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AN AL GORITHM TO MINIMIZE SINGLE VARIABLE POLYNOMIAL
- FUNCTIONS FROM ARY STARTING POINT WITH QUADRATIC COK-
VERGENCE

By James Thome, Doran Greening and Robert E.I}, Woolsey
ABSTRALCT

Search methods often display non-convergence or excessive convergence time on certain classes
of nonlinear functions arising in engineering deszgn The authors will define a new geometric
-programming based search method for single variable polynomials that displays quadratic
convergence from any starting point. Comparison over a group of test problems is made with 2

version of Newton’s method.

AN EXAMPLE OF THE METHOD

The method used in this paper is based on the condensation approach to solving geometric
programming problems of Beightler & Phillips, [11, and Passy, [2]. This method will be
demonstrated with the following example from Thermepolis and Lehman, [3]. They proposed a
model of an inventory situation with a total expected cost given as:

K, 2.
=K1'Q’%5+‘¥3'Q (1)

Where the first term is the annual holding cost, the second term in the snnual ordering cost and
the third terre IS the annval cbsolescence cost, and Q is the order guantity. This type of problem
is easily solved with a Newton's method. It is noted, however, that the number of iterations to
convergence is somewhat sensitive 1o starting point using this method. We now propose 1o
define a new method that is absolutely insensitive o starting point as follows using the example
sroblermn, We ray now start to "condensz” this problem by combining terms with positive

powers which gives:

. 5 K2
Pe(X, Q+K- 00+ (2)
Kow folinwing the method of {1] and [2] above, we have thas:
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where 4, +d, =1, and 4,4, > 0.
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We may now rewrite (3) as:
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Now following the algorithic approsgh of Rijcken & Martens, [4], if we choose some statting
value for s%yﬁ we may then defing &, sad 4 a3

4 Ki'g Ks‘i? {5}
E fowidg ,a}*ﬂ i = = - .
KT DY PE TR T

it should be noted that the reguirement that the 4's sum 10 one, necessary for the in
and {5) io be wue, Is mot. ¥ ws now define:
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w2 aow have the origiaal oroblem restated as:

malites {3)

{8)

TEC =X, - Q
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The mintmum of this sroblem uging sny method i
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This meinimun 0CCuTs 82 an opimum order quantity oft
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With the above relntionships we may detive the flow chart of the algorithm for the solution of
this problem oa the following pags:
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FLOWCHART OF THE METHOD FOR THE EXAMPLE PROBLEM

Step 5.

Step 6.

Choose a starting value of Q@
call it )

Sstd__ Kl'g = Kz'gz
' E-O+K,-C° K -CG+K, - °

Sstg_ Klil K, d;g’- o)
(5] (5 rens

K.;;'KS

o £ )(r':ﬂ

¥ absolute value of Q.. ~Dy<error
Then Set J = ..

And Go To Siep 2.
If not then Go To Step 6.

Print optimal 0 * 0.
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Let us now put some numbers to the model of Thomopoulus & Lehman giving:

TEC =10-0 +~4l’r§—0+10»_-:22, (10a)

This problem has a minimum at Q= 5.686 which yields a cptimum TEC = 1083.648. We now
compare the iterations to convergence using this method and using a plain-vanilla Newten's
method. By plain vanilla, we mean a Newtons’ method that has no adjustment for step size. Ris
well kmown with Newton’s method that too large a step size will often step over the optimum
and 100 small a step size will not converge within a reasonable time or will get caught in a locsl
gptimum. In any case the anthors are prepared to provide listings of our Newton’s method
programs for the exampies of this paper in Basic for those interested in confirming our results for
themselves. Both the Newton’s method and the G. P. method used for zll problems in this paper
use an aliowable error of .001 for stopping criterion. The comparisons are shown below:

Starting Point N. lterations Q. P. Iterations
L00001 infeasible 4
01 18 4
A 13 4
1 7 4
5.686 0 0
275 25 4
100000 20 4

It is immediately noticeable that the G.P. method converges in the same number of iterations
from all of the atove starting points, ‘We assert, withouot proof that the G.P. method proposed ia
this paper will converge in the same number of iterations over 2 range of starting points bounded
only by the floating point word length of the computer used. The authors are unaware of any
other search method that displays this quality at this point in time. In short, this method appeass
w demonsirate Quadraric Convergence. Quadratic Convergence may be defined as conver-
sence to an optimal solotion In which the absolute error decreasss proportdonally 1o the square of
the irzraton. Staid another way,if the absolute error for each iteration is plotted against the
iterations, the plot would display the general shape of a specific guadratic function described by

Freund, {51, as:

2

e £2
()= .
fy=r—

This in fact proved w be the simarion for all of the problems tested in this paper.

THE GENERAL METHGD (POSITIVE COEFFICIENT TERMS)

Based on the above discussion we now asseri that any vroblem of the form:
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N £ M N
Min¥=3K-0"+2Cr0™ (12)
i=1 1=

Where X ,A,C..B; 20

may be sclved , using condensation, as follows. Again, using Rijckaert & Mariens,[4], we note
that: _

}_:;:{ 0" [(i‘) [%T. (*zm;gﬁgs*"‘f] (13)

Where, as before, the d’s must sum to 1. We now accomplish thc game process for the
negatively powered terms, which gives: _

¥ . 5 (e e (o) -ias
EC‘,.QB'E[(__E) (_EJ (__E) J.Q i=1 (14)
i=! & & Ey

Again, requiring thatthe ¢'s sum to 1. Now, consistent with the example problem seen befare,
we define the.d’s and the &’s as function of some starting value of Q, designated as Q bar which

gives:

k- Q" Ky O™ .
dlzﬁ'g ------ }dH: N_ e .: (15}
2, K;- O > K- 0"
_ oo _Cu O™ "
e Al B (16)
ZC-97 %G-9"

Now let us define the following quantides:
dy
K K ¢
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The ronimum valoe of this problem, using any appropriste method is:

= 3
,§G=E'§

1
/G 58 (ﬁ_*é_})
}’“:(Ea-@)»tﬂ F}

which ooours at an optimmim value of § given by:

. [F-03 {‘55}%"3)
B

-

(19)

(20)

(22)

(23)
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FLOWCHART OF THE GENERAL METHOD FOR PGSITIVE COEFFICIENTS

Step 3.

Step 4.

Step 5.

Step 6.

Choose a starting value of Q
caliit {7

Foraili

Set .
K-
g_z_..._‘._.gf__

P
ZK-D"

Set C; . a"“ai

TN
TK-O

E-."zb - ;Kﬁ%
d: T lde)

=4 dl -.
t H
“E=3d-4

i=1

SﬁtF= g elt Ez- %..'G'(% 51
4] 2y kegg

Set H
“G=3d-A

i=i

S

Set ” . . (Té%é)')

= \D-E
If absolute value of (9 7)) < error
Then set g =0

And Go To Step 2.
If not, then Go To Step 6.

STOP, print optimal Q‘ = O new
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We will exemplify this method using an example of cofferdam design due to Negahabet & Stark
{6]. The mathematical description for such a problem is that total cost would bz equal to the
surns of the excavation and fill costs, piling face cost, piling side cost , and expacted ficoding
cost. The original total cost function was expressed as a function of four design variables, total
piling length t, cell face length £, cell side length s, and height above low water h. This model has
three constraints in the four design variables. The constraints may be used to eliminate three of
the four variables,resulting in a cost function described only in terms of the variable h. This
resulting cost function may be written in a specific example due to Wilde [7] as follows;

Minimize: 7C = 3660 b+ 175 A2+ 1.34- 5*+ 50000 27, (23a)

This cost functicn has a minimum at h= 3.218, yielding a optimum cost of TC=$29,172.35. We
now compare the convergence of this problem between the Newton’s method mentioned above

and the G. P. method as seen below:

Starring Point N. Iterations G. P. Iterations
L0000 infeasible 4
01 18 4
A 12 4
I 6 4
3.218 0 0
10 é(mng answery 4
1000 13{wrong answer) 4
10000 11 4
275 7 4
160600 1&{wrong answer) 4

Again, it is interesting 10 note that the proposed method’s convergence is indopendent of starting
point, whils the Newion’s method is not. The authors cheerfully admit that all of the problems
so far are sufficiently convex to yield global optima, We now proceed 1o expand the method to

%}mh}sms with multiple optima,

THE GENERAL METHOD (POSITIVE AND NEGATIVE COEFFICIENT TERMS)

Based on the above we n0w assert that any problem of the form:

7 _QRI, {24}

i t\.{m

. i 4 M -8
MinY=32 K -0 +2C-0
ol fml i

May be solved using condensation, as follows. We first note that using the general method
discussed above with positive coefiicient erms , that the above pmblfsm may be restated as:

. |
MinY=D-Q%+F - 0%~ S H,-0" (25)

=l
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Problems such as this often display extremsly erratic results using Newton based methods,
(computational experience will be shown later in this paper). The reason for this erratic
performance is that such problems {called signomial geometric programrming problems), are
often embassingly non-convex and display multiple optima. The authors attempted various
approaches to the above problem with little success. Finally, one of the authors, Mr. Greening,

suggested that the problem of (25) abave could be rewritien as:

Minimize: Y

Subject to: . . F )
¥ rep.0fer 0051, -0", 26)

which was shown to be an eguivalent problem to (25) by Beightler & Phillips in [1]. M.
Greening atrributes this idea to a paper of Avriel & Williams, [10]. He then suggested simply
moving the negative cocfficient terms over 1o the left-hand-side of the problem which gives:

Min: Y
biect To: 2
Subject To: ‘E: 55D .0%+F .0 2

Again following Rijckeart & Martens, [4], we have, as before;

FH 2
Yae i D72
i=l

HY f; fHF 5 lglﬁ' £
( J @} [_J Lf}'mJ e ’2 ©8)

Where, Y bar is the function value at some starting valae of Q, here called () bar and again, as
before, the £'s are definad as functions of the same value of  bar which gives:

¥ Hp
f;mm 7 R S :_ 7 2" 29}
Y+ L HO Y+ X H;-0"
i=1

if we now define:

[ ()

WY (H
(=)
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and, z .
T = _ZIRI' 'fi+1v

we have the problem in (27) restated in the simple form given below:
Min Y:
Subject To:¢ .YJ&_QT:_,D QF+F.Q7

Now, by dividing through by the L. F. 8. we get-zhe desired reformulation as:

Min'Y:

Subi . '
Subject Tﬂ._1 2(%) o Qg-n+(§]_ v P nacl)

The minimum value of this problem using any appropriate method is:

RN
Saaulcitcy

which occurs at an optimum value of § given by:

o =[EC +T)\(E"*!’"5)
“tg (E-T))

With the above relationships we now define the flow chart on the following page.

31

(32)

(33}

(34

(33}
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FLOWCHART OF THE GENERAL METHOD FOR POSITIVE AND NEGATIVE

COEFFICIENTS

Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

Step 6.
Step 7.

Step 8.

Step 9.

Step 10,

Choose a starting value of Q
call it ¢y

Forall i-dcﬁna d’s and e’s as before

Set ) .M £
g ?:: EK}-'QA'"‘“ ZICE'Q—B{‘“ EH‘Q‘R‘
i=l i= i=1

Set Y
h=—F
Y+ I H- O

i=}

Foralli
Set H.. i

fom e fori =23,...P,

‘ ?*{-g:, H; Q_R{

=l

SetD,E, F, and G as before

Set £
T= E; Ri 'j;+1

t=3

Set =
F G +T)J“"“’

Qoer = (D E-T)
If absolute value of (9, ~1J) < error
Thenset =0
And Go To Step 2,

- If not, then Go To Step 10.

STOP, print optimal Qt =0
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Our first example, using this method, is from Schweyer, [8], and concerns minimizing the cost of
insulation of a steam piping system as shown below, where § 1s the percentage of solids between

two pieces of equipment:

Mintmize: 7¢' = 100000 - (S — 0.1)° + 2100 - (1~ $)+ 1095 - § 7 + 875, (36)
Performing the required exponentiation and collecting terms this gives:
Minimize: 7C = 100000 $*- 27900 $2~ 1200 § + 1095 -5 ~1+2875, (37)

This problem has a global minimum at S= 3135, yielding a optimum cost of TC= $6330.40. The
comparison of the two metheds from various starting points is shown below:

Starting Point N. Jterations G. P. Iterations
000001 infeasible 6
001 infeasible 6
01 10 6
g 4 3]
1 A{wrong answer) 5
275 12 o
1000606 20 6

A plot of iterations for this problem against absolute error is provided on the next page, which
demonstartes the quadratic convergence property of this method on this problem.

Wilde,[7], presented a preblem originally formulated by Washington Braga of Brazil. A cubical
refrigerated van is to be designed to transport fruit between two cities in Brazil. Information
provided inchizdes varizbles for the number of trips and the length of a side of the van, the
thickness of insulation, transportation and labour cost, stc, After performing a few
manipulations and substitutions, however, it is found to be possible to write the local
expression as a function of the length of the side, §, only as shown below:

Minimize! 7¢ = 59,1608 - §° + 0.0066 - §*+ 620000000 5~ 10- $7, (38)

This problen: has a global minirmum at 8= 143.6806, yiclding an optimum cost of TC= $1054.42.
The comparision of this problem on Newton’s method and G. P is shown below:

Siarting Poing N. Iterations (3. P, Iterations
000001 infeasible 7
01 infeasible 7
1 _ 47 7
g 38 7
1 26 7
231 27 7
232 infeasible 7
275 infeasible 7
160000 infeasible 7
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On these problems it may be seen that Newton's method behaves even more erratically than
before, somedmes finding a wrong answer, sometimes not converging within a reasonable limit
of iterations. It'is also noted that in the cases where N-R did converge that it showed rouch
greater sensitivity o starting points than before. Interestingly enough, it is also seen that the GP
method still displays the ﬁuadr&tic convergence from all starting points. Itis also significant to
note that in every case above, the GP method discovered the giabal optimum. The anthors are
quick to staw that o assertion of global optimality is being made here except for the problems
found in this paper. At this point in tiree convergence 1o giobal optimality of this method is

unproven and , we suspect, unlikely.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

We have defined, in this paper, a method for minimizing single variable polynomial functions of
a certain class. The method displays quadratic convergence from any starting point over an
extremely wide range. It is important tonote, as in the steam pipe insulation problem of
Schweyer , that the GP starting points that are out of the obvious fzasible region for the variable,
(i.e. between .1 and 1), have no effect on convergence. The authors agree immediately that a
more sophisticated Newton-Ralphson moethod or some other search method can be programrued
that would yield consistently fewer iterations than the Newton’s method used in this paper. Wa
helieve, based on our preliminary compuational experience here, that the rebusiess of the GP
method is superior across a wider range of problems than any such particular method could

display.
Clearly, a next possible step 1510 define a method 1o deal with more general problems of the

type:
Min. N .M . £ . Z ¥,
- ¢-0"- 2 H-0"- 5V, 0™" &)

i=i i=1 i

This will shortly appear. Another step, also underway, is based cn extending the above meihods
to the multivariable method of condensation of Ratliff,[G].
Preliminary computations on the multivariable enginecring design problems attempred to this

dare also display gquadratic convergence.

For our more mathematically inclined readers, we wish to be clear that we have provided a
minimal, (if any), foundation mathernatically for our approach. We openly admit our collective
lack of abifity and interest in pursuing the conceptual basis of this method. The challenges to
prove under what conditions that this method converges to local or global eptima should be a
fertile field for those so inclined. We wish those people who might wish to establish, or
disestablish, the basis for this methed Godspeed and good hunting.
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