
STUDIES IN SWARM INTELLIGENCE TECHNIQUES FOR ANNUAL CROP PLANNING PROBLEM
IN A NEW IRRIGATION SCHEME

Sivashan Chetty1 & Aderemi O. Adewumi2

1,2School of Mathematics, Statistics and Computer Science
University of Kwa-Zulu Natal
University Road, Westville

Private Bag X 54001, Durban, 4000, South Africa
1mervinthree@gmail.com, 2adewumia@ukzn.ac.za

ABSTRACT

Annual crop planning (ACP) is an NP-Hard type optimisation problem in agricultural
planning. It involves finding optimal solutions for the seasonal allocations of a limited
amount of agricultural land among the various competing crops that need to be grown on it.
This study investigates the effectiveness of employing three relatively new Swarm
Intelligence (SI) techniques in determining solutions to an ACP problem at a new irrigation
scheme. The SI metaheuristics studied include Cuckoo Search (CS), Firefly Algorithm (FA),
and Glow-worm Swarm Optimisation (GSO). The solutions determined by these SI
techniques are compared against the solutions of Genetic Algorithm (GA), another
population-based metaheuristic technique. This helps to determine the relative merits of
the solutions found by the SI techniques. The results show that the SI algorithms delivered
solutions superior to those of GA in determining solutions to the ACP problem at a new
irrigation scheme.

OPSOMMING

Jaarlikse oesbeplanning is ‘n NP-Hard soort optimiseringsprobleem in landbou beplanning.
Dit behels die bepaal van optimale oplossing vir die seisoenale toekenning van ‘n beperkte
hoeveelheid landbougrond aan die verskeie mededingende gewasse. Hierdie artikel
ondersoek die doeltreffendheid van drie relatiewe nuwe Swerm Intelligensie tegnieke om
oplossings tot oesbeplanning by ‘n nuwe besproeiingskema te vind. Die Swem Intelligensie
tegnieke wat ondersoek is, is die Koekoek Soekmetode, die Vuurvliegie Algoritme en die
Gloei-wurm Swerm Optimisering tegnieke. Die oplossings deur hierdie tegnieke verkry is
vergelyk met dié verkry met die tradisionele Genetiese Algoritme. Dié vergelyking help om
die relatiewe voordele van die nuwe Swerm Intelligensie tegnieke te bepaal. Die resultate
toon dat die voorgestelde tegnieke beter oplossings as die tradisionele Genetiese Algoritme
benadering gelewer het.
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

South African Journal of Industrial Engineering November 2013 Vol 24(3): pp 205-226

1 INTRODUCTION

Increases in population growth have increased the need for more food to be produced
worldwide. At present, shortages in food supply have brought the hard-felt reality of
starvation to the lives of millions of people. This is particularly true in ‘fourth world’
countries. To combat this problem in the future, the productivity of food must increase.
The agricultural sector is the primary supplier of food in the world [1]. To try to meet the
growing demand for food, the agricultural sector must increase its output. Optimising the
production of food with current agricultural practices is important, but it is not enough to
meet the future demands. To produce more food in the future, more land must be made
available for agricultural production.

The allocation of land for agricultural production will depend on the decisions made by
local authorities. For land to be allocated, it must be assessed to determine its suitability
for agricultural production, and whether the crops grown on it will be sustainable in the
future. This is important for economic development. To determine the agricultural
potential of a given area of land, several factors must be considered. The main factors are
soil characteristics and climate conditions [2]. For crop production, these factors will
determine the types of crops that will most suitably adapt to the given environmental
conditions. Other important factors are, among others, the natural land resources and
agricultural trends.

Natural land resources such as lakes and rivers are very valuable commodities. They can be
used to source irrigated water which, with rainfall, is important in determining the full
agricultural potential of a given area of agricultural land. The agricultural trends will
determine the types of crops that will bring the most suitable economic benefits.

When an area of land is allocated to develop a new irrigation scheme, and it has been
finalised which crops will be cultivated, then solutions must be found to the hectare
allocations among the competing crops. In determining the hectare allocations, it must be
considered that different types of crops grow in different seasons, grow for different
lengths of time, and have different plant requirements. These factors must be considered
in order to determine feasible solutions.

The problem of trying to optimise the seasonal hectare allocations of a given area of
agricultural land among the various competing crops that must be grown within a year is an
NP-Hard type optimisation problem in agricultural planning, called ‘annual crop planning’
(ACP). ACP aims to determine solutions that will maximise the total gross profits earned
from a given area of agricultural land, by making the most efficient use of the limited
resources available for agricultural production. Limited resources include land, irrigated
water supply, and the various costs associated with agricultural production. The solutions
must satisfy the multiple land and irrigation water allocation constraints that are associated
with ACP, in order to be feasible.

This research introduces a new ACP mathematical model, formulated by the authors of this
paper, and intended to determine solutions to the ACP problem at a new irrigation scheme.
Previous studies in crop and irrigation planning have used both single and multi-objective
mathematical models. Many optimisation techniques have been used to provide solutions to
these models. These include Linear Programming (LP), Simulated Annealing (SA), Particle
Swarm Optimisation (PSO) and Evolutionary Algorithms (EAs), among others. Pant et al. [3]
employed the Differential Evolution (DE) algorithm to provide solutions to a crop planning
problem under adequate, normal and limited irrigated water supply. The objective was to
maximise the net benefits gained, under these conditions. It was found that DE performed
better than the programming tool LINGO. In [4], Pant et al. investigated the performances
of four EAs in providing solutions to a crop planning problem. These algorithms included the
Genetic Algorithm (GA), PSO, DE, and Evolutionary Programming (EP). Solutions were also
determined using LINGO. The solutions showed that, of all the heuristic algorithms, GA

206

performed poorly, and that DE, PSO, and EP were all comparable. Georgiou and
Papamichail [5] used SA in combination with the Stochastic Gradient Descent Algorithm to
determine solutions for the optimised water release policies of a reservoir. The released
water had to be allocated efficiently among the various crops being grown. To maximise
profits, the ‘optimal’ cropping pattern had to be determined. Wardlaw and Bhaktikul [6]
used GA to solve a problem of irrigated water scheduling, using a 0-1 approach. The
research found that GA performed well in being able to distribute irrigated water to several
farm plots to satisfy the soil moisture content levels under water scarce conditions. The
water allocations were done on a rotational basis. Sarker and Ray [7] proposed an improved
EA known as the Multi-objective Constrained Algorithm (MCA), which was used to provide
solutions to a multi-objective crop planning problem. The research found that MCA
performed relatively better than the two other optimisation techniques used. These
techniques included the 𝜀-constrained method and the Non-dominated Sorting Genetic
Algorithm (NSGAII). Raju and Kumar [8] compared the performances of GA and LP in
providing solutions to a crop planning problem. The objective was to maximise the net
benefits. The performances of GA and LP were relatively close. It was concluded that GA is
an effective heuristic algorithm that can be used for irrigation planning. Reddy and Kumar
[9] studied the effectiveness of using Elitism-Mutation Particle Swarm Optimisation (EMPSO)
in determining the short-term release policies of irrigated water from a reservoir under
water scarce conditions. The study concluded that the heuristic algorithm is effective in
providing short-term solutions for multi-crop irrigation.

The objective of this paper was to investigate and compare the performances of three
relatively new Swarm Intelligence (SI) metaheuristic algorithms, in determining solutions to
an ACP problem at a new irrigation scheme. The algorithms investigated are Cuckoo Search
(CS), Firefly Algorithm (FA) and Glow-worm Swarm Optimisation (GSO). To determine the
relative merits of the solutions provided by these SI algorithms, their solutions have been
compared against the solutions of a traditional population based metaheuristic algorithm,
the Genetic Algorithm (GA). The solutions determined and comparisons made will indicate
the possible strengths and/or weaknesses of the SI algorithms, in determining solutions to
this ACP problem. The solutions found will be valuable in making suggestions concerning the
seasonal hectare allocations for the crops that are required to be grown. To the best of our
knowledge, the authors of this paper have not come across any other research that has used
SI metaheuristic algorithms in determining solutions to an ACP problem at a new irrigation
scheme.

The rest of this paper is structured as follows. Section 2 describes and presents the
formulation of the ACP mathematical model. Section 3 describes the case study of the
Taung Irrigation Scheme. Section 4 describes the SI metaheuristic algorithms used. Section
5 presents and discusses the experimental results obtained. Finally, Section 6 draws
conclusions and outlines possible future work.

2 THE ANNUAL CROP PLANNING MATHEMATICAL MODEL

This annual crop planning (ACP) mathematical model, formulated by the authors of this
paper, is intended to determine solutions to the annual crop planning problem at a new
irrigation scheme. The feasible solutions must allocate the limited amount of agricultural
land among the various competing crops that need to be grown within the year. These
solutions must satisfy all the constraints associated with the objective function. The
objective in determining an optimal solution is to maximise the total gross profits that can
be earned, in making the most efficient usage of the limited resources available. The
limited resources include land, irrigated water supply, and the variable costs associated
with agricultural production. To determine feasible solutions, it must be taken into account
that different crops grow in different seasons, grow for different lengths of time, and have
different plant requirements. To make efficient use of irrigated water supply, precipitation
must be taken into account.

207

The crops cultivated for agricultural production include those that are grown all year
around. These are the tree-bearing crops and perennials. Other crop types include seasonal
crops such as the summer, autumn, and winter crops. Single-crop plots of land are
allocated to those crops that are grown all year around. Double-crop plots of land are
allocated to two different types of crops that are grown in sequence within the year.
Triple-crop plots of land are allocated to three different types of crops that are grown in
sequence within a year, and so on.

Soil characteristics are also a factor in crop planning. Certain crops may adapt well only to
certain types of soils. Therefore, the use of land is important for optimal yields. Irrigation
application is also important. Too much or too little application of water will lead to sub-
optimal plant growth. This will affect the yield of the crop. Soils are also sensitive to
leaching due to excessive water applications [1]. So the seasonal irrigated water allocations
among the various crops must be well planned.

The ACP mathematical model for determining solutions at a new irrigation scheme is
formulated as set out below.

2.1 Indices

• 𝑘 – Plot types. (1 = single-crop plots, 2 = double-crop plots, 3 = triple-crop plots, and
so on).

• 𝑖 – Indicative of the groups of crops that are grown in sequence throughout the year,
on plot type 𝑘 (𝑖 = 1 represents the 1st group of sequential crops, 𝑖 = 2 represents
the 2nd group of sequential crops, 𝑖 = 3 represents the 3rd group of sequential crops,
and so on).

• 𝑗 – Indicative of the individual crops grown at stage 𝑖, on plot 𝑘.

2.2 Input parameters

• 𝑙 – Number of different plot types.
• 𝑁𝑘 – Number of sequential groups of crops grown within a year, on plot 𝑘.
• 𝑀𝑘𝑖 – Number of different types of crops grown at stage 𝑖, on plot 𝑘.
• 𝐹𝑘𝑖𝑗 – Average fraction per hectare of crop 𝑗, at stage 𝑖, on plot 𝑘, that needs to be

irrigated (1 = 100% coverage, 0 = 0% coverage).
• 𝑅𝑘𝑖𝑗 – Averaged rainfall estimates that fall during the growing months for crop 𝑗, at

stage 𝑖, on plot 𝑘.
• 𝐶𝑊𝑅𝑘𝑖𝑗 – Crop water requirements of crop 𝑗, at stage 𝑖, on plot 𝑘.
• 𝑇 – Total hectares of land allocated for the irrigation scheme.
• 𝐴 – Volume of irrigated water that can be supplied per hectare (ha-1).
• 𝑃 – Price of irrigated water m-3.
• 𝑂𝑘𝑖𝑗 – Other operational costs ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. These costs exclude

the cost of irrigation.
• 𝑌𝑅𝑘𝑖𝑗 – The amount of yield that can be obtained in tons per hectare (t ha-1) from crop

𝑗, at stage 𝑖, on plot 𝑘.
• 𝑀𝑃𝑘𝑖𝑗 – Producer prices per ton (t-1) for crop 𝑗, at stage 𝑖, on plot 𝑘.
• 𝐿𝑏𝑘𝑖𝑗 – Lower-bound for crop 𝑗, at stage 𝑖, on plot 𝑘.
• 𝑈𝑏𝑘𝑖𝑗 – Upper-bound for crop 𝑗, at stage 𝑖, on plot 𝑘.
• 𝐿𝑏_𝑃𝑘 – Lower-bound for plot type 𝑘.
• 𝑈𝑏_𝑃𝑘 – Upper-bound for plot type 𝑘.

2.3 Calculated parameters

• 𝐼𝑅 𝑘𝑖𝑗 – Volume of irrigated water estimates that should be applied to crop 𝑗, at stage 𝑖,
on plot 𝑘. (𝐼𝑅𝑘𝑖𝑗𝑚3 = (𝐶𝑊𝑅𝑘𝑖𝑗𝑚 – 𝑅𝑘𝑖𝑗𝑚) ∗ 10000𝑚2 ∗ 𝐹𝑘𝑖𝑗).

• 𝑇𝐴 – Total volume of irrigated water that can be supplied to the given area of land,
within a year (𝑇𝐴 = 𝑇 ∗ 𝐴).

208

• 𝐶_𝐼𝑅𝑘𝑖𝑗 – The cost of irrigated water ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐶_𝐼𝑅𝑘𝑖𝑗 =
 𝐼𝑅𝑘𝑖𝑗 ∗ 𝑃).

• 𝐶𝑘𝑖𝑗 – Variable costs ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐶𝑘𝑖𝑗 = 𝑂𝑘𝑖𝑗 + 𝐶_𝐼𝑅𝑘𝑖𝑖𝑗).
• 𝐵𝑘𝑖𝑗 – Gross margin that can be earned ha-1 for crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐵𝑘𝑖𝑗 =

 𝑀𝑃𝑘𝑖𝑗 ∗ 𝑌𝑅𝑘𝑖𝑗 – 𝐶𝑘𝑖𝑗).

2.4 Variables

• 𝐿𝑘 – Total area of land allocated for agricultural production for plot type 𝑘.
• 𝑋𝑘𝑖𝑗 – Area of land, in hectares, that can be feasibly allocated to crop 𝑗, at stage 𝑖, on

plot 𝑘.

2.5 Objective function

Maximise

 𝑓 = ���𝑋𝑘𝑖𝑗𝐵𝑘𝑖𝑗

𝑀𝑘𝑖

𝑗=1

𝑁𝑘

𝑖=1

 (1)
𝑙

𝑘=1

 In equation (1), 𝑘 represents the plot types. 𝑘 = 1 indicates the single-crop plots, 𝑘 = 2
indicates the double-crop plots, and so on. For each plot type 𝑘, 𝑖 is indicative of the
number of groups of crops that are grown in sequence throughout the year. For 𝑘 = 1, 𝑁𝑘
(or 𝑁1) will be equivalent to 1. This will represent the group of crops that are grown all
year around. For 𝑘 = 2, 𝑁𝑘 = 2. This will represent two groups of crops that are grown in
sequence throughout the year. These are the summer and winter crop groups. The
explanation is similar for 𝑘 = 3, and so on. For each sequential crop group 𝑖, grown on plot
𝑘, 𝑗 will represent the individual crops grown. For 𝑘 = 1 and 𝑖 = 1, 𝑗 will be indicative of all
the tree-bearing and perennial crops grown. For 𝑘 = 2 and 𝑖 = 1, 𝑗 will be indicative of all
the summer crops grown. For 𝑘 = 2 and 𝑖 = 2, 𝑗 will be indicative of all the winter crops
grown, and so on.

Equation (1) is subjected to the land and irrigated water allocation constraints given in
Sections 2.6 and 2.7 below. The gross benefits 𝐵𝑘𝑖𝑗 that can be earned per crop must also
satisfy the non-negative constraint given in Section 2.8 below.

2.6 Land constraints

Feasible solutions must satisfy the lower and upper bound constraints of the plot types 𝑘.
This constraint is given in equation (2) below.

𝐿𝑏_𝑃𝑘 ≤ 𝐿𝑘 ≤ 𝑈𝑏_𝑃𝑘 ∀𝑘, 𝑖, 𝑗 (2)
The sum of the hectares allocated for each plot type 𝑘 must be less than or equal to 𝑇. This
constraint is given by equation (3) below.

 �𝐿𝑘 ≤ 𝑇
𝑙

𝑘=1

 (3)

The sum of the hectares allocated for each crop 𝑗, at stage 𝑖, on plot 𝑘, must be less than
or equal to the total area of land allocated for agricultural production on plot type 𝑘. This
constraint is given by equation (4) below.

�𝑋𝑘𝑖𝑗 ≤ 𝐿𝑘 ∀𝑘, 𝑖 (4)
𝑀𝑘𝑖

𝑗

The lower and upper bound constraints for each crop must be satisfied. This constraint is
given by equation (5) below.

𝐿𝑏𝑘𝑖𝑗 ≤ 𝑋𝑘𝑖𝑗 ≤ 𝑈𝑏𝑘𝑖𝑗 ∀𝑘, 𝑖, 𝑗 (5)

209

2.7 Irrigation constraints

The total volume of irrigated water that is required for the production of all crops within
the year must be less than or equal to the total volume of irrigated water that can be
supplied to the given area of land. This constraint considers that some crops may require
more irrigated water than what is supplied per ha. It is therefore the responsibility of the
farmer to distribute his supply of irrigated water efficiently. This constraint is given by
equation (6) below.

���𝑋𝑘𝑖𝑗𝐼𝑅𝑘𝑖𝑗 ≤ 𝑇𝐴 (6)
𝑗𝑖𝑘

2.8 Non-negative constraints

The gross profits that can be earned per crop must be greater than zero. This constraint is
given by equation (7) below.

 𝐵𝑘𝑖𝑗 > 0 ∀𝑘, 𝑖, 𝑗 (7)

3 CASE STUDY

The Taung Irrigation Scheme (TIS) is situated in the Taung District, in the North West
Province of South Africa. It adjoins the Vaalharts Irrigation Scheme (VIS) – one of the largest
irrigation schemes in the world, with a total of 3,764 ha of irrigated land currently [2]. The
irrigated water currently supplied to the TIS is drawn from the Vaal River, and is supplied
via the Vaalharts Canal System, which also supplies irrigated water to the VIS. The irrigated
water is supplied to the TIS at a basic quota of 8,417 m3ha-1annum-1 to the farmers [2].
Located in the area of the TIS is the Taung Dam which, at full capacity, has a total volume
of 62.97 million m3 of water. The dam was originally constructed to supply irrigated water
to the TIS, but no infrastructure had been built to do so.

A recent survey [2] had been done to determine whether extending the existing TIS would
be feasible in developing new irrigated areas. If it is found that the adjacent portions of
land are viable, then the irrigated water supplied to the TIS will be drawn from the Taung
Dam. The survey found that 3,315 ha are acceptable for agricultural production. It is also
believed that agricultural production on this portion of land will match the high agricultural
output of the neighbouring VIS. The current expansion of the TIS will cater for 175 people
who had been previously excluded from the land. A total of 1,750 ha (10 ha per person) will
now be allocated to them as restitution. As chosen by the local Department of Agriculture
and the local farmers, the most suitable crops to be cultivated on this portion of land are
those listed in Table 1 [2]. The crops consist of lucerne, which is grown all year around (y),
and the rest of the crops, which are the summer (s) and winter (w) crops. Lucerne will be
grown on single-crop plots of land, while the summer and the winter crops will be grown on
double-crop plots of land.

To determine solutions for the seasonal hectare allocations among the various competing
crops that need to be grown, the crop water requirements (CWR) and the average rainfall
(AR) statistics need to be determined. The AR values are the average amount of rain that is
expected to fall during the growing months of each crop. The CWR is provided by the
Department of Water Affairs and Forestry [2]. The average rainfall statistics are obtained
from [10]. The producer price per ton (ZAR1 t-1) of yield is determined from data from the
Department of Agriculture, Forestry and Fisheries [11, 12]. The yield expected (t ha-1) per
crop is determined from data from the Kwa-Zulu Natal Department of Agriculture and
Environmental Affairs[13]. The water quota of 8,417 m3ha-1annum-1 will remain the same.
The cost of irrigated water is 8.77 cents/m3 [14].

1 ZAR stands for Zuid-Afrikaanse Rand. It is the Dutch translation of “South African Rand”, the South
African currency.

210

Table 1: Crop and average rainfall statistics

Crops CWR (mm) AR (mm) ZAR t-1 t ha-1
Lucerne (y) 1,445 444.7 1,185.52 16.0
Tomato (s) 1,132 350.8 4,332.00 50.0
Pumpkin (s) 794 279.0 1,577.09 20.0

Maize (s) 979 279.0 1,321.25 9.0
Ground Nut (s) 912 339.5 5,076.00 3.0
Sunflower (s) 648 314.9 3,739.00 3.0

Barley (w) 530 58.3 2,083.27 6.0
Onion (w) 429 177.0 2,397.90 30.0
Potato (w) 365 152.8 2,463.00 28.0

Cabbage (w) 350 152.8 1,437.58 50.0

4 METHODOLOGY

Swarm Intelligence (SI) is research inspired by observing the naturally intelligent behaviour
of swarms of biological agents within their environment. Without any central control
structure directing their movements, they seem to interact intelligently with each
together, independently achieving their objectives [15]. These observations have led to the
development of many effective SI optimisation algorithms. The algorithms typically
represent the individual behaviour of the biological agents, which are represented by a set
of simple rules.

SI algorithms have provided effective solutions to many real-world optimisation problems
that are NP-Hard in nature. This research investigates the effectiveness of employing three
relatively new SI metaheuristic algorithms in solving the ACP problem at the TIS. The
algorithms investigated are Cuckoo Search (CS), Firefly Algorithm (FA), and Glow-worm
Swarm Optimisation (GSO). To determine the relative merits of the solutions provided by
these algorithms, their solutions will be compared against the solutions of a traditional
population-based metaheuristic algorithm, the Genetic Algorithm (GA). Brief descriptions of
these algorithms are given in the subsections below.

4.1 Cuckoo Search

CS [16] is inspired by the parasitism of some cuckoo bird species. These birds aggressively
reproduce and then abandon their eggs in the nests of other bird species as hosts. Some
host birds behave aggressively and eject the alien eggs upon discovering an intrusion.
Others simply leave their nests and build new nests elsewhere. Each egg in the host bird’s
nest represents a possible solution. The goal of the CS algorithm is to replace an inferior
solution in the host bird’s nest with a potentially better solution. This is represented by a
newly-laid egg. There are three guiding rules governing the CS algorithm:

1. Each bird lays one egg at a time. The egg gets placed randomly among the host bird

nests.
2. The nest with the highest fitness value will get carried over to the next generation.
3. The number of host bird nests is fixed. The probability of a host bird discovering an

intrusion is set at a constant value of 𝑝𝑎 ∈ [0,1].

In generating a new solution, the random-walk is best performed by using Levy flights. The
Levy flight of cuckoo 𝑖 is performed using equation (8).

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑠𝛿 (8)
where 𝛿 is drawn from a standard normal distribution with mean 0 and standard deviation
of 1. 𝛿 determines the direction of movement. 𝑠 is the step size. This determines the
distance of the random walk. Determining 𝑠 is tricky. If 𝑠 is too big, then 𝑥𝑖(𝑡 + 1) will be
too far away from 𝑥𝑖(𝑡). If 𝑠 is too small, then 𝑥𝑖(𝑡 + 1) will be too close to 𝑥𝑖(𝑡) to be
significant. One of the most efficient algorithms used to calculate 𝑠 is Mantegna’s algorithm
[16]. Using Mantegna’s algorithm, 𝑠 can be calculated by using equation (9).

 𝑠 =
𝑢

|𝑣|1/𝛽 (9)

211

where 𝑢 and 𝑣 are drawn from a normal distribution, and 0 < 𝛽 ≤ 2.

CS is implemented in this research by first randomly generating a population of 𝑛 host bird
nest solutions, i.e. 𝑛𝑒𝑠𝑡 (for 𝑖 = 1, … ,𝑛). Each egg in 𝑛𝑒𝑠𝑡𝑖 is represented by a randomly-
generated number that falls between 0 and 1. The fitness value of each nest 𝑖 is then
calculated. The best fitness value found in the population and its corresponding solution is
then recorded in variables 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 respectively.

At each iteration of the algorithm, a new population of nests (𝑛𝑒𝑤𝑁𝑒𝑠𝑡) is generated using
𝑛𝑒𝑠𝑡 and 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡. Each 𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖 is determined in moving 𝑛𝑒𝑠𝑡𝑖 in the direction of
𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 using equation (8). The best nest solution from 𝑛𝑒𝑤𝑁𝑒𝑠𝑡 is then determined and
compared against 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 to check if an improved solution has been found. If the solution
improves on 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡, then 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 is replaced with this improved solution. Intrusion is
implemented thereafter on each egg in 𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖 if 𝑝𝑎 < 𝑟𝑎𝑛𝑑, where 𝑟𝑎𝑛𝑑 is a randomly
generated number between 0 and 1. If 𝑝𝑎 < 𝑟𝑎𝑛𝑑 then a new value for the egg is generated
at random. At this point, the best solution from 𝑛𝑒𝑤𝑁𝑒𝑠𝑡 is determined and is again
compared against 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 to see if an improved solution is found.

𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 will contain the best solution found by the algorithm, and this will be returned
when the stopping criterion is met.

The algorithm for CS is as follows:

1. Generate an initial random solution of 𝑛 host birdnests = 𝑛𝑒𝑠𝑡 (for 𝑖 = 1, … ,𝑛)
2. Evaluate the fitness of 𝑛𝑒𝑠𝑡𝑖 i.e. 𝑓(𝑛𝑒𝑠𝑡𝑖).
3. Find the best fitness (𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠) and best nest (𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡) from 𝑛𝑒𝑠𝑡
4. 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠
5. 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡
6. while 𝑡 < 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

6.1. Generate 𝑛𝑒𝑤𝑁𝑒𝑠𝑡, using 𝑛𝑒𝑠𝑡 and 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 in performing levy flights
6.2. Get 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 by performing these steps

6.2.1. if 𝑓(𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖) > 𝑓(𝑛𝑒𝑠𝑡𝑖) then
𝑓(𝑛𝑒𝑠𝑡𝑖) = 𝑓(𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖)
𝑛𝑒𝑠𝑡𝑖= 𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖

6.2.2. end if
Evaluate 𝑓(𝑛𝑒𝑠𝑡𝑖) to determine 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡

6.3. 𝑡 = 𝑡 + 𝑛
6.4. Generate 𝑛𝑒𝑤𝑁𝑒𝑠𝑡, using nest and pa. Here a

fraction of the worst solutions are replaced
with new solutions for each 𝑛𝑒𝑠𝑡𝑖

6.5. Determine 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 again using step 6.2.
6.6. 𝑡 = 𝑡 + 𝑛
6.7. if 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑂𝑣𝑒𝑟𝑎𝑙𝑙 then

6.7.1. 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠
6.7.2. 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡

6.8. end if
7. end while
8. return 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡𝑂𝑣𝑒𝑟𝑎𝑙𝑙

A visual representation of a nest solution in CS is given in Figure 1 below, which shows the
eggs of a host bird and that of a cuckoo bird in the nest of a host bird. Each egg 𝑥𝑙 (∀ 𝑙 =
1, … , 𝑝) represents a possible solution in the solution of a nest.

212

Figure 1: Representation of a nest solution in the Cuckoo Search algorithm

4.2 Firefly

FA [16] is inspired by the ability of fireflies to emit light (bioluminescence) in order to
attract other fireflies for mating purposes. There are three guiding rules governing this
algorithm:

1. Fireflies are attracted towards brighter fireflies, regardless of their sex.
2. The attractiveness of a firefly is related to its brightness. However, it is assumed that

the brightness decreases with distance. The brightest firefly moves randomly.
3. The brightness of the firefly is a function of the problems objective.
Attractiveness: The attractiveness of a firefly is given by equation (10).

 𝛽(𝑟) = 𝛽0𝑒𝑥𝑝−𝛾𝑟
2 (10)

Here, 𝑟 is the distance between any two fireflies. 𝛽0 represents the initial attractiveness at
𝑟 = 0. 𝛾 is an absorption coefficient. It controls the decrease in the intensity of light.

Movement: The movement of a less attractive firefly 𝑖 towards a more attractive firefly 𝑗 is
given by equation (11).

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒𝑥𝑝−𝛾𝑟𝑖𝑗
2
�𝑥𝑗 − 𝑥𝑖� + 𝛼 �𝑟𝑎𝑛𝑑 −

1
2� (11)

where 𝑥𝑖 is the current position of the firefly within the solution space. The combination of
the elements in the second term represents the firefly’s attractiveness, as seen by the
other fireflies. The third term represents a random adjustment in the movement of the
firefly. 𝛼 is a scaling parameter, 𝛼 ∈ [0,1]. 𝑟𝑎𝑛𝑑 is a uniformly distributed random number,
𝑟𝑎𝑛𝑑 ∈ (0,1). 𝑟𝑖𝑗 represents the distance between fireflies 𝑖 and 𝑗. It is calculated using the
Cartesian distance [16] given in equation (12).

𝑟𝑖𝑗 = ��(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑑

𝑘=1

 (12)

FA is implemented in this research by first randomly generating a population of 𝑛 fireflies,
i.e. 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (for 𝑖 = 1 … 𝑛). Each element of each firefly, i.e.
𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑙 (∀ 𝑙 = 1, … , 𝑝), is represented by a randomly generated number that falls
between 0 and 1. The light intensity, or fitness value, of each firefly 𝑖 is then calculated
and stored in the variable 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖.

At each iteration, the fireflies in the population are sorted in descending order according to
their fitness values. The fitness value of every firefly 𝑖 is then compared to the fitness value
of every other firefly 𝑗 (for 𝑗 = 1 … 𝑛). If 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 < 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑗 then firefly 𝑖
moves in the direction of firefly 𝑗 using equation (11).
When the stopping criterion is met, the solution returned will be the first solution in
𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 after the sorted order is maintained, i.e. 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠0.

The FA algorithm is as follows:
Initialize 𝛼,𝛽0 , 𝛾 and 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

213

1. Initialize 𝑛 fireflies = 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(for 𝑖 = 1 … 𝑛)
2. The light intensity of 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖
3. for 𝑙 till 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

3.1. for 𝑖 till 𝑛 do
3.1.1. 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = Evaluate(𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖)

3.2. end for
3.3. Sort 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 and 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠according to 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠
3.4. 𝑏𝑒𝑠𝑡𝐹𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠0
3.5. 𝑏𝑒𝑠𝑡𝐹𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠0
3.6. Move fireflies to new locations by performing these steps

3.6.1. for 𝑖 till 𝑛 do
3.6.1.1. for 𝑗 till 𝑛 do

3.6.1.1.1. if 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 < 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑗then
3.6.1.1.1.1. Calculate 𝑟𝑖𝑗
3.6.1.1.1.2. Calculate 𝛽(𝑟)
3.6.1.1.1.3. Update 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖

3.6.1.1.2. end if
3.6.1.2. end for

3.6.2. end for
4. end for
5. return 𝑏𝑒𝑠𝑡𝐹𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

A visual representation of a solution in FA is given in Figure 2 below, which shows a swarm
of fireflies. The position of each firefly represents a solution within the solution space. Its
position is determined by the variables 𝑥𝑙 (∀ 𝑙 = 1, … , 𝑝). The position of each firefly will
determine the bioluminescence emitted.

Figure 2: A representation of a solution in the Firefly Algorithm

4.3 Glow-worm Swarm Optimisation

The Glow-worm Swarm Optimisation (GSO) [17, 18] is inspired by the natural behaviour of
glow-worms in emitting a luminescent property called luciferin, in order to attract other
glow-worms. Glow-worms with larger emissions of luciferin are considered more attractive.
A glow-worm moves towards a brighter glow-worm if it lies within its range of view.

Initially, glow-worms are distributed randomly throughout the solution space. At any point
in time 𝑡, the state of a glow-worm 𝑖 is represented by its luciferin level 𝑙𝑖(𝑡), its position
𝑥𝑖(𝑡), and its vision range 𝑟𝑖(𝑡). During each iteration, these variables are updated, and it
describes the movement of the glow-worms within the solution space.
The luciferin update is given by equation (13).

 𝑙𝑖(𝑡 + 1) = (1 − 𝜌)𝑙𝑖(𝑡) + 𝛾𝒥�𝑥𝑖(𝑡)� (13)
where 𝜌 is the luciferin decay constant (0 < 𝑝 < 1). 𝛾 is the luciferin enhancement
constant. 𝒥�𝑥𝑖(𝑡)� is the evaluation of the objective function, at time 𝑡.

To update the position of each glow-worm 𝑖, a set of neighbours 𝑁𝑖(𝑡) needs to be
determined. A glow-worm 𝑗 is considered a neighbour of glow-worm 𝑖, if 𝑗 falls within 𝑖’s

214

vision range 𝑟𝑖(𝑡), and if 𝑙𝑖(𝑡) < 𝑙𝑗(𝑡). A glow-worm 𝑗 is then selected from 𝑁𝑖(𝑡), using
roulette wheel selection. Glow-worm 𝑖 then moves in the direction of glow-worm 𝑗 using
equation (14).

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑠𝑡 ∗ � 𝑥𝑗(𝑡)−𝑥𝑖(𝑡)
�𝑥𝑗(𝑡)−𝑥𝑖(𝑡)�

� (14)
where 𝑠𝑡 is a constant step size.

Lastly, the vision range 𝑟𝑖(𝑡) needs to be updated, using equation (15).
 𝑟𝑖(𝑡 + 1) = 𝑚𝑖𝑛{𝑟𝑠,𝑚𝑎𝑥[0, 𝑟𝑖(𝑡) + 𝛽(𝑁𝑑 − |𝑁𝑖(𝑡)|)]} (15)
Here, 𝑟𝑠, 𝛽 and 𝑁𝑑 are constant values. 𝑟𝑠 is the maximum vision range, 𝛽 is the rate of
change of the neighbourhood range, and 𝑁𝑑 is the maximum number of neighbours that
glow-worm 𝑖 is allowed to have.

GSO is implemented in this paper by first randomly generating a population of 𝑛 glow-
worms, i.e. 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚 (for 𝑖 = 1, … ,𝑛). Each element of each glow-worm, i.e. 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖𝑙
(∀ 𝑙 = 1, … , 𝑝), is represented by a random number which falls between 0 and 1. The fitness
values of each 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 are then calculated. The best fitness value and its corresponding
solution is then stored in variables 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, respectively.

At each iteration, the movement of each glow-worm 𝑖 is performed using equations (13),
(14) and (15). The best glow-worm from the newly-generated population is then
determined, and its fitness value is cross-referenced against 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠. If its fitness value
improves upon 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠, then 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 are replaced with the
fitness value and the solution of the best glow-worm found. When the stopping criterion is
met, 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is returned.

The GSO algorithm is as follows:

1. Generate a population of 𝑛 glow-worms = 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚 (for 𝑖 = 1, … ,𝑛)
2. Initialize the best fitness overall = 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠
3. Initialize the best location overall = 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
4. while 𝑡 till 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

4.1. for 𝑖 till 𝑛 do
4.1.1. Update luciferin of 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖

4.2. end for
4.3. for 𝑖 till 𝑛 do

4.3.1. Find 𝑁𝑖(𝑡)
4.3.2. for each 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑗 ∈ 𝑁𝑖(𝑡) do

4.3.2.1. Find probability:

𝑝𝑖𝑗(𝑡) =
𝑙𝑗(𝑡) − 𝑙𝑖(𝑡)

∑ 𝑙𝑘(𝑡) − 𝑙𝑖(𝑡)𝑘∈𝑁𝑖(𝑡)

4.3.3. end for
4.3.4. Select 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑗 using roulette wheel selection with 𝑝𝑖𝑗(𝑡)
4.3.5. Update 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 location
4.3.6. Update vision range

4.4. end for
4.5. for 𝑖 till 𝑛 do

4.5.1. if 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 .𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 then
4.5.1.1. 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 . 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
4.5.1.2. 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 . 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

4.5.2. end if
4.6. end for
4.7. 𝑡 = 𝑡 + 1

5. end while
6. return 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
A visual representation of a solution in GSO is given in Figure 3 below, which shows a swarm
of glow-worms. The position of each glow-worm within the solution space represents a

215

solution. Its position is determined by the variables 𝑥𝑙 (∀ 𝑙 = 1, … , 𝑝). The position of each
glow-worm will determine the luciferin emitted.

Figure 3: A representation of a solution in the Glow-worm Swarm Optimisation
algorithm

4.4 Genetic Algorithm

The Genetic Algorithm (GA) [19] is inspired by the process of natural evolution. By
modelling evolutionary processes such as selection, crossover, and mutation, a population
of chromosomes (genotypes of the phenotypes or individuals) evolves from one generation
to the next. Chromosomes are binary encoded for discrete optimisation problems or real-
value encoded for continuous optimisation problems [20].

GA starts off with an initial, randomly-generated population of chromosomes/solutions.
Each solution has an associated fitness value that indicates the individuals’ strength. Using
these fitness values, or not, pairs of solutions are stochastically selected from the current
population at each generation. Using techniques such as crossover and mutation, these
pairs of solutions will produce offspring solutions. The offspring solutions form the new
population, which represent the next generation. This process will continue for a specified
number of generations or until a satisfactory fitness value has been found.

Selection is done using techniques such as the roulette wheel selection and random
selection [20]. Roulette wheel selection considers the fitness value of the solutions, while
random selection does not. When a pair of solutions is selected, the crossover process
generates offspring solutions that are a recombination of their parent solutions.
Recombination is done using techniques such as n-point crossover, uniform crossover, and
arithmetic crossover [20]. The ‘genes’ of the offspring have a probability of undergoing
mutation. Mutation reduces the risk of premature convergence. Premature convergence
occurs when the heuristic algorithm becomes trapped within a local neighbourhood
structure of the solution space, in which the local optimal solution is not ‘close’ enough to
the global optimal solution.

The implementation of GA in this research was done using real-value encoding and uniform
crossover. Initially a population of 𝑛 chromosomes/solutions is generated, i.e. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
(for 𝑖 = 1, … ,𝑛). Each gene in each chromosome, i.e. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑙 (∀ 𝑙 = 1, … ,𝑝), is
represented by a random number between 0 and 1. The fitness value of each solution in the
population is then calculated, and the best solution, according to the best fitness value
found, is recorded in the variable 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙.
At each iteration of the algorithm, and until the new population is created, two parent
solutions are selected from the previous population using roulette wheel selection. Given a
predetermined crossover rate (𝑐𝑅𝑎𝑡𝑒), crossover is performed at each index of the adjacent
genes of the parent solutions if 𝑟𝑎𝑛𝑑 < 𝑐𝑅𝑎𝑡𝑒. 𝑟𝑎𝑛𝑑 is a randomly generated number
between 0 and 1. If 𝑟𝑎𝑛𝑑 < 𝑐𝑅𝑎𝑡𝑒 then the adjacent genes will be swapped in generating
the offspring solutions, or else the genes will remain the same in being passed over to the
offspring.

216

Once the offspring solutions have been generated, then mutation is performed on each
gene of the offspring solutions in using a predetermined mutation rate (𝑚𝑅𝑎𝑡𝑒). If 𝑟𝑎𝑛𝑑 <
 𝑚𝑅𝑎𝑡𝑒 then mutation is performed on each gene by simply assigning a new randomly
generated number, 𝑟𝑎𝑛𝑑. Once mutation is complete, the offspring are added to the new
population.

When the new population is generated, the best solution from the population is determined
and is compared against 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙. This is to check whether an improved solution has
been found. If it has, then 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 is replaced by the improved solution. When the
stopping criterion is satisfied, 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 is returned. This is the best solution found by
the algorithm.

The algorithm for GA used in this research is as follows:

1. Generate an initial random population of 𝑛 individuals =𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (for 𝑖 = 1, … ,𝑛)
2. Initialise another population of size 𝑛, i.e.𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
3. Evaluate the fitness of each individual 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖, i.e. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
4. Determine the best individual from 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 using 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
5. Set crossover rate = 𝑐𝑅𝑎𝑡𝑒
6. Set mutation rate = 𝑚𝑅𝑎𝑡𝑒
7. for 𝑖 till 𝑚𝑎𝑥𝑁𝑜𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

7.1. 𝑐𝑜𝑢𝑛𝑡 = 0
7.2. while 𝑐𝑜𝑢𝑛𝑡 < 𝑛 do

7.2.1. Select parents
7.2.2. Perform crossover using 𝑐𝑅𝑎𝑡𝑒
7.2.3. Perform mutation using 𝑚𝑅𝑎𝑡𝑒
7.2.4. Add offspring to 𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
7.2.5. 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 2

7.3. end while
7.4. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
7.5. 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣 = find_Best_Individual(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
7.6. if 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 better then

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 then
7.6.1. 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣

7.7. end if
8. end for
9. return 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

A visual representation of a solution found in GA is given in Figure 4 below, which shows a
population of chromosomes within the nucleus of a cell. Each chromosome consists of
genes, 𝑥𝑙 (∀ 𝑙 = 1, … ,𝑝), which make up a solution.

Figure 4: A representation of a solution in the Genetic Algorithm

217

5 TESTING AND EVALUATION

The non-heuristic specific parameters required for the execution of the algorithms had
been set according to the values given in Tables 2 and 3. The lower and upper bound
settings for the different plot types are given in Table 2.

Table 3 gives the lower and upper bound settings, the land coverage fraction values, the
cost of irrigated water, and the operational costs for each crop. The large differences
between the lower and upper bound values were to investigate the ability of the heuristic
algorithms to determine solutions in a larger solution space. 𝐹𝑘𝑖𝑗 ∈ [0,1]. 𝐶_𝐼𝑅𝑘𝑖𝑗 is the cost
of the irrigated water per hectare per crop (ZAR ha-1). Operational cost 𝑂𝑘𝑖𝑗 is set to a third
of the producer price per ton of yield (ZAR ha-1).

Table 2: Lower and upper bounds for each plot type

Plot Types Bounds (ha)
𝑳𝒃_𝑷𝒌 𝑼𝒃_𝑷𝒌

Single-crop 10 1,700
Double-crop 50 1,740

Table 3: Non-heuristic specific parameters for the execution of the algorithms

Crops 𝑳𝒃𝒌𝒊𝒋 𝑼𝒃𝒌𝒊𝒋 𝑭𝒌𝒊𝒋 𝑪_𝑰𝑹𝒌𝒊𝒋 𝑶𝒌𝒊𝒋
Lucerne (y) 10 1,700 1 877.26 6,259.52
Tomato (s) 10 1,740 1 685.11 71,478.00
Pumpkin (s) 10 1,740 1 451.66 10,408.80

Maize (s) 10 1,740 1 613.90 3,924.09
Groundnut (s) 10 1,740 1 502.08 5,025.24
Sunflower (s) 10 1,740 1 292.13 3,701.61

Barley (w) 12.5 1,740 1 413.68 4,124.88
Onion (w) 12.5 1,740 1 221.00 23,739.30
Potato (w) 12.5 1,740 1 186.10 22,758.12

Cabbage (w) 12.5 1,740 1 172.94 23,720.00

The initial parameters for the heuristic algorithms were set as follows:

• CS – The number of host bird nests 𝑛 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at

100,000. 𝑝𝑎 was set at 0.25.

• FA – The number of fireflies 𝑛 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 5,000. 𝛼
was set at 0.25, 𝛽0 at 0.2 and 𝛾 at 1.

• GSO – The number of glow-worms 𝑛 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at
5,000. 𝑙0 was set at 1, 𝑟0 at 1.2, 𝑟𝑠 at 1.5, 𝜌 at 0.4, 𝛾 at 0.6, 𝛽 at 0.08, 𝑠𝑡 at 0.3 and
𝑁𝑑 at 10.

• GA – The number of individuals 𝑛 was set at 20. The 𝑚𝑎𝑥𝑁𝑜𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at
5,000. 𝑐𝑅𝑎𝑡𝑒 was set at 0.8. 𝑚𝑅𝑎𝑡𝑒 was set at 0.05 (1/𝑛).

𝑝𝑎 was set according to the setting given in Xin-She Yang’s Matlab® implementation of CS
[21]. 𝛼, 𝛽0 and 𝛾 were set according to the settings given in Xin-She Yang’s Matlab®
implementation of an 𝑚-dimensional Firefly Algorithm [22]. For GSO, 𝜌, 𝛾, 𝛽 and 𝑠𝑡 were
set according to the settings given in [23]. 𝑙0, 𝑟0 and 𝑟𝑠 are problem specific parameters. 𝑁𝑑
was set to half of the number of glow-worms 𝑛. For GA, 𝑐𝑅𝑎𝑡𝑒 was set at 0.8. This value
was used after several tests had been performed to determine the best probable crossover
rate to use.

In order to compare the heuristic algorithms fairly, each algorithm was set to the same
‘population’ size, i.e. 𝑛 = 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (for CS, FA, and GSO) and the
𝑚𝑎𝑥𝑁𝑜𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (for GA) ensured that each algorithm executed for 100,000 objective
function evaluations. Each algorithm was run 100 times, using randomly-generated
population sets for each run.

218

http://www.mathworks.com/matlabcentral/fileexchange/authors/119376
http://www.mathworks.com/matlabcentral/fileexchange/authors/119376

In order to ensure fairness, the 100 different population sets had been initially randomly
generated. For explanation, we mathematically denote each population set as 𝑝𝑜𝑝𝑖, for
𝑖 = 1, … , 100. Then, for each run 𝑖, 𝑝𝑜𝑝𝑖 was used as the input population set for each of
the heuristic algorithms. This means that for run 𝑖 = 1; CS, FA, GSO and GA were run using
𝑝𝑜𝑝1, for run 𝑖 = 2; CS, FA, GSO and GA were run using 𝑝𝑜𝑝2, and so on until 𝑖 = 100.
From the 100 best solutions determined by each heuristic algorithm, the results of the best
and average solutions have been documented. Using the populations of the 100 best
solutions determined by each heuristic algorithm, the 95% Confidence Interval2 values have
been calculated for the execution times and for the fitness values (total gross profits). The
results are explained below.

Table 4 gives the statistics of the average execution times (AVG) in milliseconds (ms), and
the 95% Confidence Interval (95% CI) values of each heuristic algorithm.

Table 4: Average execution times and the 95% CI values of each algorithm

Statistics
Methods

CS FA GSO GA

AVG 884 ms 3455 ms 751 ms 915 ms

95% CI AVG ± 2 AVG ± 6 AVG ± 3 AVG ± 3

From Table 4 we observe that FA took the longest time to execute. The average execution
times of CS, GSO, and GA were all comparable. The relatively large average execution time
of FA is due to its nested ‘for’ loop. In this ‘for’ loop, each firefly’s fitness value is
compared with the fitness value of every other firefly. This was shown to be
computationally expensive.

The execution time of GSO is the fastest. This is due to the limitation on the maximum
number of neighbours that a glow-worm is allowed to have. As the number of iterations
increases, the vision ranges of the glow-worms will decrease. This will cause the glow-
worms to become more separated in searching the local neighbourhood structures of the
solution space. This separation will reduce the number of glow-worms considered in
searching for neighbours, which will speed up the execution process.

Figure 5: The average execution times, in milliseconds (ms), and the 95% CI values of
the algorithms

The 95% CI values from Table 4 mean that we can be 95% certain that the 100 execution
times of each algorithm have fallen within those interval estimates. By observing those CI

2 In statistics a Confidence Interval (CI) indicates the reliability of an interval estimate of population
parameters. 95% CI means to be 95% certain that the population parameters will lie within the interval
estimate range.

0

500

1000

1500

2000

2500

3000

3500

4000

CS FA GSO GA

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Average Execution Times and 95% CI

Avg

219

values we conclude that the execution times of the algorithms have been fairly consistent.
A visual representation of the statistical values from Table 4 is given in Figure 5 above,
where the 95% CI values are represented by the black interval estimates.

Table 5 gives the statistical values of the overall best (BFV) and average best (ABFV) fitness
values for each heuristic algorithm. The fitness values are the total gross profits earned.
The 95% CI values for the fitness value populations of each algorithm are also given.

Table 5: Statistics for the best fitness values, average best fitness values, and 95% CI
values

Methods BFV (ZAR) ABFV (ZAR) 95% CI
CS 290,770,383 282,000,392 ABFV ± 936,537
FA 297,967,538 295,623,620 ABFV ± 195,076

GSO 299,551,069 280,488,876 ABFV ± 6,352,385
GA 286,477,093 264,550,148 ABFV ± 1,502,171

From Table 5 it is observed that GSO determined the highest BFV. This is followed by FA,
CS, and then GA. On average FA performed the best. This is followed by CS, GSO, and then
GA. Each SI algorithm determined superior solutions compared with GA.

A graphical comparison of the algorithms’ best and average fitness values, as determined
from Table 5, is given in Figure 6. The 95% CI values are represented by the black interval
estimates, over the average fitness values.

Figure 6: A comparison of best and average fitness values, along with the 95% CI
estimates

The solutions found by the algorithms were in a solution space of constantly changing plot
type hectare allocations. The hectare allocations for each plot type had to be determined
first, before the hectare allocations of the crops, and had to satisfy the land constraints
given in Section 2.6.

For each algorithm, the best solution determined from the ‘population’ of solutions at
iteration 𝑡, for plot type hectare allocations 𝑝, will not necessarily be the best solution at
iteration (𝑡 + 1) for plot type hectare allocations (𝑝 + 1). The change in the plot type
hectare allocations at iteration (𝑡 + 1) will change the crop hectare allocations accordingly,
so that the land constraints do not break. The constantly changing dimensions of the
solution space make it very difficult for the algorithms to perform exploitation3. This makes
it difficult to determine effective solutions.

Under the circumstance of the constantly changing dimensions of the solution space, FA
performed most consistently. This is confirmed by its low 95% CI fitness value. Having the
highest average best fitness value also means that FA has been the strongest heuristic

3 Exploitation is the act of searching or travelling within a local neighborhood structure of the solution
space in the hope of determining the local optimum solution. It is a local search technique.

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

CS FA GSO GA

Fi
tn

es
s

Va
lu

es
 (Z

AR
/B

ill
io

n)

Average and Best Fitness Values with 95% CI
ABFV

BFV

220

algorithm for this particular ACP problem. CS had the second-lowest 95% CI fitness value.
This is followed by GA, and then GSO.

Although GSO’s average performance is worse than CS, its best fitness value and its high
95% CI fitness value prove that it determined many good solutions. However, it also
determined many poor solutions, which is the reason for its lower average.

The strength of FA and GSO in determining the best fitness solutions overall is attributed to
the algorithms’ versatility in being able to accept both improved and worse solutions at
each iteration.

In FA, as the fireflies are attracted towards brighter fireflies, some will accept improved
solutions, while others will accept worse solutions within the local neighbourhood
structures of the solution space. The solutions that are classified as being either improved
or worse depend entirely on the plot type hectare allocations 𝑝 at iteration 𝑡. However, at
iteration (𝑡 + 1), the sorting of the fireflies will take place according to the plot type
hectare allocations (𝑝 + 1) and not 𝑝. Therefore, what appeared to be improved solutions
at iteration 𝑡 for 𝑝 might not necessarily be improved solutions at iteration (𝑡 + 1) for (𝑝 +
1). Similarly, what appeared to be worse solutions at iteration 𝑡 for 𝑝 might not necessarily
be worse solutions at iteration (𝑡 + 1) for (𝑝 + 1). The versatility of FA in accepting both
improved and worse solutions has been shown to be very valuable for this particular
optimisation problem.

In GSO, a glow-worm will accept an improved or worse solution in moving towards another
glow-worm with a higher level of luciferin than itself. Similarly to FA, this ability has been
shown to be very valuable for this particular optimisation problem. GSO’s average best
fitness value is, however, relatively low compared with FA and CS. Interestingly enough, it
also has the highest 95% CI fitness value. The reason for the instability in its performances
is due to its ability deliberately to cause group-like separations of the glow-worms
throughout the neighbourhood structures of the solution space. The separations are
achieved by reducing the glow-worms’ vision ranges as the number of iterations increase,
and in limiting the maximum number of neighbours that a glow-worm is allowed to have.
The group-like separations result in fewer glow-worms searching the local neighbourhood
structures of the solution space. This technique’s strength is in exploration4, but it is
lacking in terms of exploitation. Strong exploration abilities are beneficial for this
optimisation problem due to the constantly changing plot type hectare allocations.
However, the ‘weakness’ in its exploitation ability reduces the probability of its performing
consistently on average. This explains its relatively low average best fitness value.

For each host bird’s nest solution in the ‘population’, CS only accepts new nest solutions if
they improve upon the host bird nest solutions in the population. The new nest solutions
are generated by using the best nest solution from the previous iteration in performing Levy
flights. However, as explained earlier, what appeared to be the best nest solution at
iteration (𝑡 − 1) for plot type hectare allocations (𝑝 − 1) will not necessarily be the best
nest solution at iteration 𝑡, using plot type hectare allocations 𝑝. Therefore, due to the
constant changes in the dimensions of the solution space, performing Levy flights will not
result in the most effective exploitation. The probability of the host bird’s discovery of
intrusions facilitates exploration. This gives CS its best chance of determining improved
solutions.

4 Exploration is the act of searching or travelling within the solution space in the hope of determining
the neighborhood structure that contains the global optimum solution. It is a global search technique.

221

Figure 7: Performance of the heuristic algorithms in determining their overall best
fitness value solutions

Figure 7 shows the run-time performances of the heuristic algorithms during the
determination of their best fitness value solutions. FA found improved solutions at the
fastest rate up until around 25,000 objective function evaluations. At this point GSO
determined a solution similar to FA. At around 63,000 objective function evaluations, GSO
had determined the best fitness value of all the heuristic algorithms. FA found its best
fitness value at around 90,000 objective function evaluations. Its improvement was not
enough to be the best overall. CS showed steady increases in determining improved
solutions. At around 70,000 objective function evaluations, CS found a neighbourhood
within the solution space that had a solution that was better than GA’s best solution. GA
found its best solution at around 34,000 objective function evaluations.

Table 6: Statistics of the IWR and VCP for the best solutions found

Methods IWR (m3) VCP (ZAR)

CS 16,971,534 145,436,812

FA 16,962,160 148,980,411

GSO 17,052,921 149,772,256

GA 17,103,618 143,339,455

Table 6 gives the statistics of the irrigated water requirements (IWR) and the variable costs
of production (VCP) for the best solution determined by each of the heuristic algorithms. FA
required the least amount of irrigated water. At a cost of ZAR 0.0877 m-3, the cost of this
irrigated water is ZAR 1,487,581. CS’s IWR value was only 9,374 m3 more than FA. GSO’s
IWR value was 90,761 m3 more than FA. At a water quota of 8,417 m3ha-1annum-1, FA’s IWR
value would have supplied irrigated water to 10 ha less than GSO’s value. GA’s irrigated
water requirement is the highest. The relative increases in the variable costs of production
(VCP) for each SI algorithm, compared with GA, are acceptable considering the increased
total gross profits earned.

A graphical representation of the IWRs, as determined from Table 6, is shown in Figure 8.

Table 7 gives the plot type hectare allocations for the best solution found by each
algorithm. Each heuristic algorithm determined that the total gross profits could be
increased by allocating more land for the double-crop plots. This was as a result of
Lucerne’s high irrigated water requirement and low producer price t-1.

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0 1 2 3 4 5 6 7 8 9 10

Fi
tn

es
s

Va
lu

es
 (Z

AR
/B

ill
io

n)

Iterations (Scaled 1:10,000)

Fitness values vs iterations

GA
CS
FA
GSO
GA Treadline
CS Treadline
FA Treadline
GSO Treadline

222

Figure 8: Irrigated water requirements of the best heuristic solutions

Table 7: Plot type hectare allocations for each heuristic algorithm

Plot Types Methods
CS FA GSO GA

Single-Crop 16 ha 13 ha 14 ha 13 ha
Double-Crop 1734 ha 1737 ha 1736 ha 1737 ha

Figure 9 gives a graphical comparison of the seasonal hectare allocations of each crop, for
the best solution determined by each heuristic algorithm.

For the single-crop plots of land, each algorithm determined similar hectare allocations for
lucerne. For the double-crop plots of land, each algorithm allocated the most land to
tomato, onion, and cabbage. The large hectare allocations for tomato are due to its high
yield ha-1 and high producer price t-1. Similar hectare allocations were determined for
pumpkin, maize, ground nuts, and sunflower. GA’s relatively higher hectare allocation for
barley contributed to its relatively poor best performance.

Figure 9: A comparison of the hectare allocations, per crop, for the best solution found
by each algorithm

Table 8 gives the statistical values of each crop’s hectare allocations (ha’s crop-1), irrigated
water requirements (IWR), and variable costs of production (VCP) for the best solution
determined by each heuristic algorithm.

The program was written in the Java programming language, using the Netbeans® 7.0
Integrated Development Environment. All simulations were run on the same platform. The

0.01695

0.01697

0.01699

0.01701

0.01703

0.01705

0.01707

0.01709

0.01711

CS FA GSO GA

Vo
lu

m
e

(m
3 /

Bi
lli

on
)

Irrigated Water Requirments

IWR

0

200

400

600

800

1000

1200

1400

1600

H
ec

ta
re

s

Seasonal Land Allocations Per Crop Type

CS FA GSO GA

223

computer used had a Windows® 7 Enterprise operating system, an Intel® Celeron® Processor
430, 3 GB of RAM, and a 500GB hard-drive.

6 CONCLUSION

Shortages in food supply and increases in population growth have increased the need for
food production. To try to meet this growing demand for food, it is important that new
irrigation schemes be developed to increase agricultural output.

Planning new irrigation schemes requires that optimised solutions be found for the seasonal
hectare allocations of the crops that need to be grown within the year. The solutions found
must maximise the total gross profits that can be earned, to make the most efficient use of
the limited resources available for agricultural production. Determining solutions to this
problem is referred to as annual crop planning (ACP), an NP-Hard optimisation problem in
agricultural planning.

This research has introduced a new ACP mathematical model, which is intended to be used
to determine solutions to the ACP problem at a new irrigation scheme. The case study in
this paper is the Taung Irrigation Scheme (TIS), situated in the North West Province of South
Africa. The irrigation scheme is currently being expanded to cater for an extra 1,750
hectares of irrigated land. This portion of land is required to grow 10 different types of
crops. In order to determine solutions for this ACP problem, three relatively new Swarm
Intelligence (SI) metaheuristic algorithms have been investigated. These algorithms include
Cuckoo Search (CS), Firefly Algorithm (FA), and Glow-worm Swarm Optimisation (GSO). To
determine the relative merits of their solutions, they have been compared against the
solutions of another popular population-based metaheuristic algorithm, the Genetic
Algorithm (GA). To ensure fairness in the performances of the heuristic algorithms, their
algorithm-specific parameters had used recommended settings. Other parameter settings,
such as the ‘population’ sizes, the initial population sets, and the number of objective
function evaluations per run, were all set to be the same. Each heuristic algorithm was run
100 times. From these 100 runs, the overall best and average solutions of each heuristic
algorithm were documented.

The results show that GSO determined the overall best solution. This was followed by FA,
CS, and then GA. On average, FA performed the best, followed by CS, GSO, and then GA. FA
showed the lowest 95% Confidence Interval (95% CI) fitness value. This proved that, in a
solution space of constantly changing dimensions, FA performed most consistently. In this
research, FA was the strongest heuristic algorithm. The disadvantage of FA was its
relatively higher average execution time. Although GSO’s average performance was worse
than CS, its best solution and its high 95% CI fitness value proved that it had determined
some very good solutions. GSO also had the fastest average execution time. Of all the
heuristic algorithms, GA performed the worst overall. An advantage of FA and CS is their
relative ease of implementation in developing object-oriented versions of the algorithms,
compared with GSO. CS requires the fewest parameter settings.

Possible future work will be to extend this ACP mathematical model (or formulate new
models) to take into account factors such as the dynamic pricing of crops and caloric
requirements. An investigation into the effectiveness of employing local search
metaheuristic techniques in determining solutions to this ACP problem might also be
considered.
A
A
A
A
A
A

224

Table 8: Crop statistics of the best solution determined by each heuristic algorithm

Crops Methods ha’s crop-1 IWR (m3) VCP (ZAR)

Lucerne

CS 16 159,049 113,476
FA 13 129,349 92,286

GSO 14 145,019 103,466
GA 13 128,561 91,724

Tomato

CS 1,429 11,161,035 103,099,717
FA 1,479 11,553,491 106,725,022

GSO 1,487 11,617,618 107,317,394
GA 1,424 11,125,493 102,771,401

Pumpkin

CS 93 476,715 1,005,310
FA 65 336,130 708,840

GSO 62 320,703 676,306
GA 103 532,815 1,123,615

Maize

CS 86 603,190 391,039
FA 65 453,873 294,239

GSO 62 434,061 281,395
GA 67 468,012 303,405

Ground Nuts

CS 66 378,980 365,895
FA 65 373,218 360,331

GSO 62 355,404 343,133
GA 72 410,972 396,781

Sunflower

CS 60 201,401 241,472
FA 63 209,286 250,925

GSO 62 206,495 247,579
GA 71 236,134 283,116

Barley

CS 36 170,083 163,649
FA 31 148,232 142,625

GSO 33 154,230 148,395
GA 146 689,062 662,995

Onion

CS 700 1,764,290 16,774,969
FA 609 1,534,750 14,592,494

GSO 817 2,059,855 19,585,220
GA 584 1,471,225 13,988,493

Potato

CS 593 1,257,325 13,594,878
FA 409 867,245 9,377,127

GSO 90 191,282 2,068,249
GA 367 778,789 8,420,687

Cabbage

CS 405 799,466 9,686,407
FA 688 1,356,586 16,436,522

GSO 795 1,568,254 19,001,119
GA 640 1,262,555 15,297,238

REFERENCES

[1] Schmitz, G.H., Schütze, N. & Wöhling, T. 2007. Irrigation control: Towards a new solution of an
old problem. IHP/HWRP-Berichte, Vol. 5. International Hydrological Programme (IHP) of UNESCO
and the Hydrology and Water Resources Programme (HWRP) of WMO, Koblenz, Germany.

[2] Department of Water Affairs and Forestry, 2008. Vaal River system: Feasibility study for
utilization of Taung Dam water: Irrigation planning and design. Report Number P WMA
10/C31/00/0908. [Online] Available: http://www.dwaf.gov.za/.

[3] Pant, M., Radha, T., Rani, D., Abraham, A. & Srivastava, D.K. 2008. Estimation using
differential evolution for optimal crop plan. Lecture Notes in Computer Science, 5271, pp. 289-
297.

[4] Pant, M., Thangaraj, R., Rani, D., Abraham, A. & Srivastava, D.K. 2009. Estimation of optimal
crop plan using nature inspired metaheuristics. World Journal of Modelling and Simulation, 6 (2),
pp. 97-109.

[5] Georgiou, P.E. & Papamichail, D.M. 2008. Optimization model of an irrigation reservoir for
water allocation and crop planning under various weather conditions. Irrigation Science, 26(6),
pp. 487-504.

225

http://www.springerlink.com/content/?Author=P.+E.+Georgiou
http://www.springerlink.com/content/?Author=D.+M.+Papamichail
http://www.springerlink.com/content/e1m7098822368j61/
http://www.springerlink.com/content/e1m7098822368j61/
http://www.springerlink.com/content/0342-7188/

[6] Wardlaw, K. & Bhaktikul, K. 2007. Application of genetic algorithms for irrigation water
scheduling, Irrigation and Drainage, 53, pp. 397–414.

[7] Sarker, R. & Ray, T. 2009. An improved evolutionary algorithm for solving multi-objective crop
planning models. Computers and Electronics in Agriculture, 68(2), pp. 191–199.

[8] Raju, K.S. & Kumar, N.D. 2004. Irrigation planning using genetic algorithms. Water Resources
Management, 18(2), pp. 163-176.

[9] Reddy, J.M. & Kumar, N.D. 2007. Optimal reservoir operation for irrigation of multiple crops
using elitist-mutated particle swarm optimization, Hydrological Sciences, 52(4), pp. 686-701.

[10] Maisela, R.J. 2007. Realizing agricultural potential in land reform: The case of Vaalharts
Irrigation Scheme in the Northern Cape Province. Master of Philosophy thesis, University of
Western Cape, Cape Town, South Africa.

[11] Department of Agriculture, Forestry and Fisheries, 2012. Trends in the agricultural sector
2012. [Online]. Available: http://www.daff.gov.za/docs/statsinfo/Trends2011.pdf.

[12] Department of Agriculture, Forestry and Fisheries 2012. Abstract of agricultural statistics 2012.
[Online]. Available: http://www.nda.agric.za/docs/statsinfo/Ab2012.pdf.

[13] Department of Agriculture & Environmental Affairs, 2012. Expected yields. [Online]. Available:
http://www.kzndae.gov.za/.

[14] Grove, B. 2008. Stochastic efficiency optimisation analysis of alternative agricultural water use
strategies in Vaalharts over the long- and short-run. Ph.D. thesis. Department of Agricultural
Economics, University of the Free State, Bloemfontein, South Africa.

[15] Blum, C. & Merkle, D. 2008. Swarm intelligence introduction and applications. Springer-Verlag
Berlin Heidelberg.

[16] Yang, X.S. 2010. Nature-inspired metaheuristic algorithms, 2nd edition, Luniver Press, United
Kingdom.

[17] Krishnand, K.N. & Ghose, D. 2009. Glowworm swarm optimisation for simultaneous capture of
multiple local optima of multimodal functions. Swarm Intelligence, 3, pp. 87-124.

[18] Krishnand, K.N. & Ghose D. 2009. Glowworm swarm optimisation: A new method for optimizing
multimodal functions. International Journal of Computational Intelligence Studies, 1(1), pp. 93-
119.

[19] Holland, J.H. 1975. Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor, MI.

[20] Eiben, A.E. & Smith, J.E. 2003. Introduction to evolutionary computing, 1st edition, Springer,
Natural Computing Series.

[21] Yang, X. 2013 Cuckoo Search Algorithm. [Online] Available:
http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-
algorithm/content/cuckoo_search.m.

[22] Yang, X. 2013. Firefly Algorithm. [Online] Available:
http://www.mathworks.com/matlabcentral/ fileexchange/29693-firefly-
algorithm/content/fa_ndim.m.

[23] Zhao, G., Zhou, Y. & Wang, Y. 2012. The glowworm swarm optimization algorithm with local
search operator. Journal of Information & Computational Science 9(5), pp. 1299-1308.

226

http://www.cs.vu.nl/%7Egusz/
http://www.cems.uwe.ac.uk/%7Ejsmith/
http://www.mathworks.com/matlabcentral/fileexchange/authors/119376

	1 INTRODUCTION
	2 The Annual Crop Planning Mathematical Model
	2.1 Indices
	2.2 Input parameters
	2.3 Calculated parameters
	2.4 Variables
	2.5 Objective function
	2.6 Land constraints
	2.7 Irrigation constraints
	2.8 Non-negative constraints

	3 Case Study
	4 Methodology
	4.1 Cuckoo Search
	4.2 Firefly
	4.3 Glow-worm Swarm Optimisation
	4.4 Genetic Algorithm

	5 Testing and Evaluation
	6 Conclusion
	REFERENCES

