069 0.7160.022 

90 0.6390.027 0.7420.039 

120 0.6700.051 0.7440.026 
 

Table 3: Mean and standard deviation of the spread metrics for the sample 
problems  

                                                       
1 http://129.187.106.231/psplib 
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#Activity C(X, X) CellDE FastPGA 

30 
CellDE - 24% 

FastPGA 4% - 

60 
CellDE - 24% 

FastPGA 9% - 

90 
CellDE - 21% 

FastPGA 5% - 

120 
CellDE - 22% 

FastPGA 6% - 

 
Table 4: Mean of the coverage metric for the sample problems  

 
According to the size of the covered space, which is measured by hypervolume, CellDE is 
more efficient than FastPGA. About 59% of the space on average is dominated by CellDE, 
while this value is about 54% for FastPGA. The main conclusion that can be drawn from 
Table 2 is that the difference in hypervolume of CellDeE and FastPGA statistically proves 
the superiority of the Pareto front achieved by the proposed algorithm.  
 
Regarding the spread metric, the difference between the values achieved by the two 
algorithms is meaningful, and the results indicate that CellDE outperforms FastPGA on all 
problems. The lower value of spread shows better distribution of the solutions; therefore 
solutions achieved by CellDE are spread broadly and more uniformly through the Pareto 
front.  
 
In addition, on average 22.75% of solutions achieved by FastPGA are dominated by at least 
one solution obtained by CellDE, while the opposite is 6%, according to the coverage metric 
presented in Table 4. As mentioned earlier, a solution is dominated if there is at least 
another solution with greater quality but less cost and time. 
 
6. CONCLUSION 
 
In this paper, a hybrid multi-objective cellular genetic algorithm called CellDE was 
implemented to solve the time, cost, and quality trade-off problem. A set of randomly-
generated problems of different sizes was generated and solved using CellDE and a meta-
heuristic available in the literature called FastPGA. The Pareto solution set, which is 
achieved by minimising time and cost while maximising the quality of a project, gives the 
decision maker the opportunity to choose the best solution according to his/her 
preferences. Implementing three different metrics, the performance of the proposed 
algorithm was evaluated, and the results showed acceptable convergence and diversity of 
the obtained Pareto front. Then a comparison was made between the obtained Pareto set 
and the one achieved using FastPGA. The metrics demonstrated the comparative superiority 
of CellDE over the existing FastPGA for networks of different sizes.  
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