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ABSTRACT 

As industry moves toward an era of complete automation and ‘mass customisation’, 
automated guided vehicles (AGVs) are used as material handling systems. However, the 
current techniques that provide navigation, control, and manoeuvrability of automated 
guided vehicles threaten to create bottlenecks and inefficiencies in manufacturing 
environments that strive towards the optimisation of part production. 

This paper proposes a decentralised localisation technique for an automated guided vehicle 
without any non-holonomic constraints. Incorporation of these vehicles into the material 
handling system of a computer-integrated manufacturing environment would increase the 
characteristics of robustness, efficiency, flexibility, and advanced manoeuvrability. 

OPSOMMING 

Outomaties geleide voertuie (OGVs) word gebruik in materiaalhanteringstelsels soos wat 
industrie na ’n era van outomatisering en ‘massa aanpassing’ beweeg. Die huidige tegnieke 
wat sorg vir navigasie, beheer, en beweegbaarheid, hou die bedreiging van bottelnekke en 
ondoeltreffendheid in vir vervaardigingsomgewings wat streef na optimisering van 
onderdeelproduksie. 
 
Hierdie artikel hou ’n gedesentraliseerde lokaliseringstegniek voor vir ’n OGV sonder enige 
nie-holonomiese beperkings. Implementering van dié voertuie in die materiaalhantering-
stelsel van ’n rekenaar geïntegreerde vervaardigingsomgewing sal eienskappe soos 
robuustheid, doeltreffendheid, buigbaarheid, en gevorderde beweegbaarheid verbeter. 
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1. INTRODUCTION 

In order to gain a competitive advantage in today’s high-tech industries, part 
manufacturers have to take advantage of new technologies. These modern technologies 
attempt to combine the idea of flexible manufacturing systems (FMS) with well-known mass 
production manufacturing techniques. This combination has become known as ‘mass 
customisation’ manufacturing, and aims to achieve a vast variety of products at mass 
production rates. 
 
The transportation of material and parts within a ‘mass customisation’ manufacturing 
environment plays a huge part in overall efficiency. A material handling system that 
provides flexibility, robustness, and high efficiency will have to be designed as ‘mass 
customisation’ becomes a reality of the future. 
 
The use of mobile robots, known as automated guided vehicles (AGVs), is a well-known 
technique for material handling in manufacturing [1]. However, traditional techniques for 
the navigation and control of automated guided vehicles can cause bottlenecks in the 
manufacturing process. They add a level of flexibility to a manufacturing system, compared 
with conveying systems. By taking advantage of modern and well-known navigation 
techniques – thereby providing greatly improved flexibility, robustness, and efficiency – 
automated guided vehicles will become the popular choice in a ‘mass customisation’ 
manufacturing environment. 
 
Localisation through the Kalman filter has become a research topic and a well-known 
solution to the navigation of mobile robots [2]. The Kalman filter allows for stochastic state 
estimation from multiple noisy sensor measurements in linear and nonlinear dynamic 
systems [3]. This paper aims to introduce a navigation technique for an omnidirectional 
robot using the discrete Kalman filter. It will greatly increase the efficiency, robustness, 
flexibility, and manoeuvrability of automated guided vehicles in a part manufacturing 
environment. 

2. OMNIDIRECTIONAL MOBILE ROBOT PLATFORMS 

Non-holonomic constraints are those that prohibit a vehicle from having direct control over 
each of its degrees of freedom. For example, a car cannot simply move sideways into 
parallel parking: it has to go through a series of movements in order to achieve the desired 
result. An omnidirectional vehicle (or holonomic vehicle) can, however, move directly into 
parallel parking. 

 

Figure 1: Illustration of the holonomic effects of a robot moving from point A to point B. 
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2.1 Omnidirectional vehicle 

The mobile platform used for the purposes of this paper was designed with 
omnidirectional wheels (Figure 2 below). This allows the wheel to move in 
longitudinal and lateral directions. The four wheels are spaced 90 degrees apart, and 
perpendicular to each other around the periphery of the robot platform (Figure 3). 
This decreases the complexity of the kinematic model derivation due to the 
symmetry of the wheels across the robot’s local coordinate axis. This design allows 
for direct control over all three degrees of freedom of the vehicle, and can therefore 
be considered completely omnidirectional. 
 

 
Figure 2: The omnidirectional wheel. 

3. PROBABILISTIC LOCALISATION 

“Mobile robot localisation is the problem of determining the pose of a robot 
with respect to a given map.” [4] 
 

Probabilistic localisation techniques take into consideration the uncertainty with which a 
robot could be in a specific pose at a certain time. The general problem is described by a 
probability distribution of the robot being at pose 𝑥𝑘 at time step 𝑘, given the folllowing: all 
external measurements from the initial time step 𝑘 = 0 to the current time step (𝑧0:𝑘); all 
control inputs until the current time step (𝑢0:𝑘); the map (𝑚) of landmarks in the global 
coordinate system; and the pose of the robot one time step before (𝑥𝑘−1). The probability is 
represented by a multivariable normal distribution, shown in equation 1. 
 

 𝑃(𝑥𝑘|𝑧0:𝑘 ,𝑢0:𝑘 ,𝑥𝑘−1,𝑚) 
 

(1) 

Modern probabilistic robot localisation techniques use kinematic models of the robot 
motion as opposed to dynamic models. Successful use of kinematic models in the real world 
implementation of probabilistic localisation techniques makes it unnecessary for the 
dynamics of the robots to be modelled. This, however, does not mean that the robot 
dynamics cannot be used for probabilistic localisation [4]. 

3.1 Kinematics 

The system equations for the discrete Kalman filter can be implemented in two ways. The 
first technique uses the velocity inputs to the robot’s wheel, and the second technique uses 
the wheel velocities read by the robot’s odometry sensors [4]. For the purposes of this 
paper, quadrature encoders are attached to each wheel, and therefore the actual 
measured wheel velocity will be used as the inputs to the prediction phase of the Kalman 
filter. 
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Figure 3 below is a simple representation of the base of the robot and its omnidirectional 
wheels. ∝𝑖 is the angle between the 𝑖th wheel and the 𝑥-axis of the robot’s local coordinate 
system 𝐶𝑅 . 𝐶𝑔  represents the global coordinate system within which the robot moves 
freely. 
 
The kinematic equations of the vehicle map the relationship between the angular wheel 
velocities of the robot and the global velocities of the robot. A full derivation of a similar 
omnidirectional platform can be found in van Haendel [5]. 

 

Figure 3: The basic layout of the omnidirectional vehicle.  

3.1.1 Inverse kinematics 
The inverse kinematics of the robot platform determine the wheel angular velocities, given 
the global velocities of the vehicle, in the form of equation 2 below, where 𝐴  is the 
transformation matrix that maps the global velocities to the wheel angular velocities, and 
𝑥̇𝑔 is the global velocity vector of the robot platform. 
 

 𝜙̇𝑖 = 𝐴𝑥̇𝑔 
 

(2) 

 
Equation 3 shows matrix 𝐴 for a mobile robot platform with four omnidirectional wheels of 
radius 𝑟 and three degrees of freedom; it is therefore a 4x3 matrix. 
 

 

⎣
⎢
⎢
⎢
⎡𝜙̇1
𝜙̇2
𝜙̇3
𝜙̇4⎦
⎥
⎥
⎥
⎤

=
1
𝑟  �

sin (𝜃) cos (𝜃) 𝑅
−cos (𝜃) sin (𝜃) 𝑅
−sin (𝜃) cos (𝜃) 𝑅
cos (𝜃) −sin (𝜃) 𝑅

� �
𝑥̇𝑔
𝑦̇𝑔
𝜃̇
� 

 

(3) 

𝑅 is the distance between the centre of the mobile platform and the wheels, 𝜙̇𝑖  is the 
angular velocity of the 𝑖th wheel in radians per second, and 𝜃 is the angle between the 
robot’s local 𝑥-axis and the 𝑥-axis of the global coordinate system, as shown in Figure 4. 
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3.1.2 Forward kinematics 
The forward kinematics equation is derived by inverting the matrix 𝐴 from the inverse 
kinematics, and determines the global velocities of the mobile platform as a function of the 
wheel angular velocities, as shown in equation 4. 
 

 𝑥̇𝑔 =  𝐴−1𝜙̇𝑖 
 

(4) 

𝐴  is a 4x3 matrix, and therefore cannot be inverted directly; the Moore-Penrose 
pseudoinverse 𝐴+ needs to be obtained by using equation 5 [6]. The complexity of the 
pseudoinverse can be dramatically reduced by placing the wheels symmetrically across both 
the 𝑥- and the 𝑦-axis of the robot’s local coordinate system. Therefore ∝1= 0°, ∝2= 90°, 
∝3= 180°, and ∝4= 270°. The pseudoinverse 𝐴+ can now easily be determined. 
 

 𝐴+ = [𝐴𝑇 × 𝐴]−1 × 𝐴𝑇 
 

=
𝑟
2 �

sin (𝜃) −cos (𝜃) −sin(𝜃) cos (𝜃)
cos(𝜃) sin(𝜃) −cos(𝜃) −sin(𝜃)
1 2𝑅⁄ 1 2𝑅⁄ 1 2𝑅⁄ 1 2𝑅⁄

� 

 
 

(5) 

 
The forward kinematic equation is therefore: 

 

�
𝑥̇𝑔
𝑦̇𝑔
𝜃̇𝑔
� =

𝑟
2 �

sin (𝜃) −cos (𝜃) −sin(𝜃) cos (𝜃)
cos(𝜃) sin(𝜃) −cos(𝜃) −sin(𝜃)
1 2𝑅⁄ 1 2𝑅⁄ 1 2𝑅⁄ 1 2𝑅⁄

�

⎣
⎢
⎢
⎢
⎡𝜙̇1
𝜙̇2
𝜙̇3
𝜙̇4⎦
⎥
⎥
⎥
⎤
 

 

   (6) 

3.2 The discrete Kalman filter 

The Kalman filter is a recursive data processing algorithm that is able to estimate 
accurately the state of noisy linear dynamic systems in a way that minimises the mean 
squared error [7,3]. The filter was first introduced by Rudolf Kalman in 1960 [8], and has 
since been adapted for nonlinear systems and used in a great variety of applications. 
 
A common adaption to the Kalman filter is the extended Kalman filter. It is suitable for 
nonlinear dynamic systems, as it creates a linearised estimate about the points of interest 
through Taylor series expansion [7].  
 
The discrete linear Kalman filter and discrete extended Kalman filter are two part recursive 
algorithms. First, the state prediction or ‘time update’ is computed (this is discussed in 
section 3.2.1), and second, the state correction or ‘measurement update’ is computed (as 
discussed in section 3.2.2). 
3.2.1 Kinematic system model and state prediction 

The state prediction or time update determines the state mean (𝑥�𝑘−)  and priori state 
covariance over all possible states the robot could be in, relative to the posterior estimated 
state from one time step before (𝑥�𝑘−1+ ), and the control input read from the odometry or 
internal sensors. This probability distribution is represented by a system model in the form 
of equation 7.  
 

 𝑃�𝑥𝑘|𝑥𝑘−1,𝑢𝑘� 
 

(7) 

This mean state is known as the priori state estimation 𝑥�𝑘− and is determined by equation 8.  
 

 𝑥�𝑘− = 𝑓(𝑥�𝑘−1+ ,𝑢�𝑘) (8) 
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Therefore the state of the omnidirectional mobile robot system can be estimated. This is a 
nonlinear equation, and therefore has to be linearised in order to determine the priori state 
mean. 
 
Due to random noise in the form of wheel slip, inaccurate odometry measurements, etc., 
the priori state estimation is given as: 
 

 𝑥�𝑘− = 𝑓(𝑥�𝑘−1+ ,𝑢�𝑘) + 𝑤𝑘 
 

(9) 

where 𝑤𝑘 is the modelled random white (zero mean) system noise with error covariance 𝑄𝑘, 
and represents the degree of uncertainty in the state prediction. The noise on each state 
variable is said to be independent of the noise on each of the other state variables. The off-
diagonal elements of the error covariance matrix 𝑄𝑘  are therefore zero, as shown in 
equation 10. 
 

 

𝑄𝑘 =

⎣
⎢
⎢
⎡𝜎𝑥�𝑘−

2 0 0
0 𝜎𝑦�𝑘−

2 0
0 0 𝜎𝜃�𝑘−

2
⎦
⎥
⎥
⎤
 

 

(10) 

From equation 9 and equation 13 (backward Euler integration), it can be determined that 
the priori state estimation 𝑥�𝑘− can be represented as: 
 

 

𝑥�𝑘− = 𝑓(𝑥�𝑘−1+ ,𝑢�𝑘) + 𝑤𝑘  = �
𝑥�𝑘−1+

𝑦�𝑘−1+

𝜃�𝑘−1+
� + 𝐵𝑘

⎣
⎢
⎢
⎢
⎡𝜙̇1,𝑘

𝜙̇2,𝑘

𝜙̇3,𝑘

𝜙̇4,𝑘⎦
⎥
⎥
⎥
⎤

+ 𝑤𝑘 

 

(11) 

where 𝐵𝑘, adapted from equation 6, is: 
 

 
𝐵𝑘 = ∆𝑇 𝑟

2
�

sin (𝜃�𝑘−) −cos(𝜃�𝑘−) −sin(𝜃�𝑘−) cos (𝜃�𝑘−)
cos(𝜃�𝑘−) sin(𝜃�𝑘−) −cos(𝜃�𝑘−) −sin (𝜃�𝑘−)

1 2𝑅⁄ 1 2𝑅⁄ 1 2𝑅⁄ 1 2𝑅⁄
� 

 

(12) 

 
 𝑥𝑘 = 𝑥𝑘−1 + ∆𝑇𝑥̇𝑘 (13) 

 
The priori state error covariance is then calculated as:  
 

 𝑃𝑘− = 𝐴𝑥,𝑘𝑃𝑘−1+ 𝐴𝑥,𝑘
𝑇 + 𝐴𝑢,𝑘𝑈𝑘𝐴𝑢,𝑘

𝑇 + 𝑄𝑘 
 

(14) 

where 

𝐴𝑥,𝑘 =  
𝜕𝑓(𝑥�𝑘−1+ ,𝑢�𝑘)

𝜕𝑥�𝑘−1+  

and 

𝐴𝑢,𝑘 =  
𝜕𝑓(𝑥�𝑘−1+ ,𝑢�𝑘)

𝜕𝑢�𝑘
 

 
and where 𝑈𝑘 is the control input error covariance, and represents the degree of 
uncertainty in the measurement received from the odometry sensors (quadrature 
encoders). 

3.2.2 Measurement model and state correction 
External measurements (known as absolute measurements) taken by the robot of the 
environment form the basis of the state correction stage of the discrete recursive Kalman 
filter. These measurements can be made by range sensors or visual sensors, and are 
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considered to be subject to guassian distributed, zero mean, independent noise. For the 
purposes of this paper, the sensor is considered to be an ‘all state’ sensor, and can 
therefore determine the noisy state of the environment with one observation of one 
landmark from one sensor. 
 
The measurement model given by the probability distribution in equation 15 determines the 
mean measurement observation and covariance over all possible observations, given priori 
state estimation and the position of all observable landmarks 𝑚. 
 

 𝑃�𝑧𝑘|𝑥𝑘 ,𝑚� (15) 
 
This probability distribution is represented by the measurement model: 
 

 𝑧̂𝑘 = ℎ�𝑥�𝑘−� + 𝑣𝑘 
 

(16) 

 
where ℎ is a nonlinear equation that maps the priori state estimates of the robot and the 
known positions of the landmarks compared with what the robot should observe. 𝑣𝑘 is the 
modelled guassian distributed, zero mean, independent noise acting on the observation 
sensor, and is represented by the error covariance 𝑅𝑘. 
 

 

Figure 4: Illustration of the three coordinate systems used for the motion model. 

Figure 4 shows the three coordinate systems: the robot’s coordinate system 𝐶𝑅 ,  the 
landmark’s coordinate system 𝐶𝐿, and the global coordinate system 𝐶𝑔. For the purpose of 
this paper, the measurement model will determine the landmark’s coordinates in the 
robot’s coordinate system. 
 
The difference in state between the robot and the known landmark is given as: 
 

 
𝑙𝑘𝑟 = �

𝑥𝐿
𝑦𝐿
𝜃𝐿
� − �

𝑥�𝑘−
𝑦�𝑘−

𝜃�𝑘−
� = �

𝑥𝐿 − 𝑥�𝑘−
𝑦𝐿 − 𝑦�𝑘−

𝜃𝐿 − 𝜃�𝑘−
� 

 

(17) 
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In order to obtain the coordinates of the landmark in the robot’s coordinate system, we 
require a coordinate system transformation. This is easily done, assuming that a unit length 
in the landmark’s coordinate frame is the same as a unit length in the robot’s coordinate 
frame. 
 

 
𝑅(−𝜃𝑘) = �

cos(−𝜃𝑘) − sin(−𝜃𝑘) 0
sin(−𝜃𝑘) cos(−𝜃𝑘) 0

0 0 1
� 

 

(18) 

𝑅(−𝜃𝑘) is a rotation matrix about the vertical axis of the robot’s platform over a rotation 
−𝜃𝑘 . By multiplying the rotation matrix by the difference in the landmark and robot 
state’s 𝑙𝑘𝑟, we transform the landmark’s coordinates into the robot’s coordinate system. 
 

 
 
 

𝑧̂𝑘 = ℎ(𝑥�𝑘−) =  𝑙𝑘𝑟 × 𝑅(−𝜃𝑘) + 𝑣𝑘    
 

= �
(𝑥𝐿 − 𝑥�𝑘−) cos 𝜃𝑘 + (𝑦𝐿 − 𝑦�𝑘−) sin 𝜃𝑘
((𝑥�𝑘−−𝑥𝐿) sin 𝜃𝑘 + (𝑦𝐿 − 𝑦�𝑘−) cos 𝜃𝑘

𝜃𝐿 − 𝜃𝑘
� + 𝑣𝑘 

 

(19) 

The extended Kalman filter is used for nonlinear type system and measurement models. 
The measurement model is clearly a nonlinear function, and therefore requires linearisation 
about the points of interest. Linearisation is calculated through a Taylor expansion 
approximation of the measurement model at the predicted priori state estimation or 
mean 𝑥�𝑘−. 
 

 

𝐻𝑘 =  
𝜕ℎ(𝑥)
𝜕𝑥 �

𝑥=𝑥�𝑘
−
 

 

= �
− cos 𝜃𝑘 −sin 𝜃𝑘 −(𝑥𝐿 − 𝑥�𝑘−) sin𝜃𝑘 + (𝑦𝐿 − 𝑦�𝑘−) cos 𝜃𝑘

sin𝜃𝑘 − cos 𝜃𝑘 (𝑥�𝑘−−𝑥𝐿) cos 𝜃𝑘 − (𝑦𝐿 − 𝑦�𝑘−) sin 𝜃𝑘
0 0 −1

� 

 
 

(20) 

 
The Kalman gain 𝐾𝑘  is computed, and determines the extent to which the measurement 
would be used in the update of the priori state estimation, based on the degree of 
uncertainty in the state prediction and external measurements. If the measurement error 
covariance 𝑅𝑘 is relatively large, then the state update would be less noticeable. On the 
other hand, if the system error covariance 𝑄𝑘 is large, then measurements taken by the 
sensors would be used to a greater extent, and the effect of the measurement on the 
posterior state estimation would be large. 
 
The Kalman gain for the extended Kalman filter is calculated as follows: 
 

 𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇�𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑅𝑘�
−1

 
 

(21) 

 
The posterior state error covariance 𝑃𝑘+ used for the priori error covariance prediction in 
the next time step 𝑘 + 1 is given by: 
 

 𝑃𝑘+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘− 
 

(22) 

 
Finally, the posterior state estimation 𝑥�𝑘+  is determined, where 𝑧𝑘  is the actual, noisy 
measurement made by the all state sensor, and  𝑧̂𝑘 is the predicted measurement made by 
the measurement model. 
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 𝑥�𝑘+ = 𝑥�𝑘− + 𝐾𝑘�𝑧𝑘 − 𝑧̂𝑘� 
 

(23) 

The posterior state estimation is then carried over to the next time step and used for the 
system state prediction. In this way the recursive nature of the discrete Kalman filter is 
observed. 

4. IMPLEMENTATION AND RESULTS 

Implementation of the discrete Kalman filter requires a system model and a measurement 
model, as well as initial conditions for the robot state and error covariance. Once these 
have been determined, the recursive algorithm can easily be used.  
 
A simulation of the Kalman filter working with the omnidirectional robot and its derived 
equations as above was carried out in Mathwork’s SIMULINK. By empirically adjusting the 
values for the system error covariance 𝑄𝑘, measurement error covariance 𝑅𝑘, and control 
input error covariance 𝑈𝑘 , a suitable Kalman estimation of the robot’s pose can be 
determined. 
 
The sources of noise affecting the robot as it moves are: 

• Slippage of the wheels. This does not affect the estimated position of the robot, as 
the kinematic models do not take the slip into consideration. It does, however, 
affect the actual position of the robot, and will therefore affect the observations 
made by the sensors. The control input is therefore not an accurate estimate of 
the robot’s actual position. 

• The latency of the quadrature encoder interrupts routines, especially for high 
resolution encoders with slow microcontrollers. This does not affect the actual 
position of the robot, but does affect the predicted priori state estimate as well as 
the predicted measurement model. 

• Observation sensor noise. This noise source only affects the actual observation 
made by the robot. 

 
The simulation was run for a square control input and a circular control input. The robot 
travels around, but always facing the landmark situated at (1,0) in the global coordinate 
system. In each case the actual pose, the sensor observations (measurements), and the 
Kalman estimate were obtained. The effects of slip can be seen in the way that the robot 
does not travel in a perfect square or a perfect circle. Figure 5 below shows how the 
Kalman estimated pose of the robot tracks closely to the actual pose as it moves around the 
landmark, even with the relatively noisy sensor measurements. 

 

Figure 5: The robot travelling in a square and a circular trajectory. 
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5. FUTURE WORK 

Localisation techniques can form the basis of mobile robot applications. Once accurate 
localisation has been achieved, it can be used as a platform for further research and 
development of motion planning and coordination. The decentralised nature of the 
probabilistic algorithms makes it suitable for applications in the emerging research of 
swarm robotics.  
 
Simultaneous localisation and mapping (SLAM) would increase the flexibility of the 
navigational algorithms, but at the cost of computational power. A way forward would be: 
 

1. To move towards simultaneous localisation and mapping, not localisation alone. 
2. To allow for complete independence of the platform – i.e. no centralised control. 
3. To incorporate swarm intelligence algorithms for motion planning, multi-agent 

cooperation, and task allocation in the manufacturing environment. 
 
This would produce a highly flexible, efficient, robust, and scalable material handling 
system that could be adapted to meet ever-changing product demands in a ‘mass 
customisation’ manufacturing environment. 

6. CONCLUSION 

The extended Kalman filter was implemented as the probabilistic localisation technique of 
an omnidirectional mobile robot. This technique showed encouraging results in a 
simulation. If incorporated into a suitable feedback control loop, the effects of slip noise 
and sensor noise could be eradicated. 
 
Probabilistic localisation is still a new science in the mobile robot technology domain. 
Research has shown that successful implementation of these localisation techniques into 
automated guided vehicles in a manufacturing environment is an essential step towards full 
flexibility and high production rates. The Kalman filter provides a robust landmark 
navigation solution, while the omnidirectional platform supplies advanced manoeuvrability 
and simpler control. The system provides increased flexibility, robustness, manoeuvrability, 
and, ultimately, efficiency in a computer-integrated manufacturing environment. 
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