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ABSTRACT:
Capacity concepts are usually illustrated by Wightls
funnel analogy in which the queue is the volume of
water above the throat of the funnel and capacity is
the volume flowing out. This simple illustration
implies that input and output rates remain constant
over time.
Since this is usually not the case in practice. a
better mode 1 was aought, and industry latched on
to simple single-server queueing models <which are
incidently also admirably represented by the funnel
analogy} . Whereas Wight' a funne 1 implies constant
I/O rates. the simple queueing model implies
statistical equilibrium between I/O rates - and this
is a methodological improvement. However the
approach still does not represent real-world
situations well enough. Industry needs even better
simple-to-use models. This paper attempts to resolve
this issue through the use of two alternative
approaches.

OPSOMMING:
Kapasiteit word gewoonlik verduidelik deur
gebruik te maak van Wight se tregter analogie
waarin die water bokant die nek van die tregter as
die werktou beskou kan word en die water wat uitloop
as die kapasiteit van die stelae!. Hierdie
benadering neem aan dat die insette en uitsette
relatief konstant bly. Omdat dit gewoonlik nie in
die werklikheid die geval is n Ie , m.a.w. dat
variasie weI p Laaevdnd , het bedrywe as alternatief
gebruik gemaak van eenvoudige toustaanstelseIs (wat
terloops ook deur Wight se prentjie verduidelik kan
word). Hierdie modelle is gegrond op die aanname dat
alhoewel die insette en uitsette mag varieer.
statistiese stabiliteit tog sal geld. Bulle mag dus
In verbetering op die tregter analogie wees maar kan
nog nie die werklikbeid ordentlik weerspiel nie.
Ingenieurs moet dus beter mode lIe toepas. Twee sulke
modele word hierin bespreek.
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INTRODUCTION
In industry we have production cycles which are variable in their
duration and in their output.
Because of this variability there are times when the demands made
on a workcentre are temporarily greater than its capacity.
A bottleneck situation naturally develops. and a queue forms as
items start to build up behind the workcentre.
However. these 'peak' periods are randomly alternated with 'valle y 4

periods during which the input is below the capacity of the
workcentre so that excess work in process (WIP) is cleared. and the
queue diminishes in size or vanishes altogether. only to start
growing allover again.
The concertina-like queueing phenomenon results in extended
manufacturing lead times. and also in capacity problems. hence it
must be eliminated if we are to make optimum use of our resources.
The first step in this direction is to analyse the system so as to
develop a picture of what is happening. Queueing theory is a useful
tool for initiating a study, and for providing analytical results
that can be used in subsequent decision making.

MEASURES OF VARIABILITY

There are two commonly used measures of variability - the
Absolute Deviation (MAD). and the Standard Deviation (SD).
two measures are related by the useful approximation:

SD = 1,25 MAD

Mean
These

A third measure is the Coefficient of Variation (CV) which is given
by:

CV = SD/Average

The coefficient of variation is extremely useful because it
provides an estimate of the ABSOLUTE variability of the system. For
example if someone says: "This process has a standard deviation of
two minutes" he supplies no meaningful information because. for
argument's sake, two minutes on a job with an average processing
time of ten minutes is far more variable than two minutes on a job
that takes one hundred minutes. The respective coefficients of
variation are 0.2 and 0,02 respectively, which provides a clear
picture of the situation.
Another way of viewing variation is to study the queue which forms
behind a workcentre (or some other server system). The queue builds
up and dies down in accordance with fluctuations in the input rate
and fluctuations in the processing time of the system. This
probabilistic behaviour can be characterised and summarised using
queueing theory. Hence it is not surprising that elementary
queueing models have been used to study shopfloor problems.
However, simple text-book models are really inadequate for the
purpose. Although these models do provide answers, the gap betReen
their underlying assumptions and what actually exists in the real
world is often too large to be ignored.
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Better models exist but require statistical knowledge for their
use. Since this commodity is scarce in industry, user-friendly yet
adequate models are what is ultimately desired. Such a model is
discussed Late.r in this paper.

THE SIMPLE Mhl/1 QUEUEING MODEL (AND A DRAWBACK)

If it is assumed that the input/ou"tput of the system remains in a
state of statistical equilibrium then the behaviour of the queue
can be described by a Markov process (Cooper[l]) in which:

aPJ = ~J-1 for all j = 0, n.

Where:

a. = average input rate in items per unit time
J..l = aver-age tll..,roughput rate in items per unit time
P..f = proportion of time there are j items in the queue.

From this elementary relationship the following well known results
are obtained (Cooper[l]; Ravindran[2]):

Average Waiting-line Length E(Q#) = ae/{l-a)
Average Waiting Time to Service K(W') = ah.dl-a)

Where a = a/1,l. The ratio 'a' must be less than 1 otherwise the
queue will grow to infinity.

From the above expressions for queue length and waiting time it is
seen immediately that:

E(Q') = a x K(W')

an expression known as Little's formula. It is this expression
which is used by Williams[3J (in a paper to the 1990 APIeS
Conference) for studying shopfloor capacity.
For a simple proof of Little's unifying result see Jewell[4J.

NOli consider the condition stipulated above, namely that a = a/J.1
must be less than 1 for queues to be of finite length. Many
indu.strialists feel <intuitively) that if this condition pertains
then there should never be a queue at all, and that when a queue
does develop it does so because something has gone wrong. i.6. it
has occurred by defaul-t. This assumption would be absolutely
correct i.f there was no variation in either the input rate or the
throughput rate.
In reality, this shopfloor situation is not deterministic but
stochastic in its behaviour. and hence queueing is a predictable
occurrence. not a random one. The simple MIMi1 model takes
stochastic behaviour into account even though only the average
input and throughput rates appear in the above expressions.
Implicit in the MIM/l model is the assumption that we are dealing
with negative exponential input/output inter-arrival- time
distributions which have a coefficient of variation equal to one.
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The question is: ..How realistic is this assumption?"
To ans~er this question, consider the following times (in minutes)
for a certain operation on a drill press:

9 11 10 12 10 8 9 8 10 12 11 12 8

These times all for the identical operation are about as
variable one ilould be prepared to accept under normal (average)
conditions from a drill press operator - perhaps they are even too
variable .
For these data the CV = SD/average = 1,572/10 = 0,1572 which falls
far short of unity.
Hence, in the light of this little illustration, should one really
believe that in industry it is possible to regularly find
distributions with variation of such a magnitude that the
CV = 1? This is moerb unlikely. Which means that the use of
elementary queueing theory for examining shopfloor problems must be
suspect - must be almost guaranteed to provide wrong answers.
In their excellent treatment of queues Cox a nd Smith[5J state that:
.. there are numerous complications az-Le ing in practical
applications which can make these assumptions seriously U1ltrue. "
These authors go on to discuss some spec ialized models wh i c h

' a l t h o ugh elegant, are not practical enough for shop floor use.

AN ALTERNATIVE MODEL

As an alternative, it is a good idea to use a queueing model which
takes the variance of the input/output distributions explicitly
into account.
This means more work of course s ince it is now necessary to
determine the average inter-arrival time of items coming into a
wor.kcentre, the average time they are worked on (service time) . as
well as the standard deviations of these times .
Yet this in itself is an excellent exercise because it leads
immediately to the determination of the CV and hence to a very good
es'timate of how variable the process really is.
Having obtained these initial estimates of the parameters of the
input and outrput distributions. the application of the alternative
model i s made extremely simple via the use of a specially
cons ta-ucted set of tables provided in the appendix. These tables
are based on the Erlang Distribution. In this paper t he a:i!n is not
to provide a detailed discussion of Erlang's distribution but
simply to show how it can be used to study real world q u e ueing
systems quickly and effectively.
A good ~ay of doing so is through examples.

Example 1

At a certa in workcentre jobs arrive at an average rate of
a = approximately 101hour.
Actual observations taken over an eight hour shift are shown below:

HOUR NUMBER 1 2 3 4 5 6 7 8
No. o f JOBS 8 12 6 15 9 7 10 15
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The average INTERARRIVAL TI~~ in minutes may be estimated as 60/8
for the first hour, 60/12 for the next hour, and so on, which liorks
out over the entire shift at an average of 6,47 minutes Hith SD =
2,16 minutes.
Hence the CV = 2,16/6,47 = 0.3335. Call this ev•.

The processing times at this workcentre are also variable and from
a similar exercise to the one above. the average run time was found
to be 5 ,26 minutes with SD = 3,73 minutes .
Let CVb = 3 ,73/5,26 = 0.709.
[Note that the throughput 1.1. = 60/5,26 = 11,4. jobslhourJ .

This is all the information needed to make a realistic assesment of
the workcentre's performance.

Step 1: Calculate the utilization of the workcentre given by
the ratio of service time to input time as follows:

Utilization U = 5.26/6,47 = 0,812 or 81,2%

Step 2: Enter the table (Appendix) for U= 0.8 with the two
values of the coefficients of variation ev. and CVo to
obtain the value of the waiting time factor.
Some interpolation is required here since CV..
between two values in the table. CVb is"so
value of O. 107 (a table column heading) that
the difference. The correct procedure is
in"terpolation in these tables. but linear
provides a quick rough estimate.
The factor we arrive at is 1.0064.
Similarly. a factor of 2,5234 is obtained from the table
for which U = 0,9. Linear interpolation between ~ese
factor values yields a final value of 1,1884 fer '~the

waiting time relevant to U = 0,812.
[Note that log interpolation should be used WITHIN tables
and linear interpolation BETWEEN tables].

Step "3 : Multiply this factor by the average processing time
to obtain the average waiting time of jobs prior to
service.

E(W') = 1,1884 x 5,26 = 6,25 minutes.

Step 4: Use Little's formula (which is extremely robust> to
obtain an approximation of the expected queue length.

E (Q') = a K (W' )

= 9,27 x 6,25/60

= 1 item
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Use of the simple single-server MIM/1 model for this problem
provides the following results:

E (Q') = ae/(l-a) where a = a Zu. = 0,812
= 3,5 items .

E (W') = 22. 6 minutes.

This answer is grossly in error. It is wrong because
distributions in question do not have CV's equal to 1.

the

that the improvement was obtained by reducing
and not through any reduction in the average job

It is easy to see from the tables that as CV_ andlor CVIb increases
the waiting time factor also increases for a given utilization.
This simply means that the manufacturing lead time increases and
the WIP increases EVEN THOUGH THE AVERAGE INPUT AND OUTPUT RATES
REMAIN UNCHANGED.

Example 2

Refering to EXAMPLE 1 assume that a decision is made to train the
operator. Assume further that as a result of training his SD drops
to 1.75 minutes but that his AVERAGE OUTPUT RATE REMAINS THE SAME .
In other words he is working more consistently but not more
quickly. Assume that all other factors such as input variation et~.

rema in unchanged.

Then CVIb becomes 0.333 and the 'J<1aiting time factor (from tables)
becomes 0.374 so that the new value of E(W') is 1.97 minutes - a
reduction of about 63%.

Furthermore. E (Q') is insignificant. and there is no longer a
waiting-line of items. In the light of these neil findings it is
obvious that there exists a potential for increasing the
utilization of the workcentre (and its capacity) by increasing the
input rate.

Note once again
variability only,
process i.ng time.
The benefits of variability reduction are obvious from the tables
in the appendix. For example, in the case of a l'lorkcentre with
utilization 0.9 the waiting time factor is found to be 9.0 for the
MIMI! case, but it reduces to 0,74 if the CV·s of the distributions
are around 0,3. THIS REPRESENTS A 92% REDUCTION IN WAITING TIME.

THE KANBAN (J-I-T) OPTION AND BALKING QUEUES

The use of a PULL philosophy instead of the conventional PUSH
system is another method for reducing lead times and WIP. However.
the introduction of JIT involves many organization-wide changes
(philosophical and otherwise). Lead time reduction via JIT is,
therefore, not simply an exercise in reducing CV's. It involves a
cultural revolution in the company. and takes a long time to
implement.
Before introducing !CANBAN systems on the shopfloor, it is often
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advisable to get some idea regarding the extent to which WIP
reduction and capacity increase are likely to be achieved.
This is easily done and can be illustrated using the MIM/1 model
for a ba lking system as shown be low.

Example 3

Assume that the average input and output rates for a bottleneck
workcentre are 10 and 12,5 jobs per hour respectively. The
utilization is 0,8. Using the conventional MIM/1 model l'1e can
derive a 'worst case' scenario in which:

IHQ') = 4 units and E (W') = 24 minutes.

However to convey a more complete picture of the situation use must
made of the probability distribution of the queue given by:
pen) = a "P(O) n >= 0;
where P (0) = 1 a = 0,2 is the proportion of time that the
workcentre is idle, and n is the number of units in the queue. From
this relationship it can be shown that the queue is composed of
more than four i tams 27% of the time, and is composed of more than
8 items (Le. twice the average) for 15% of the time. This
represents a substantial amount of WIP not obvious from
consideration of the expected value of the queue alone.
The long right hand tail is characteristic of WIP distributions and
is the reason ~hy bottleneck stations are often purposefully under
supplied in practice in an attempt to come to grips with the WIP
problem. But there is a disadvantage in under supplying a
bottleneck, and this is simply that it automatically results in
under-utilization of resources.

In order to gain better control of WIP and to limit it to a maximum
number of items a pull philosophy can be used. To do this in the
above example. a bin of size four (say) can be placed at the
workstation, and the rule associated with the bin could simply be
that when it is full no more items are to be supplied. The
resulting behaviour is that of a balking system as shown in the
table below:

WIP INPUT RATE OUTPUT RATK
0 Qo = 10 j..lo = 0
1 a1 = 10 j..l1 = 12,5
2 (Ie = 10 JJe = 12,5
3 CX:3 = 10 J.l3 = 12,5
4 a4 = 0 j..l4 = 12,5

[Note that the system can have progressive balking in which an
reduces systematically from 10 to zero instead of having the abrupt
cut-off shown in the table. The mathematics remains the same, only
the values of an changing in what follows . Note also that the WIP
need not be limited to n < = 4 but can be of any quantity t.he
only mathematical change will be a logical extension of the series
in the calculations. ]
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The equation describing statistical equilibrium for this system is;

anP(n) = ~n~1P(n+1) for n = 0, 1, 2, 3, 4

Hence P(D) = [1 + aO/~1 + + (aOa1aea3/~1~~~4)]-1 = 0,3
U = 0,7 = 70%

E(Q') = 1,6 units
E(W') = 9,6 minutes

Q' max = 4 units

The points to note are that waiting time is reduced to 9,6 minutes,
~hile the utilization of the centre 1S now only 70%. This
immediately opens up opportunities for increasing the throughput of
the centre by increasing the input rate a in other words by
REVERSING the previous practice of under supplying the bottleneck.
Assume that the input rate is doubled so that an = 20 in the above
table. The results become:

P(O) = 0,06
U = 94%

E (Q') = 2,7 units
E(W') = 8,1 minutes

Q' max = 4 units

It is seen from these answers that once a balking (KANBAN-like)
system is implemented WIP is controlled ~hile manufacturing lead
times are automatically reduced, and increases in throughput are
possible.
In the above example the MAUl mode 1 (and its assumptions) have
been used to illustrate the benefits of Kanban-like systems.
However, further dramatic improvement is possible if the CV of the
service time is reduced. In a simulation study of J-I-T systems
Muraldibar et al [7] have shown that reducing the CV from 1 to 0.5
increases capacity by approximately 18%, and if the CV is still
further reduced to 0,2 capacity increases by yet another 20%.
Thus, theoretically, a decrease in the CV from 1 to 0,2 can boost
capacity by 38%.

CONCLUSION

While elementary queueing theory has often been used to help solve
production bottleneck problems. it is too unrealistic to be of
great practical value. The main weakness is its lack of sensitivity
to changes in the coefficients of variation of the input/ouput
distributions.
It is only sensitive to changes in the AVERAGE input/output rates
per se.
This drawback is a consequence of the fact that it assumes that the
CV's for both time distributions are always equal to 1.
In the real world of industry this assumption is unrealistic.
Industrialists have known about these shortcomings for some time of
course. but have continued to use the elementary models because of
the need for quick answers, and because the use of more
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sophisticated approaches requires a level of statistical expertise
which they often do not posses.
This paper addresses that very problem.
It provides a means whereby virtually anyone (no matter how
unskilled in the use of quantitative methods) can calculate
e xpocted queue lengths and expected job waiting times so as to be
able to understand, and to improve, existing processes.

FAR MORE IMPORTANT, it enables engineers to design better new
systems.
They can preempt future bottleneck situations, and find out how to
eliminate them, long before they become a reality.
Regarding the tables supplied in the appendix, there is one
underlying assumption, namely, that the real world data follows an
Erlang Distribution. This is not an unrealistic assumption, and in
practice it is usually quite unnecessary to check it out using
statistical hypothesis tests.
Muralidhar et al [7] have shown that capacity increase as a result
of reduction in the CV is virtually independent of the nature of
the underlying service time distribution.
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AVERAGE WAITING-TIME FACTOR fOR A SINGLE SERVER.

UTILIZATION = 0,5

VALUES OF VALUES Of CV h
CV 1 0,707 0,5.77 0,500 0.447 0.408 0.:378 0,354 0.333 0.3.16a

0,316 0·3246 0'1326 0-0785 0-0545 0'0415 0-0336 0·0282 0-0245 0-0217 0-019 S
0·3962 0-1924 0-1313 0'1029 0·0867 0-0763 0'0691 0'0638 0'0598 0-05660,447
0·4692 0'2559 0-1897 0-1581 0'1396 0'1276 O'1l92 0'1129 0'108 I 0'10430,548
0'5432 0'3221 0'2520 0'2150 0'1978 0'1846 0'1753 0'1683 0'1630 0'15870,632
0·6180 0'3904 0·3170 0·2810 0'2597 0·2456 0'2356 0·228 J 0·2223 0·21770,707
0·6935 0·4602 0-3842 0-3467 0'3243 0·3095 0'2990 0'2911 0·2850 0'28010,775
0'7696 0'5313 0'4531 0-4142 0·391 I 0'3756 0'3647 0'3564 0'350 I 0·34500,837
0·8460 0'6034 0·5232 0-4833 0-4594 0·4435 0'4322 0·4237 0·4171 0'41180,894
0'9229 0'6764 0'5945 0-5537 0-5292 0'5129 0'5012 0·4925 0·4857 0·48030.949
1·0000 0'7500 0'6667 0-6250 0·6000 0'5833 0'5714 0'5625 O'SSS6 0'55001,OUO

I

""CD
I
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AVERAGE WAITING-TIME FACTOR fOR A SINGLE SERVER.
UTILIZATION = 0,6

VALUES OF VALUES OF CV
b

CV 1 0,707 0,577 0,500 0,447 0 ,408 0,378 0,354 0.333 0,3.16a

0,316 0'5786 0'2600 0'1643 0'120 () 0·095 I ()'()793 ()-()6H 4 t)-()606 t)-()S47 O'OSOI
0,447 0·6786 0·3488 ()'2463 (H97J (H689 ()'1504 0'1375 ()'12H() (H207 ()'1149
0.548 0·7796 0·4407 0·3330 0·2808 ()·2S00 0·2299 ()'2156 ()·20S 0 ()·196 g 0·1903
0,632 0·8813 0'5348 0·4232 0·3684 0·3360 0'3146 0·2994 . 0·2880 0·2793 0·2723
0,707 0·9835 0·6306 0·51 S 7 0·4590 0'4253 ()'4029 0·3870 0·3751 0·3659 0·3586
0,775 1'0862 0·7278 0·610 2 0·5519 C)'517 I 0·-1940 0'4775 0·4652 0·4556 0·4480
0,837 1,1892 ()'8259 0'7061 0·6465 0·6108 ()'SH7 1 0·5702 0'5576 0·5477 0'5399
0,894 I 1·2926 0·9249 0·8031 0·7424 0·7061 O'6IH 9 0·6646 0·6S16 0·6416 0·633S
0,949 1·3962 1·0247 0·9012 0·839 S ()·8025 n·7778 . 0'7603 0·7471 0·7369 0·7287
1,000 1·5000 J'1250 1·0000 0·9375 0·9000 0·8150 0·8571 0.8438 0·8333 0·8250

I
~

o
I
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AVERAGE WAITING-TIME FACTOR FOR A SINGLE SERVER.
UTILIZATION :0.7

VALUES OF VALUES OF CV b
CV 1 0,707 0,577 0 ,500 0,447 0,400 0,378 0,354 0,333 0,316a

0.316 1'0198 0·4908 0·3252 0-2462 0·2006 (H71 J 0·1506 0'1355 0'1240 0'1150
0,447 1·1642 0'6248 0'4526 0'3689 0'3198 0'2816 0·2649 0'2480 0'2350 0'2247 u0,548 1-3093 0'7612 0'5840 0·4970 0'4456 0'4116 0·3875 0·3695 0'3556 0'344.5 ~

f

0,632 1-4548 0·8994 0·7183 0·6288 0·5756 0·5404 0·5153 0·4°66 0·4821 0·4705
0,707 1·6006 1'0391 0·8547 0·7633 0·7088 0'6726 . 0·6468 0·627 S 0·6125 0·6005
0,775 1·7468 1·1798 0'9927 0·8997 0·8442 0·8072 0'7808 0·7611 0'7458 0-7335
0.837 1·8932 1'3214 1'132 I 1·0378 0·981 3 0'9437 0·9169 0·8968 0'8812 0'8687
0,a94 2·0397 1·4637 1·2124 1'1770 1'1198 1·081 7 I·OS45 1'0342 1'0183 1'0056
0.949 2·1865 1·6066 1·4136 ',3172 1·2595 1'2209 1-1934 1'1728 1-1568 1-1439
1,000 2-3333 ',70500 1'5556 1·4583 1·4000 1'361 I 1·3333 1')125 1'2963 1-283 J
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AIJEfH'GE WAITING-TIME fACTOR fOIt A SINGLE SEAVEn.

UTILIZATION =O,B

VALUES OF VALUES OF CV b
CV 1 0,107 0,5.77 0,500 Op447 0.408 0.378 0,354 0,]]] 0,3.' 6a

0,316 1·9222 0·9744 0·6692 0·520 S 0-3916 0·375 H 0·3355 0'3056 0·2H26 0·2644
0,447 2·1523 1·1947 (HUn I ()'7299 0·6391 0·5791 0·,5366 0·,5049 0'4803 0·4608
0,548 2'3826 1'4168 1'1005 0·9440 0 -8509 0-7891 0-7452 0'7124 0·6869 0·6667

~
0.632 2·6132 1·6405 1-3203 1·1614 1'0665 1·0035 ()·9586 . 0·9250 0'8989 0·8781 I

0.707 2·8440 1·8653 1·5419 1·381 I !·2H49 1·2209 1'1753 1·141 I 1-1146 1·0934
0,775 3'075·0 2·0910 1-7650 1·6026 1·5053 1'4406 . 1·3944 1·3598 1·3329 1·3114
0,837 3·3061 2·3174 1·9892 1·8254 1·7273 1·6620 1·61 S 3 1·5804 1'5532 1·531 5
0,894 3·3573 2·5444 2·2143 2·0494 1·9506 ' ,8847 1·8377 1·8025 1·7750 1·7S31
0,949 ),7686 2·7720 2·4402 2'274 J 2·R749 2'IOK6 2·0612 2'02S 7 1·998 J 1·9760
1,000 4'0000 3·0000 2·6667 2·500 0 2·4000 2·333 j\ 2·2857 2·2500 2·2222 2'2000
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