http://sajie journalspg ¥ 1012-277X S.Afr.j.ind.eng.
..15..
S A Journal o4 Indusirnial Engdineening, Vol. Z, No 2, December 1988 pp 15-24

EXPERIENCES WITH BUILDING A KNOWLEDGE SYSTEM
AN APPLICATIGN IN INDUSTRIAL CONTROL

AR Greef and R Reinecke
Department of Industrial Engineering
University of Stellenbosch

ABSTRACT

The Centre for Robotics at the University of Stellenbosch set itself the objective of
building a fairly complex manufacturing cell, including an unskilled human as a system
campenem. AsS a precursor 1o this effort we constructed a s,mpie cell requiring both
supervision of a robot and supervision of a human usng a Micro-Prolog knowledge system
10 do so. This was successfully done but at the cost of low execution speed and difficulty
in inte Dranﬂs machine code instructions for machine control mt@z’facwg with the largely
consuitation crientated sofiware which rendered the approach x.msmzab;e for the more
complex cell. MicroExpert was used for this new effort but we also tried Turbo-Prolog 1o
mimick the inference epgine of the former software. This experience made us decide to
trade the higher speed achieved by Turbo-Prolog for the much more rapid mawiedge
base developrent in MicroExpert. To do so it was necessary to build a special frame data
stricture and to enhance Micro-Expert for supervising such manufacturing cells.

OPSOMMING

Dig Sentrum vir Rebotika aan die Universiteit van Stellenbosch is die taak gestel amn’n
komplekse vervaardigingsel to bou wat 'n orgeskmﬁée MERs a5 stelselkomponent sou
moes insitit. As woﬂc}per vir hierdie poging het ons eers 'n eem ?ondige sel daargesiel
waarby toesig oor sleg 'n robot en 'n mens nodig was deur middel van ‘n kennissielse!
gegrond op Micro- Pmloo Dit was suksesvol maar ten koste van betrekiilee lae uitvoer-
spoed en omslagtige inszru;l:sies in masjienkode vir die toesig oor die robot se werking,
*net die programmatuur was eintlik 1oegespits is op dizgnose en konsuiizsie. Tr«-rwyi

erdie poging geslaagd was was dit duidehik dat die benﬁdermw nie go suksesvol op die
beshnc‘c komplekse sel sou wees nig. Daaroim is Meraﬁwg‘}yrt aangewend vir die finale
sel waarby ons verder Turbo-Prolog gebruik het om die mfcmnsze«&nm van Micro-Prolog
na te boots. Hierdie ervaring het gelei tot die beshuit om die huidige fiosr spoed van
Turbo-Prolog in te boet vir die gemaé. waarmee die ontwikkeling van kennisstelsels in
rmfﬁe:m—ﬂxpi,rt gedoen kan word. Dxe gebruik van MicroBxpert vir die besondere toepass-
ing het ous egler genoodsaak om 'n spesiale raam data.,tru’ftwr daar te stel en om

MicroExpert verder uit te bouw.

http://sajie.journals.ac.za

....16_

L0 INTRCDUCTION

The method of building a knowledge system (KS) is not an exact science but rather an
experimental process of testing and modification until the desired results are obtained.

To simplify this process, a number of construction steps, which have been developed
through the experience of knowledge engineers, carn be followed. These iterative steps
are fully described in Hayes-Roth et al (1983) who deals with building large expert systems
{500 - 3000 rules) and Harmon & King (1985) who recognize a distinction between large
and small knowledge systems thereby providing construction guidelines for both:

What is evident is that knowledge system construction can use a large amount of time and
money. It is important therefore to test ideas on KS8's which allow rapid prototyping and
easy modification such as shells and symbol processing languages. Once the best knowl-
edge representation, control system and inference strategy has been determined a more

specific construction tool can be used.

To build a micro-computer based knowledge system for control applications in an indus-
trial environment we initiaily constructed a prototype KS. This Mark-1 KS was tested in a
simplified centrol application to test its architectural feasibility and limitations. The
prototype was then discarded in favour of a Mark-2 system. The Mark-2Z version of the
knowledge based controller, although not a complete system, does contain the compo-

nents and organizational structure suited to solving the problems.associated with control
apchanons What remains to be done is the sireamlining of the control system’s oper-
ation and the development of a knowledge base capable of solving a wider range of

problems.

2.0 THE APPLICATION AREA

The machining sector of the manufacturing industry has become increasingly dependant
on computer controlled automated equipment such as Computer Numerical Centrolled
(CNC) milling machines and robots for the production of low cost, high quality parts. In
certain instances material transfer devices {(eg. robots) and material transformation
devices (eg. milling machines) may be synchronized to manufacture a set of products. The
resulting system is termed a Flexible Manufacturing Cell (FMC) which is diiven by two
levels of control. The first level concerns the control of a demce and the second level
concerns the management of the FMC. The FMC is said to be data driven as manufacture
is determined by information indicating the status of parts, fixtures, tools and devices. Itis
performed by executing robot task programmes and machine tool programmes on the
device controllers. A change in the data thus results in a change in device and FMC

operation.

a driven manufacture, however, is not intended or suitable for supperting humans in
fault diagnosis, error recovery and in the management of systems of automated equipment
which requires logical problem solving. Manufacturing have needs to be both mow!edge
driven and data drwen. This is particularly so in South Africa where automation should
be used to support unskilled workers in skilled werk. Industrial controllers need to be
able 1o retain a skilled human’s knowicdge concerning a particular device or process, on

site for use i sSupportin g an unskilled worker in the m;tzahzation, operation, synchroniza-

tion and maintenanze of micro-computer controlled devices and FMC’s.

A micro-computer based knowledge system was thus conceptualized which could super-
vise man and device in an mdustnai environment. The KS, termed a Device Sunemsor

http://sajie.journals.ac.za

17.

(DS), is required to interpret the current situagion existing in the real world and thus
instruct a device contrcller to execute a particular programme required to perform a
material transformation or transfer task. A DS is piggy-backed onto each device and is
considered as an extension of the device controller. FMC control is performed by linking
the DS computers together with a network communications medium. This then forms a
distributed FMC supervisory system. The DS integrates knowledge and data which is used
to drive the FMC and support an unskilled worker in the FMC environment.

Two other micro-computer based XS controllers : HEXCON (Lattimer Wright et al,
19867 and SCD (Komoda et al, 1984} have been applied to problems involving the real-
time control of industrial equipment. Their knowledge representation and architectural
limitations does not allow them to manipulate control data. That renders them unsuitable
for implementing the DS, Their organizational structures which enable the KS’s to '
operate in real time, however, demonstrate the specific programming techniques which
need to'be considered when building a micro-computer based KS controller. These
programming techniques are not needed with the more common micro-computer based

consultation KS's.

3.0’ BUILDING THE PROTOTYPE DEVICE SUPERVISOR

3.7 Tool Selection

The software tool selection criteria for the rapid development of a prototype KS is usually
based on availability, the degree of user familiarity with the tool, the problems knowledge
representation structural requirements, and the inference engine characteristics. The
most rapid prototype development is obtained through the use of a KS shell which
provides a knowledge representation structure and an inference engine so that knowledge
concerning the problem domain can be immediately coded into the knowledge base and
tested for validity. Most commercially available micro-computer based shells, however,
tend to be designed as consultation systems which lack the communications interface
features required for the DS control computer. The next best tocl, therefore, was consid-
zred to be the Micro—?roiagl symbolic programming language. The raw Micro-Prolog =
snvironmennt could be used as a KS shell as 1t provided a built-in relational data base, a
control system, inference strategy and knowledge representation structure. A
logic/conventional interface was also provided for lisiking user defined routines 1o
primitive predicates for performing data eornmunications management, Micro-Prolog was

tirs used as a XS shell to implement the prototype DS.

3.2 Problem Identification

The prototype DS was designed to implement only a part of the complete DS function,
namely that of supervising a single device. This was demonstrated by the use to the
prototype ¢ supervise a robot in a robot-centred FMC. As shown in figure 1, the DS was
assigned to the robot controller and all other devices in the cell (a milling machine, lathe,
carnera and pnedmatic chuck) were treated as peripheral equipment, The DS was
reguired to splve three problems. The first problem was that of supporting a human
during the initialization of the robot controller and the robot arm. This was performed by
wmstructing the robot and human to perform certain initialization checks and tasks.
Secondly, the DS was required to operate the robot by instructing it as to which pro-
gramme to execute for performing a specific material transfer task. Thirdly, the DS was

S 1t e 1 i e s oA gk Al ey i e HM

1 Micro Prolog is a trademark of Logic Programming Assocliates Ltd

http://sajie.jou?nh%.'z’ac.za

reguired to syachronize the robot and peripheral equipment motion during the loading
and unloading of parts into and out of a device’s fixtures. The FMC's operation is detailed

elsewhere (Greef & Reinecke, 1987.)

MILL.

CHUCK | -
| (O = ROBOT SUPERVISOR

mm= = PARALLEL 10 PORT = ROBUT CONTROLLER
oo = SERIAL INTERFACE [™= DEVICE CONTROLLER

FIGURE 1: THE PROTOTYPE DS AND FMC INTERCONNECTIONS
313 Conceprualizing the Knowiedse |

Both declarative and procedural knowledge was required for DS operation. The procedu-

ral knowledge consisted of three parts, One part was concerned with the initialization of

the robot, the second with the operation of the rebot and the third with the synchroniza-

tion of the robot and the peripheral devices. This procedural knowledge was represented
. 35 Prolog Hom clapse implications which could be given a procedural interpretation. An

example of a Horn clause implication is :

is{ robot_gripper, loaded) if
is {robot_gripper, not loaded) and
is {instruct_rcbot, pick_up_gripper).

The declarative knowledge consisted of a static and dynamic part. The static part formed
a data base of facts, such as which grippers were available for the robot. These facts
remained constant during robot operation. An example static fact is ;

http://sajie.ngmals.ac.za

robot_gripper{flat_grippser).

The dynamic part of the data ba_e. formed the world model which represented the state of
the robot (eg. up, down, idie, busy), iis components (eg. which gripper was attached) and

its jobs to he performed. An example dynamic fact is :

robot_sizte(idle}.
This declaraiive knowl f:dg e, represented as unary Horn clauses could be modified from
withiin the procedurallogic mies,

3.4 Implementing the Kunowledge System

Assembler coded procedures, for tzarsrmtung and recemng data via a-senal and network

interface, as well as for setting and detecting signals appeanng on a parallel port, were
iinked into the Micro-Prologt iterpreter. This created a number of primitive predicates
which transfersd parameters and control 1o, and which received instantiated variables

from, the interface routines.
The solution space of the DS could be depicted using an ANDY/OR graph as shown in

figure 2 and subsequently ranslated into logic rules and facts. At power vp, the DS polisd
the keyboard and senial interface continuously until the user was ready to start.

START

P
AN
7 <
POLL EED POLI, BS2z2

a,f’@‘\@‘“\

NPT

ROBOT
INTTIALIZE mﬂcﬁ
e

SPTRATE SYHCHEONIZE

Preal A

e L > D
e:"”fr & / \‘a

BATCH WE—OFF maez,z. POLL,

JOB éﬁﬁ RETWORK
i L;EEE_‘;TE? \ zﬂ?{g RED.
168 CORRECT Yo REg. SERVEE

CRIPPER SERVICE }\\
’/,.,-A;\, / \

CFIGURE 2: THE DS’s PARTIAL AND/OR GRAPH

http://sajie.journals.ac.za

-20-

The DS then leads the human through the initialization routine until the robot controller
and arm are initialized. Once initialization is complete, the DS continuously polls the
serial and network interfaces, and the internal job quenes. Messages arriving on the
interfaces are used to synchronize the robot or update the world model and batch queuss.
'The operation of the robot is dependant on the state of the job queues and the world
model. Micro-Prolog’s backward-chaining, depth-first control system searches the rules
and facts in the knowledge base and attempts to evaluate the operation and synchroniza-
tion goals. This goal driven process drives the supervision of the robot during the

manufacture of parts.

3.5 Assessment of the Prototype Knowledge System

The prototype Mark-I DS demonstrated the feasibility of using a KS for the supervision of
a device in a device-centred FMC. Rules and facts proved adequate for representing the
procedural and declarative knowledge required for the initialization, operation and
synchronization of a device. Using Micro-Prolog as a XS shell, furthermore enabled the

knowledge part of the DS to be rapidly constructed.

There were however, a number of drawbacks associated with using Micro-Prolog. Asitis.
an interpretive language, it has a slow execution speed.. The interface message handling
routines had o be written in machine code and were difficult to interface to the Micro-
Prolog environment. McCabe et al {1984) suggests that due to these difficulties, compilex
data structures such as lists should not be passed from a user routine to a Micro-Prolog
primitive Fredicate and that only constants and numbers should be passed. This limits the
amount of data which can be passed between the conventional and logic parts of the
knowledge system which is a severe limitation when working 1 an information rich
environment. The continued use of Micro-Prolog as a shell was further negated by

comments from the literature such as:

"Prolog is a programming language, just as LISP is. It is
not a knowledge representation language, * {Jackson,
1986, p. 1B4), and

"in most cases Prolog will act as a good vehicle for
‘knocking off’ a cheap prototype before building an effi-

cient system, using the appropriate tools." (Yazdani,
1984, p. 107)

Ultimately, the undesirable points of Micro-Prolog outweighed its desirable points leading
to it being abandoned as a vehicle for the construction of the Mark-2 version of the DS.

4.0 BUILDING THE Mark-2 DEVICE SUPERVISCR

4.1 Reconsidering the Tool

The prototype KS showed that a simple knowledge/conventional interface as well as a
procedural and declarative knowledge representation strycture was required for the
operation of a DS. Axn expert system shell, MicroExpert,< implemented in PASCAL and

v e . CH o N A L A

2 MicroExpert is a trademark of Micro Expert Systems

http://sajie.journals.ac.za

..Zl_

designed as a developmental package, provided such a sirnple knowledge /conventional
mtertace a production rule knowledﬂc repr esentation structure and an inference engine.
There were however, no facilities for holding and manipulating declarative knowledge.
Therefore, as it is much easier to design and use knowledge structurss in Prolog, which

leads to rapid kmowledge base de velopma,nt, a Prolog compiler, Turbo-Prolog, was also

considered for use in developing the the Mark-2 DS.

As a comparisen between conveniional and svmbohc programining languages , MicroEx-
pert’s knowledge representation structure and inference engine was mimicked using
Turho-Prolog. 3 Although there was & large reduction in the number of programming lines
{a promately 8 in Turbo-Prolog wmbamd to 2400 in Pascal) there was no noticeable
difference berween the two shells’ execution speeds. The decision of which language to
use, then, was a play-oif between rapid knowledge represeniation development in
Turbo-Prolog with a slower, cumbersome logic/conventional interface development;
siower know- 3edge representational structure development in PASCAL with an existing,
simple knowledge/ conventional interface. Based on previous experience with Micro-
Prolog and the fact that the PASCAL systein could be structured to execute at a much
1

aster rate, the MicroExpert shell was chosen as the development package for the Mark

]

and

-y
-
&

]
i

4.2 Bxpanding the Problem

The prototype DS integrated data and knowledge driven manufacturing at the device level
of control. The expanded problem emtailed the integraiion of data and Tkno wiledge also at
the cell level of control. A dhmomtraticﬁ FMC was constructed as shown in figure 3
which couid manufacture any one of 54 different key-rings, in auy order and at any time

A DS was assigned to supervise each device in the cell and co- operate In the distributed
supervision of the FMC. The Mark-2 15 would indicate the feasibility of using a KS in
tlus control application and show the architectural limitations of the enhanced MicroEx-

M,rt shell,

4.5 Enhapong the Knowledge Base

MicroExpert provided a production rule knowledge represeniation structure which
comprisad aitribute-value pair condition and conclusion clauses. For example :

I¥ robot gripper IS not loaded

AND robot mstruction IS pick up gripper

LIRS . : ; 3

1 HEN robot gripper I8 loaded

functions cctﬁd be executed from within a rule’s condiction clause s
ural

Futhermore, ?%&C
: edu

pr‘*c’ dures fromm within a rule’s conciusion clauses. This implemented the proce
W gdpe representation siructure and the knowledge/conventi ohai DTOGrarmming

2
2FE
~

o

knt

e was bu H o collect related data together for 2 more

A simplitied frame data strachu
€ repres Ucm and data base. Anexample frame is:

exprestive declarative kiowledg

FRAME robot,
gripperl = fiat gnipper,
grinper? = round gripper

ST B e e R e ST s TR e 12 K> e ats p,

3 Turbo~Prolog iz a trademark of Borland International Inc

http://sajie.jourgﬂigp.za

The frames comprised a header (eg. robot) by which it was indexed and slots (eg. gripperl
= flat gripper) consisting of attribute-value pairs. As well as representing static and
dynamic declarative knowledge as in the prototype KS, it was now possible to hold FMC
related data such as part data and production statistics in the frame structure. Functions
and procedures, invoked from within the rules, enabled frames to be created, deleted,
modified (by changing a slot’s value) and transmitted over the serial and network inter-
faces. Frames received over the interface ports were added directly to the knowledg

base. .

ROBOT <rw>

CAMERA <G

/= FILE SERVER
H = HUMAN SUPSR\VISOR

T LATHE <L3

MILL. <MD

FIGURE 3: THE Mark-2 DS AND FMC INTERCONNECTIONS

A ’single-fact’ internal data structure was designed to hold message infermation received
over the interface ports. A symbolic name was assigned to each IO part which formed the
attribute of the value message reccived. The attribute-value pairs were then retained in
the knowledge base for matching against the rule’s condition clanses. Messages were
transmitted to the interface ports by rule invoked functions.

4.4 Re-implementing the Device Supervisor

MicroExpert’s inference engine was enhanced to force the control system to verify an
unknown attribute by looking in the message and frame data base if a rule could not be
found to evaluate. If an attsibute could not be matched in the data base then the XS
prompted the user for input. Using this control strategy, the KS continuously assessed the
current world representation modelled in the data base and reacted accordingly.

http://sajie.journals.ac.za
i X o

The FMC was driven by part data held in frames which were transferred and transformed
along with the transfer and transformation of the parts. Part data contained a parts type,
order number, quality, location and destination: This information was sufficient for the
DS’s to coordinate the production of the key-rings. Messages were exchanged between
the DS’s 1o indicate device states and to synchronize interacting devices.

The knowledge contained in each DS performed the initialization, operation and synchro-
nization of each device and ultimately the entire FMC. This required an expanded DS
knowledge base so as 10 encompass the knowledge and data driven requirements of the

FMC.

45 Assessment of the Mark-2 Device Supervisor

The DS was kept simple by retaining separate facts and rules knowledge bases. Both
knowledge and FMC driven data were adequately represented and manipulated using
frames and production rules. These data structures gave the knowledge base a more
explicit appearance. The knowledge/conventional programming interface allowed 2
numnber of knowledge representation structures, data handling and control sirategies to be

rapidly constructed and tested.

Each DS’s knowledge base contained less than 90 rules. One rule was required to hold
each one of a device controllers programme activation conditions and one rule was
required to hold each of a device controllers programme termination conditions. This
resulted in the large number of rules which could be reduced at a later state through the
use of variables, as in the SCD controller. This would decrease the amount of rules in a
knowledge base and increase the number of facts held in the frame data structure thereby
making system operation more efficient. Reaction times of the KS ranged from 5 to 8
seconds. In terms of the machining times actually needed in the FMC this was effectively
real time operation. For significantly shorter cycle times of procedures this Mark-2
controller would be slow although we believe that the carrent personal computers using
80286 and 80386 processors would bring reaction times to under one second. That implies
real time contro! for quite short cycle operations. Choosing PASCAL as the K&§ imple-
mentation language, however, allowed for the future implementation of more efficient
data structures and knowledge compilation techniques as used in the SCD and HEXCON
controllers {also see Hayes-Koth et al). This could not be done with a Prolog system.

5.0 CONCLUSION

When building a small XS, a tool should be selected which allows rapid prototyping of the
systeny. 1his enables a knowledge representation structure and inference engine to be
guickly constructed for testing the problem suitability for solution using KS techniques.
For control applications, where as much empbhasis is placed cnto the data manipulation
and interchange as is on the reasoning process, it is best to use a KS§ development 100!
which allows for the rapid construction of the knowledge and conventicnal parts of the
KS. This is essential as the construction of the XS is an iterative process which means

constantly revising and modifying the original KS and concepts.

6.0 REFERENCES

http://sajie.journals_.‘affg

Greef, AR, Reinecke, R., "Logic for Robot Programming and Control”, Interdisciplinary
Conference on Mathematical Logic and Related Subjects, ITERLOGICON §7, University

of Natal, Durban, July, 1987.

Harmon, P., King, D., "Expert Systems. Artificial Intelligence in Business”, John Wiley &
Sons, Inc., New York, USA, 1985,

Hayes-Roth, F.,, Waterman, D.A., Lenat, D.B., "Building Expert Systems", Addison-
Wesley Publishing Co., Massachusetts, USA, 1983.

Jackson, P., "Intraduction to Expert Systems”, Addison-Wesley Publishing Company, Inc.,
1086. _

Komoda, W, Kera, K., Kubo, T., "An Autonomous, Decentralized Control System for
Factory Automation”, IEEE Computer, December, 1984,

Lattimer Wright, M., Green, MW, Fiegl, G,, Cross, P.F., "An Expert System for Real-
Time Control”, IEEE Software, March, 1986.

McCabe, F.G., Clark, K L, Steel, B.D,, "Micro-Proleg 3.1, Programiner’s Reference
Manual, MSDOS version”, Logic Programming Associates Ltd., London, UK, 1984,

Yazdani, M., "Knowledge engineering in PROLOG"; in Forsyth,R., "Expert Systems.
Principles and case studies”, Chapman and Hall, London, UK, 1984, pp 91-111.

