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ABSTRACT :

Capacity concepts are usually illustrated by Wight’'s
funnel analogy in which the queue is the volume of
water above the throat of the funnel and capacity is
the volume flowing out. This simple illustration
implies that input and output rates remain constant
over time.

Since this is usually not the case in practice, a
better model was sought amnd industry latched on
to simple single-server queueing models (which are
incidently also admirably represented by the funnel

analogy). Whereas Wight s funnel implies constant
1/0 rates, the simple queueing model implies
statistical equilibrium between 1/0 rates - and this
is a methodological dimprovement. However the

approach still does not represent real-world
situations well enough. Industry needs even better
simple-to-use modeis. This paper attempts to resolve
this issue through the use of two alternative
approaches.

OPSOMMING:

Kapasiteit word gewoonlik verduidelik deur
gebruik te maak van Wight se tregter analogie
waarin die water bokant die nek van die tregter as
die werktou beskou kan word en die water wat uitloop
as die kapasiteit van die stelsel. Hierdie
benadering neem aan dat die insette en uitsette
relatief konstant bily. Omdat dit gewoonlik nie in
die werklikheid die geval is nie, m.a.w. dat
variasie wel plaasvind, het bedrywe as alternatief
gebruik gemaak van eenvoudige toustaanstelsels (wat
terloops ook deur Wight se prentjie verduidelik kan
word). Hierdie modelle is gegrond op die aanname dat
alhoewel die insette en uitsette mag varieer,
statistiese stabiliteit tog sal geld. Hulle mag dus
‘n verbetering op die tregter analogie wees maar kan
nog nie die werklikheid ordentlik weerspiel nie.
Ingenieurs moet dus beter modelle toepas. Twee sulke
modele word hierin bespreek.
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INTRODUCT ION

In industry we have production cycles which are variable in their
duration and in their output.

Because of this variability there are times when the demands made
on a workcentre are temporarily greater than its capacity.

A Dbottleneck situation naturally develops, and a queue forms as
items start to build up behind the workcentre.

However, these “peak’ periods are randomly alternated with “valley”
periods during which +the input is below the capacity of the
workcentre so that excess work in process (WIP) is cleared, and the
queue diminishes in size or vanishes altogether, only to start
growing all over again.

The concertina-like queueing phenomenon results in extended
manufacturing lead times, and also in capacity problems, hence it
must be eliminated if we are to make optimum use of our resources.
The first step in this direction is to analyse the system so as to
develop a picture of what is happening. Queueing theory is a useful
toel for initiating a study, and for providing analytical results
that can be used in subsequent decision making.

MEASURES OF VARIABILITY

There are two commonly used measures of variability - the Mean
Absolute Deviation (MAD), and the Standard Deviation (SD). These
two measures are related by the useful approximation:

SD = 1,25 MAD

A third measure is the Coefficient of Variation (CV) which is given
by:

CV = SD/Average

The coefficient of variation is extremely useful because it
provides an estimate of the ABSOLUTE variability of the system. For
example if someone says: "This process has a standard deviation of
two minutes” he supplies no meaningful information because, for
argunment’s sake, two minutes on a Jjob with an average processing
time of ten minutes is far more variable than two minutes on a Jjob
that takes one hundred minutes. The respective coefficients of
variation are 0,2 and 0,02 respectively, which provides a clear
picture of the situation. )

Another way of viewing variation is to study the queue which forms
behind a workcentre (or some other server system). The queue builds
up and dies down in accordance with fluctuations in the input rate
and fluctuations in the processing time of the system. This
probabilistic behaviour can be characterised and summarised using
queueing theory. Hence it is not surprising that elementary
queueing models have been used to study shopfloor problems.
However, simple text-book models are really inadequate for the
purpose. Although these models do provide answers, the gap between
their underlying assumptions and what actually exists in the real
world is often too large to be ignored.
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Better models exist but require statistical knowledge for their
use. Since this commodity is scarce in industry, user-friendly yet
adequate models are what is ultimately desired. Such a model is
discussed later in this paper.

THE SIMPLE M/¥/1 QUEUEING MODEL (AND A DRAHWBACK)
If it is assumed that the input/output of the system remains in a

state of statistical equilibrium then the behaviour of the queue
can be described by a Markov process (Cooperill) in which:

aPs = puPy+x for all J = 0, ...... n.

Hhere:

a = average input rate in items per unit time

1 = average throughput rate in items per unit time

Ps = provortion of time there are j items in the queue.

From this elementary relationship the following well Enown results
are obtained (Cooperi1]; Ravindran[2]):

Average Waiting-line Length E@Q") = a=/(1-2)
Average Waiting Timwe to Service E(W') = a/p(l-a)

Where a = a/n. The ratio "a” must be less than 1 otherwise the
queue will grow to infinity.

From the above expressions for queue length and waiting time it is
seen immediately that:

E(@Q") = a x E(W")

an expression known as Little’s formula. It is this expressicn
which is used by ®illiams[3] (in a paper to the 1890 APICS
Conferance) for studying shopfloor capacity.

For a simple proof of Little s unifying result see Jewelll4].

Now consider the condition stipulated above, namely that a = a/u
mast be less than 1 for queues to be of finite length. Hany
industrialists feel (intuitively) that if this condition pertains
then there should never be a queue at all, and that when a queue
does develop it does so because something has gone wrong, i.e. it
has cccurred by default. This assumption would be absolutely
correct if there was po variation in either the input rate or the
throughput rate.

In reality, this shopfloor situation is not deterministic but
stochastic in its behaviour, and hence queueing is a predictable
occurrence, not a random one. The simple H/M/1 model takes
stochastic behaviour inte account even though only the average
input and throughput rates appear in the above expressions.
Implicit din the M/M/1 model is the assumption that we are dealing
with negative exponential input/output inter-arrival- time
distributions which have a coefficient of variation equal to one.
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The question is: "How realistic is this assumption?"”
To answer this question, consider the following times (in minutes)
for a certain operation on a drill press:

9 11 10 12 10 8 9 8 10 12 11 12 8

These times - all for the identical operation - are about as

variable one would be prepared to accept under normal (average)

conditions from a drill press operator - perhaps they are even too

variable.

For these data the CVY = SD/average = 1,572/10 = 00,1572 which falls

far short of unity.

Hence, in the light of this little illustration, should one really

believe that in industry it is possible to regularly find

distributions with variation of such a magnitude that the

cy = 17 This is most unlikely. Which means that the use of

elementary queueing theory for examining shopfloor problems must be

suspect ~ must be almost guaranteed to provide wrong answers.

In their excellent treatment of queues Cox and Smith[5] state that:
. there are numerous complications arising in practlcal

applications which can make these assumptions seriously untrue.”

These authors go on to discuss some specialized models which

‘although elegant, are not practical enocugh for shop floor use.

AN ALTERNATIVE MODEL

As an alternative, it is a good idea to use a queueing model which
takes the variance of the imput/output distributions explicitly
into account.

This means more work of course since it is now necessary to
determine +the average inter-arrival time of items coming intc a
workcentre, the average time they are worked on (service time), as
well as the standard deviations of these times.

Yet this in itself is an excellent exercise because it leads
immediately to the determination of the CY and hence to a very gocod
estimate of how variable the process really is.

Having obtained +these initial estimates of the parameters of the
input and output distributions, +the application of the altermative
model is made extremely simple via the use of a specialily
constructed set of tables provided in the appendix. These +tables
are based on the Erlang Distribution. In this paper the aim is not
to provide a detailed discussion of Erlang’s distribution -~ but
ginmply to show how it can be used to study real world gqueueing
systems quickly and effectively.

A good way of doing so is through examples.

Example 1

At a certain workcentre Jjobs arxrive at an average rate of

a = approximately 10 /hour.

Actual observations taken over an eight hour shift are shown below:

HOUR NUMBER 1 2 3 4 5 6 7 8
No. of JOBS 8 12 6 15 8 7 i0 i5



ntip://sajie.journals.ac.za

-33~

The average INTERARRIVAL TIME in minutes may be estimated as 60/8
for the first hour, 60/12 for the next hour, and sco on, which works
ocut over the entire shift at an average of 6,47 ninutes with SD =
2,16 miputes.

Hence the CV = 2,16/6,47 = 0,3335. Call this CVa..

The processing times at this workcemtre are alsc variable and from
a similar exercise to the one above, the average run time was fcund
+o be 5,28 minutes with SD = 3,73 minutes.

Let CVe = 3,73/5,2€ = 0,709.

[Hote that the throughput u = 60/5,28 = 11,4 jobs/hourl.

This is all the information needed tc make a resalistic assesment of
the workcentre s performance.

Step 1: Calculate the utilization of the workcentre given by
the ratic of service time to input time as follows:

Otilization U = 5,28/6,47 = 0,812 or 81,2%

Step 2: Enter ths table (Appendix) for U= 0,8 with the two
valuez of the coefficients of variation CVa and CVs to
obtain the value of the waiting time factor.
Some interpolation is required here since CVa = 00,3335 lies
between two values in the table. CVws iz so clogse to the
value of 0,707 (a table column heading) that we can ignore
the difference. The correct procedure iz to use log-
interpolation im these tables, but linear interpolation
provides a quick rough estimate.
The factor we arrive at is 1,0064.
Similarly, a factor of 2,5234 is obtained from the tabie
for which U = 0,9. Linear interpolation betwesn these
factor values yields a final value of 1,1884 feor éthe
waiting time relevant to U = 0,812.
[Note +that log interpolation should be used WITHIN tables
and linear interpolation BETWEEN tables].

Step 3: Multiply this factor by the average processing time
tc obtain the average waiting time of Jjobs prior to
service.

E(W") = 1,1884 x 5,26 = 6,25 minutes.

Step 4: Use Little s formula (which is extremely robust) to
obtain an approximation of the expected gueue length.

E(Q")

a E(W’)

9,27 x 6,25/60

1 item
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Use of +the simple =zingle-server M/M/1 model for this problem
provides the following results:

E(Q") = a®/(l-a) where a = a/n = 0,812
= 3,5 items.
E(H") = 22,6 minutes.
This answer is grossly in error. It is wrong because the

distributions in guestion do not have CV’'s equal to 1.

It is easy to see from the tables that as CVa and/or CVe increases
the waiting time factor alsc increases for a given utilization.
This simply means that the manufacturing lead time increases and
the WIP increases EVEN THOUGH THE AVERAGE INPUT AND OUTPUT RATES
REMAIN UNCHANGED.

Example 2

Refering to EXAMPLE 1 assume that a decision is made to +train the
operator. Assume further that as a result of training his SD drops
to 1,75 minutes but that his AVERAGE OUTPUT RATE REMAINS THE SAME.
In other words he is working more consistently but not more
quickly. Assume that all other factors such as input variation etc.
remain unchanged.

Then CVs becomes 0,333 and the waiting time factor {(from tables)
becomes 0,374 so that the new value of E{(W") iz 1,97 minutes - a
reduction of about £3%.

Furthermore, E(Q°) is insignificant, and there is nc longer a
waiting-line of items. In the light of these new findings it is
obvious that there exists a potential for increasing the
utilization of the workcentre {(and its capacity) by increasing the
input rate.

Note once again that the improvement was obtained by reducing
variability only, and not through any reduction in the average Jjob
processing time.

The benefits of variability reduction are obvicus from the tables
in the appendix. For example, in the case of a workcentre with
utilization 0,9 the waiting time factor is found to be 9,0 for the
M/M/1 case, but it reduces to 0,74 if the CV's of the distributions
are around 0,3. THIS REPRESERTS A 92% REDUCTION IN WAITING TIME.

THE KANBAN (J-I-T) OPTION AND BALKING QUEUES

The use of a PULL philosophy instead of +the conventional PUSH
gystem is another method for reducing lead times and WIP. However,
the introduction of JIT involves many organization-wide changes
(philosophical and otherwise). Lead time reduction via JIT is,
therefors, not simply an exercise in reducing CV’'’s. It involves a
cultural reveolution in the company, 2and takes a long time to
implement .

Before introducing KANBAN systems on the shopfloor, it is often



http://sajie.journals.ac.za

-35-

advisable to get sgome idea regarding the extent to which WIP
reduction and capacity increase are likely to be achieved.

This is easily done and can be illustrated using the M/M/1 model
for a balking system as shown below.

Example 3

Assume that the average input and output rates for a bottleneck
workcentre are 10 and 12,5 Jjobs per hour respectively. The
utilization is 0,8. Using the counventional M/M/1 model we can

derive a “worst case’” scenario in which:
E(@°) = 4 units and E(W") = 24 minutes.

However to convey a more complete picture of the situation use must
made of the probability distributiorn of the queue given by:

P(n) = a~P(0) n >= 0;

where P(O) = 1 - a = 0,2 is the proportion of time that the
workcentre is idle, and n is the number of units in the guesue. From
this relationship it can be shown that +the queue is composed of
more than four items 27% of the time, and is composed of more than
8 items (i.e. twice the average) for 15% of the time. This
represents a substantial amount of HWIP - not obvious from
consideration of the expected value of the queue alone.

The long right hand tail is characteristic of WIP distributions and
is the reason why bottleneck stations are often purposefully under
supplied in practice in an attempt to come to grips with the WIP
problem. But there 1is a disadvantage in under supplying a
bottleneck, and this is simply that it automatically resulta in
under-utilization of resources.

In order to gain better control of HIP and to limit it to a maximum
number of items a pull philosophy can be used. To do this in the
above example, a bin of size four (say) can be placed at the
workstation, and the rule associated with the bin could simply be
that when it is full no more items are to be supplied. The
resulting behaviour is that of a balking system as shown in the
table below:

WIP INPUT RATE OUTPUT RATE
0 ac = 10 o = 0
i as = 10 pa = 12,5
2 a= = 10 pe = 12,5
3 as = 10 ps = 12,5
4 a« = 0 e = 12,5

[Note that the system carn bave progressive balking in which an
reduces systematically from 10 to zero instead of having the abrupt
cut-off shown in the table. The mathematics remains the same, only
the values of o~ changing in what follows. Note also that +the HIP
need not be limited to m < = 4 but can be of any quantity - the
only mathematical change will be a logical extension of the series
in the calculations. ]
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The equation describing statistical equilibrium for this system 1s3:
anP{(n) = pn+1P(n+1) for n = 0, 1, 2, 3, 4

Hence P(0) = [1 + ao/ps + ...... + (doQi0=0=/pipeitsia)]"* = 0,3
U0=0,7 = 70%
E(@Q") = 1,8 units
E(W") = 9,6 minutes
Q" max = 4 units

The points to note are that waiting time is reduced to 9,6 minutes,

while +the wutilization of the centre is now only 70%. This
immediately opens up opportunities for increasing the throughput of
the centre by increasing the input rate a - in other words by

REVERSING the previous practice of under supplying the bottleneck.
Assume that the input rate is doubled so that an~ = 20 in the above
table. The results become:

P(0) = 0,06
U = 94%
EQ") = 2,7 units
E(H") = 8,1 minutes
Q" max = 4 units

It is seen from these answers that once a balking (KANBAN-like)
system is implemented WIP is controlled while manufacturing lead
times are automatically reduced, and increases in throughput are
possible.

In the above example the M/M/1 model (and its assumptions) have
been used +to illustrate +the benefits of Kanban-like systems.
However, further dramatic improvement is possible if the CV of the
gservice time is reduced. In a simulation study of J-I-T systems
Muraldihar et al [7] have shown that reducing +the CV from 1 to 0,5
increases capacity by approximately 18%, and if the CV is still
further reduced to 0,2 capacity increases by yet another 20%.
Thus, theoretically, a decrease in the CV from 1 tc 0,2 can boost
capacity by 38%.

CONCLUS ION

While elementary gueueing theory has often been used +to help zolve
production bottleneck problems, it is too unrealistic to be of
great practical value. The main weakneses is its lack of sensitivity
to changes in the coefficients of variation of the input/ouput
distributions.

It is only sensitive to changes in the AVERAGE input/output rates
per se.

This drawback is a consequence of the fact that it assumes that the
CV'=2 for both time distributions are always equal to 1.

In the real world of industry this assumption is unrealistic.
Industrialists have known about these shortcomings for some time of
course, but have continued to use the elementary models because of
the need for quick answers, and because the use of more
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sophisticated approaches requires a level of statistical expertise
which they often do not posses.

This paper addresses that very problem.

It provides a means whereby virtually anyone (no matter how
unskilled in the use of quantitative methods) can calculate
expected queue lengths and expected Jjob waiting times so as to be
able to understand, and to improve, existing processes.

FAR MORE IMPORTANT, it enables engineers to design better new
gsystems.

They can preempt future bottleneck situations, and find out how to
eliminate them, long before they become a reality.

Regarding the +tables supplied in the appendix, there is one
underlying assumption, namely, that the real world data follows an
Erlang Distribution. This is not an unrealistic assumption, and in
practice it is usually quite unnecessary to check it out using
statistical hypothesis tests.

Muralidbhar et al [7] have shown that capacity increase as a result
of reduction in the CV is virtually independent of +the nature of
the underlying service time distribution.
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AVERAGE WAITING~TIME FACTDR FOR A SINGLE SERVER,
UTILIZATION = p,5

VALUES OF « VALUES OF Cv,
cv, 1 0,707 0,577 0,500 0,447 0,408 0,378 0,354 0,333 0,316
0.316 0-3246 01326 00785 00545 00415 00336 00282 0024 5 00217 00195
0 : 447 0-3962 01924 01313 01029 00867 00763 00691 00638 0-0598 00566 é
0,548 0-4692 0-2559 01897 01581 01396 01276 01192 0-1129 01081 01043 i
0,632 0-5432 0-3’221 02520 02150 ©-1978 0-1846 01753 0©-1683 01630 0-1587
0,707 0-6180 0-3904 03170 G-2810 02597 02456 02356 02281 02223 02177
0,775 0-6935 04602 03842 03467 03243 03095 02990 0-291 1 0-2850 0-2801
0,837 07696 0-5313 04531 04842 03911 03756 03647 03564 0-3501 0-3450
0,894 0-8460 0-6034 05232 04833 04504 04435 04322 04237 04171 0-4118
0,949 0-9229 06764 05945 05537 ©5292 05129 0-5012 0-4925 04857 04803
1,000 1-0000 07500 06667 06250 0-6000 05833 0-571 4 05625 0:5556 0-5500




AVERAGE WAITING-TIME FACTOR FOR A SINGLE SERVER,
UTILIZATION = 0,6
VALUES OF VALUES OF CV,
cv, 1 0,707 0,577 0,500 0,447 0,408 0,378 0,354 0,333 0,318
0,316 0:5786 02600 0:1643  0-1200 00951 00793 00684 00606 00547 00501
0,447 06786 0:3488 02463  0-1973 01689  0-1504 01375 01280 01207 01149
0,548 07796 04407 0-3330 0-2808 (-2500 0:2299 02156 0-2050 0-1968 0-1903
0,632 08813 0-5348 0-4232 0-3684 0-3360 0-3146 02994 0-2880 0-2793 0-2723
a,7a7 09835 0-6306 0-5157 04590 0-4253 04029 03870 03751 0-3659 0-3586
0,775 1:0862 07278 06102 05519 0-5171 04940 04775 04652 0-4556 0-4480
0,837 1-1892  0-8259 0-7061 0-6465 0-6108 0-587! 0-5702 05576 0-5477 0-5399
0,894 ' 1-2926 09249 08031 0-7424 07061 06819 06646 06516 06416 06335
0,949 13962 10247 09012 0-8395 08025 0-7778. 07603 07471 0-7369 07287
1,000 1-5000 1-1250 1-0000 0-9375 09000 0-8750 0-8571 0.8438 0-8333 0-8250

_0?_




AVERAGE WAITING-TIME FACTOR FOR
UTILIZATION =0,7

A SINGLE SERVER,

VALUES OF VALUES OF CVb
cv, 1 0,707 0,577 0,500 0,447 0,408 0,378 0,354 0,333 0,316
0,316 1:0198 04908 0-3252 02462 0-2006 O-1711 01506 0-1355 0-1240 0-1150
0,447 11642 06248 04526 03689 0-3198 02876 02649 02480 0-2350 0-2247
0,548 13093 07612 0-5840 04970 04456 04116 0-3875 03695 0-3556 0:3445
0,632 1-4548 08994 07183 06288 05756 0-5404 0-5153 04966 0-4821 0-4705
0,707 1-6006 10391 08547 07633 07088 06726 ° 06468 06275 06125 0-6005
0,775 1-7468  1-1798 09927 08997 0:8442 08072 07808 07611 07458 0-7335
0,837 i-8932 1-3214 141321 1-0378 09813 09437 09169 08968 08812 08687
0,894 2:0397 §-4637 1-2724 1-1770 1-1198 1-0817 1-0545 1-0342 1-0183 1-0056
0,949 2:1865 16066 14136 1-2172 1-2595 1-2209 1-1934 1-1728 1-1568 1-1439
1,000 2:3333  1-7500 1-5556  1-4583 1-4000 1-3611 13333 1:3125  1-2963  1-2833
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AVERAGE WAITING-TIME FACTOR FOR A SINGLE SERVER,

UTILIZATION = 0,8

VALUES OF VALUES OF CV,
cv, 1 0,707 0,577 0,500 0,447 0,408 0,378 0,354 0,333 0,316
0,316 1-9222 09744 06692 05205 03916 03758 0-3355  0-3056 0-2826 0-2644
0,447 2:1523 1-1947 08831 07299 (6391 0-5791 05366 0-5049 0-4803 04608
0,548 2:3826 1-4168 1-1005 09440 0-8509 07891 07452 07124 0-6869 0:6667
0,632 26132 16405 1-3203 1161 4 10668 10035 09586 09250 0-8989 08781
0,707 2-8440 1-8653 1-5419 1-381 1 §:2849 1:2209 1-1753 I-i411 I-1146 - 1-0934
0,775 3-0750 2:0910 1-7650 1-6026 1-5053 1-4406  1-3944 1-3598 1-3329 13114
0,837 3-3061 23174 i-9892 1-8254 1:7273 [-6620 16153 1-5804 1-5532 1-5315
0,884 3-3571 2-5444 2:2i43 2:0494 1-9506 1-8847 1-8377 1-8025 1-7750 1-7531
0,948 3-768 6 2-7720 2-4402 2:2743 2:1749 2-1086 2:0612 2:0257 1-998 1 1:9760
1,000 406000 30000 2:6667 2-5000 2:4000 2:3333 2:2857 2:2500 2-2222 2-2000

=6V
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