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AN ALGORITHM TO MINThllZE SINGLE VA.RIABLE POLYNOMIAl,
FUNCTIONS FROM ANY STARTING POINT WITH QUADRATIC CON·

VERGENCE

~ +
By 'James Thome;Doran Greening and Rohert E.D. Woolsey

ABSTRACT
Search methods often display non-eonvergence or excessive convergence time on certain classes
of nonlinear functions arising in engineering design. The authors will defIne a new geometric
-programming based search method for single variable polynomials that displays quadratic
convergence from any starting point Comparison over a group of test problems is Il1ade with a
version of Newton's method.

ANE~WLEOFTHEMETHOD

The method used in this paper is based on the condensation approach to solving geometric
programming problems of Beightler & Phillips, [1], and Passy, [2J. This method will be
demonstrated with the following example from.Thermopolisand Lehman, [3}. They proposed a
model of an inventory situation with a total expected cost given as:

(1)

Where the first term is tile annual holding cost, the second term in the annual orderi..ng cost and
the third term is the annual obsolescence cost, and Qi~ the order quantitj. TIus type of problem
is easily solved with a Newton's method. It is noted, however, that the number of iterations to
convergence is somewhat sensitive to starting point using this method. We now propose to
define a new method that is .absolutely insensitive to starting point liS follows using the exam!>le
problem. We may now start to "condense" this problem by combining terms with positive
powers which gives:

(2)

Now followi..ng the method of [1] and [21 above, we have that:

(3)

(4)

We may now rewrite (3) as:
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(5)

Now following the algorithmic approa>cll ofRijt',k,;-7t &; Mllr'.f:ns, [4], ifwe choose som.e stllrting
value for Q say lr, we may then define 4 md d, f,$;

(6)

It should be IKlred that the requirement tlll1.t ihe do's sum to one, necessa,J' foT the in,equalities (3)
and. (5) to he true, is met. If we now devn,,'

(1)

(8)

(9)

(10)

V'r'ith the above reImionmnps we ,n'ly define the flow ch!a"t of the algorithm for the solution of
this problem on the to!1o'l".ri,l1.g page:
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FLOWCHART OF THE METHOD FOR THE EXAMPLE PROBLEM

Step 1. Choose a starting value of Q
call itQ

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

s~ ~'Q ~.~

d1 = K
j

• Q +K) .??4 = K! . Q +K3 • ??

Ifabsolute value of(Q..., - Q} < error

Then Set Q= 0....,

And Go To Step 2.
Ifnot then Go To Step 6.

Print optimal Q' = Q_
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Let us now put some numbers to the model of Thomopoulus & Lehman giving:

(lOa j

This problem has a minimum at Q= 5.686 which yields a optimum TEe = 1083.648. We now
compare the iterations to convergence using this method and using a plain-vanilla Newton's
method. By plain vanilla, we mean a Newtons' method that has no adjustment for step size. Itis
well known with Newton's method that too large a step size will often step over the optimum
and too small a step size w'Jl not converge within a reasonable time or will get caught in a 10C<1l
optimum. In any case the authors are prepared to provide listings of our Newton's method
programs far the examples of this paper in Basic for those interested in conlli-rning our results fur
themselves. Both the Newton's method and the G. P.. method used for all problems in this paper
use an allowable error of .001 for stopping criterion. The comparisons are shown below:

Starti.ng Point N. Iterations G. P. Iterations

.(000)1 infeasible 4

.01 18 4
.1 13 4
1 7 4
5.686 0 0
275 25 4
ooסס10 20 4

It isi.rnmediately noticeable that the G.P. method converges in the same number of iterations
from all of the above starring points. We assert, without proof that the G.P. method proposed m
thj. paper will converge in the same number of iterations over a range of starting points boundt:!.!
only by the floating point word length of liie computer used. The aut.1}ors are unav/fu""e of any
other st'liTCh method that displays this quality at !iiis point in time. In short, this method appem
to demonstrate Quadratic Convergence. Quad.ratic Convergence may be defined as conver­
gence to an optimal solution 111 which t.lJ.e absolute error decreases proportionally to thesquarecf
the iteratioll. Stared !mother way,if the absolute error for each iteration is plotted against the
iu::rations, the plot would display th.e general shape of a specific qnadratic function described by
Freu.ndo (5], as:

2
-r) a

J\.l =~.
iJ' r

Tlris,in fact proved ·iiJ be the siroation for all of the problems tested in this paper.

TIIE GEN'ERf.L METHOD (poSITIVE COEFFICIENT TERMS)

Bas.ed on the above discussion we now assert that any Problem of the form:
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(12)

WhereKi,Ai.Ci.Bi ~ 0

may be solved, using condensation, as follows. Again, using Rijckaert & Martens,[4J, we note
that:

(13)

Where, as before, the d's must sum to 1. We now accomplish the same process for the
negatively powered terms,which gives:

(14)

Again, requiring that t.he e's sum to 1. Now, consistent 1.vitt'r the example problem seen before,
we define the d's and the e's as function of some starting value ofQ, designated as Q bar whicb
gives:

(15)

(16)

Now let us define the followi..ng quantities:

N
E =: 1: dj ~ Aj ,

i=l

(17)

(18)
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kl

G = L Ci ·Bi ,
i ... !

We now have the origirull problem of (12), restated in t.l}e simple form:

Y D QE. " Q-c::: . "'t'r· •

Tne m:inirnum value of this problem, llSing allY !lppropriate method is:

• . /.DO .FEJ(.(1j~"))
Y =(£+G).I G - ,tG ·B"

which 0C'CU1'S at 1lIl optimum. value ofQgiven by:

WltlJ the above def'Ll1itiol1s we now defme the flow chart for the convergent algorithm on t..he
follo'wing page.

(19)

(20)

(21)

(22)

(23)
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FLOWCHA..-q,T OF THE GENERAL l\fETHOD FOR POSITIVE COEFFICffi'ITS

Step 1.

Step 2.

Step 3.

Step 4.

O:toose a starting value of Q
call it?l

For all i

SetD =(~r· (~r····· (~:r
Set N

E=l;di·Ai
i:1

setF=(Ci
)" • (C2

)"' • •••• (CM
)'"

el e2 ~ eM

Set At
G= 'l;"'d.·A.£., I •

j""l

Set = (F .G)(~~)
Q- D·E

Step 5. Ifabsolute value of(Q_ - Q) < error

Then set 75 = Q- -
And Go To Step 2.
Ifnot, then Go To Step 6.

Step 6. STOP, print optimal Q' = Qnew
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We will exemplify this method using an example of cofferdam design due to Negahabet & Stark
(6]. The mathellUtical description for such a problem is that total cost would .11:: equal to the
sums of the excavation and fill costs, piling face cost, piling side cost, and expected flooding
cost. The original total cost function was expressed as a function of four design variables, total
piling length t, cell face length f, cell side length s, and height above low water h. This model has
three constraints in t.he four design variables. The constraints may be used to eliminate three of
the four variables,resulting in a cost function described only in terms of the variable h. This
resulting cost function may be written in a specific example due to Wilde [7J as follows:

(23a)

This cost function has a minimum at .11= 3.218, yielding a optimum cost ofTe= $29,172.35. We
now compare the convergence of t.!lls problem between the Newton's method mentioned above
and the G. P. meli'lod as seen below:

Starting Point

oo1סס0.

.01

.1
1
3.218
10
IOOO
ooסס1

275
ooסס10

N. Iterations

infeasible
18
12
6
o
6(wrong answer)
13(wrong answer)
11
7
16(wrong answer)

G. P. Iterations

4
4
4
4
o
4
4
4
4
4

Again, it is interesting to note that the proposed method's convergence is independent of star"ung
point, while the Newton's method is not. The authors cheerfully admit that all of the problems
so far are sufficiently convex to yield global optima. We now proceed to expand the method to
problems with multiple optima.

THE GEl'rERA.L METHOD {POSlTlVE AJ"ID NEGATIVE COEFFICIENT TERlV1S}

Based on the above we now assert that any problem of the form:

May be solved using condensation, as follows. We first note that using the general method
discussed above with positive coefficient terms , tJ:mt the above problem may be restated as:

i'

Min.Y=D· QE+ F · Q-G - 1: Hi' d".
i=l

(24)

(25)
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Problems such as this often display extremely erratic 'results using Newton based methcxIs,
(computational experience will be shown later in this paper). The reason for this erratic
performance is that such problems (called sigTIornial geometric programming problems), are
often embassingly non-convex and display multiple optima. The authors attempted various
approaches to the above problem with little success. Finally, one of the authors, Mr. Greening,
suggested that the problem of (25) above could be rewritten as:

Minimize: Y

(26)

which was shown to be an equivalent problem to (25) by Beightler & Phillips in [1]. Mr.
Greening attributes this idea to a paper of Amel & Williams, [10]. He then suggested simply
moving the negative coeffit:ient terms over to the left-hand-side of the problem which gives:

Min:Y

Subject To: y + £H;' QRi >-D . QE +F. Q-G.
;",,1

Again follOWIng Rijckeart & Ma..'tens, [4J, we have, as before:

(27)

(28)

Where, Y bar is the function valut: at some starting value of Q, here called Q bar and again, as
before, the f's are defmed as functions of the same value ofQ bar which gives:

(29)

If we now defme:

(30)
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we have the problem in (27) restated in the simple form given below:

MinY;

Now. by dividing through by the L. H. S. we get the desired reformulation as:

Min Y:

Subject To: (D) -[, (E-T) (F) -I, -(G+T)1> - .y.Q + - .y .Q- s s .

The minimum value of this problem using any appropriate method is:

which occurs at an optimum value of Qgiven by:

With the above relationships we now defi-ne the flow chart on the following page.

(31)

(32)

(33)

(34)

(35)
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FLOWCHART OF THE GENERAL METHOD FOR POSITIVE AND NEGATIVE
COEFFICIENTS

Step 1.

Step 2.

Step 3.

Choose a starting value of Q
call itQ

For all i define d's and e's as before

Set N .",.'! M --a f' ~
Y = L K. . !.t '+ L c.. Q '- L H.. !.t .

i=1 I i=d' i=l &

Step 4. Set
~

it
y

H . .,.,JI,
f- ' l,,! ~ "-23 PJ{ - p vorl - J ,... ,

Y+L.H;.it'
i ... l

For all i
Set

Step 5.

Step 6.

Step 7.

Set D, E, F, and G as before

Step 8. Set _'_
=(F. (0 +T)j'{lI+G1

Q.- D '(E-T)

Step 9.

Step 10.

Ifabsolute value of (Q..... - Q) < error

Then set Q= Q""",

And Go To Step 2.
. Ifnot, then Go To Step 10.
STOP, print optimal Q. = Q_
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Our fITSt example, using this method, is from Schweyer, [8], and concerns minimizing the cost of
insulation of a steam piping system as shown below, where S is the percentage of solids between
t\vo pieces of equipment:

Minimize: TC = 100000· (5 - 0.1)3 +2100· (l-S) + 1095· S·, + 875,

Performing the required exponentiation and collecting terms this gives:

Minimize: Te = ·ooסס10 S3 - 27900· S2 -1200· S + 1095 .S -1+ 2875,

(36)

(37)

TIlls problem has a global minimum at S= .315, yielding a optimum cost ofTC= $6330.40. The
compalison of the nvo methods from various starting points is shown below:

Starting Point

oo1סס0.

.001

.01

.1
1
275
ooסס10

N. Iterations

bfeasible
infeasible
10
4
3{wrong answer)
12
20

G. P. Iterations

6
6
6
6
6
6
6

(38)

A plot of iterations for this problem against absolute error is provided on the next page, wpich
demonstartes the quadratic convergence property of tJUs method on this problem.

Wilde,[7J, presented a problem originally formulated byWash;ngton Braga of Brazil. A cubical
refrigerated van is to be designed to transport fruit benveen two cities in Brazil. Information
provided includes variables for the nUllber of trips and the length of a side of the van, the
thickness of insulation, transportation and labour cost, etc. After performing a few
ffi"nipulations and substitutions, however, it is found to be possible to write the local
expression as a function of the length of the side, S, omy as sbov,'Il below:

i'/tinimize: TC == 69.1608· S5+0.0066· S2+620000ooo. S-3 -10. S.5,

This problem has a global minimum at S= 143.6806, yielding an optimum cost ofTC= $1054.42.
The compatision of this problem on Newton's method and G. P is shown below:

Starting Point N. Iterations G. P. Iterations

.000001 infeasible 7

.001 infeasible 7,

.01 47 7

.1 36 7
1 26 7
231 27 7,
232 infeasible 7
275 infeasible 7
ooסס10 infeasible 7
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On these problems it may be seen that Newton's method behaves even more erratically than.
before, sometimes finding a wrong answer. sometimes not converging within a reasonable limit
of iterations. It'is also noted that in t..'le ca,es where N-R did converge that it showed much
greater sensitivity to starting points than before. Interestingly enough. it is also seen that the GP
method still displays the quadratic ccnvergence from all starting points. It is also significant to
note that ill every case above. the GP method discovered the global optimum. The authors are
quick to stale that no assertion of global optimality is being made here except for the problems
found in this paper. At this point in time convergence to global optiluality of this method is
unproven and, we suspect, unlikely.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

We have defined, in this paper, a method for minimizing single variable polynomial functions of
a certain class. The method displays quadratic convergence from any starting point over an
extremely wide range. It is important to note, as in the steam pipe insulation problem of
Schweyer , that the GP starting points that are out of the obvious feasible region for the variable,
(i.e. between.l and I), have no effect on convergence. The authors agree immediately that a
more sophisticated Newton-Ralphson method or some other search method can be progrnmmed
that would yield consistently fewer iterations than the Newton's method used in this paper. We
believe, based on our prelinnnary compuational experience here, that the robustness of the GP
method is sUlJ'.-'"Iior across a wid...<>r range of problems than any such particular method could
display.

Clearly, a next possible step is to define a method to de;;J with more general problems of the
type:

Min N M P U• • A, '" -lJ. l: II· '<' -y.Y = 'I:' K.· Q +,L, C· . 0 •- H . Q •- , v.. Q •k I ( _I .F..A I. •
i=1 i=1 i=1 i=l

(39)

This will shortly appear. Another step, also underway, is based 011 extending t.'Je above methods
to the multivariable method of condensation of Ratliff,(9).
Prelimir.my computations on the muifivariable engineering design problemr attempted to this
date also display quddratic convergence.

For our more mathematically inclined readers, we wish to be clear that we have provided a
minimal, (ifany), foundation mathematicaUy for our approacb. We openly admit our collective
lack of ability and interest in pursuing the conceptual basis of lTJ, method. The chalJ.enges to
prove tmder what conditions Lhat tills method converges to local or global optima should be a
fertile field for those so inclined. We v\!ish those people who might wish to establish, or
disestablish, the basis for this method Godspeed and good hunting.
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