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ABSTRACT 

Water hyacinth is an invasive weed that contributes to the 
Hartbeespoort Dam’s poor water quality. Although biological control is 
the most effective and sustainable method of controlling water 
hyacinth, a prediction model to plan the biological controls is essential 
for successful intervention. The literature shows that mathematical 
models and remote sensing have been used successfully in the past to 
estimate plant growth rates in similar applications. This study presents 
various machine-learning models that were investigated to predict water 
hyacinth coverage.  

The complex relationships of water hyacinth growth were simplified to 
focus on the most influential factors: temperature and nutrients. Missing 
data were imputed using the multiple k-nearest neighbours imputation. 
The nutrient datasets were extrapolated to the correct timeline using 
Monte Carlo simulations and seasonal patterns. Ensemble learning, 
decision trees, artificial neural networks, and support vector machine 
models were developed, with ensemble learning (bag algorithm) 
resulting in the best predictions. 

 OPSOMMING  

Waterhiasint is ’n indringer wat bydra tot die Hartbeespoortdam se swak 
watergehalte. Alhoewel biologiese beheer die mees doeltreffende en 
volhoubare metode is om waterhiasint te beheer, is 'n 
voorspellingsmodel om die biologiese beheermaatreëls te beplan 
noodsaaklik vir suksesvolle ingryping. Die literatuur toon dat wiskundige 
modelle en afstandswaarneming in die verlede suksesvol gebruik is om 
plantgroeitempo's in soortgelyke toepassings te skat. Hierdie studie bied 
verskeie masjienleermodelle aan wat ondersoek is om 
waterhiasintbedekking te voorspel.  

Die komplekse verhoudings van waterhiasintgroei is vereenvoudig om op 
die mees invloedryke faktore te fokus: temperatuur en voedingstowwe. 
Vermiste data is toegereken met behulp van die veelvuldige k-naaste 
bure-toerekening. Die voedingstofdatastelle is na die korrekte tydlyn 
geëkstrapoleer deur Monte Carlo-simulasies en seisoenale patrone te 
gebruik. Ensembleleer, besluitnemingsbome, kunsmatige neurale 
netwerke en ondersteuningsvektormasjienmodelle is ontwikkel, met 
ensembleleer (sakalgoritme) wat tot die beste voorspellings gelei het. 
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1. INTRODUCTION 

The Hartbeespoort dam in South Africa has been eutrophic since the 1960s [1]. When water is eutrophic, it 
has a high concentration of nutrients, particularly total phosphorous (TP) and total nitrogen (TN), that are 
above the standards set out by the Department of Water Affairs and Forestry [2]. The dam’s eutrophic state 
is caused by wastewater from surrounding areas and traces of mining effluent [3]. The presence of nutrients 
forms favourable conditions for water hyacinth growth [1],[2]. 

Water hyacinth can absorb excess nutrients and toxins in water and so can be used to improve water quality 
[4],[5]. However, it is also highly invasive, and its rapid growth rate results in thick mats that suffocate 
waters, harm ecosystems, and can become a breeding place for disease-carrying organisms [6]-[8]. Thus 
research focuses on controlling water hyacinth growth using remote sensing, spatial mapping, and biological 
control methods [9]-[11]. 

The Centre for Biological Control (CBC) has found that introducing a biological agent such as the plant 
hopper is the cheapest and most sustainable control method [12]. However, conditions at the Hartbeespoort 
dam are unfavourable for stabilising these biological control populations [13]. This means that the correct 
number of bugs needs to be introduced with intermittent frequency to control the water hyacinth regrowth 
effectively [14],[15]. Placing the biological control agent too frequently or in excess is unsustainable. Not 
only is it an unnecessary cost, but it could also reduce the water hyacinth too much, which would mean 
the return of excess nutrients and toxins in water [13]. Gutiérrez et al. [16] suggest that biological control 
is more effective when using a planned, proactive approach. Therefore, a prediction model for water 
hyacinth coverage (WHC) is essential to plan the successful introduction of biological agents. 

Supervised machine learning (ML) models have been used successfully in the past for predictions of 
regression models, and can provide more accurate results than traditional forecasting models [17]. 
‘Supervised ML’ refers to ML prediction models that are trained on datasets in which the outcome is known 
and then applied to unseen data. ‘Regression’ refers to models with continuous outcome variables, unlike 
classification models in which the outcomes need to fall into a specific category. This study aimed to 
illuminate how well various ML models could predict WHC with the limited data that was available. 

The remainder of this article is structured as follows. A brief overview of case studies on predicting plant 
coverage or biomass using machine learning is provided in Section 2. This is followed by a description of 
the identified datasets that were used to predict WHC in this study. Next, an explanation of the method, 
including the data preparation and ML model building phases, is presented. Finally, the results are 
presented in Section 6, followed by a discussion and conclusion. 

2. LITERATURE REVIEW 

Artificial neural networks (ANNs), support vector machines (SVMs), k-nearest neighbours (KNN), and 
ensemble algorithms were repeatedly used in multiple case studies to predict plant coverage or biomass 
[18]-[20]. According to [19], ML is a dominant tool for predicting crop yields. Those researchers identified 
ANN as the most popular algorithm in this field, with temperature and nutrients being the most common 
features for predicting crop yields. 

Bayable et al. [20] used ML algorithms to detect water hyacinth in a body of water and to estimate its 
seasonal spatial coverage. The regression ML algorithms tested in this study were SVMs, random forest, and 
decision trees. [21] proved that ensemble algorithms, specifically random forest, were the best-performing 
algorithms for predicting vegetation compared with SVMs and other regression algorithms. 

[22] used images from multiple satellites, remote sensing, and image classification ML algorithms to map 
WHC on Lake Tana in Ethiopia. The researchers analysed the relationships between water hyacinth and 
climate variability, such as the evaporation of water in the lake. This was achieved by analysing trends 
using Pearson’s correlation. However, this study did not predict WHC in the future; instead, it used 
algorithms to enhance poor-quality images and to handle missing images. 
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3. DATA DESCRIPTION 

To predict WHC accurately, an investigation was launched to identify the necessary data and availability. 
According to [23] and [24], water hyacinth growth depends heavily on extreme temperatures as well as the 
eutrophic levels in the dam, and there is a hyperbolic relationship between a dam’s eutrophic levels and 
the phosphate and nitrogen levels. The factors that influence water hyacinth growth the most, therefore, 
are the minimum and maximum daily ambient temperature, phosphate levels, and the nitrogen levels, 
composed of nitrite (NO2), nitrate (NO3) and ammonium (NH4), in the dam. Based on this, the datasets 
described below were identified for inclusion in the study. 

3.1. Water hyacinth coverage 

WHC was the predicted output variable. Access to recorded data of WHC on the Hartbeespoort dam was 
obtained from the CBC at Rhodes University [12]. The full dataset is not publicly available, but summaries 
have been published by the CBC [15],[25]. 

The dataset contained 587 data points with the date and percentage coverage between 1 August 2015 and 
27 March 2021. During 2020 and 2021, the WHC was influenced by restrictions on human movement during 
the COVID-19 pandemic, and did not reflect normal WHC levels. It was, therefore, excluded from the study. 
The remaining 461 data points were not sampled during regular intervals. Figure 1 shows an example of the 
count of data points per month for a section of the dataset from January 2017 to January 2019. 

 

Figure 1: Number of WHC data points recorded per month 

The figure shows that some months, such as February 2017, had no recorded data points, while others, such 
as August 2017, had 12. Therefore, a fixed time interval was needed to make all datasets consistent and 
comparable. As the WHC dataset represents the target variable, it was used to determine the best interval, 
based on the average time interval between recorded WHC dates. The average was 5.35. All datasets were 
therefore imputed to have data every five days from 1 August 2015 until 28 December 2019. 

The percentage of missing data in the WHC dataset was 37.7%. This was not seen as a problem, because 
frequent data on other intermittent dates could be used during the imputation. This value was also lower 
than the recommended 40% threshold used to determine whether a dataset would remain reliable when 
missing data was imputed [26]. A time series plot of the WHC dataset after the imputation of the missing 
data can be viewed in Figure 4 in Section 6.2. 

3.2. Ambient temperature 

The daily maximum (MaxTemp) and minimum (MinTemp) temperatures were obtained from the South 
African Weather Service [27] for the recommended weather station (05125544) closest to the dam [23]. 
The MaxTemp and MinTemp datasets were kept separate because WHC is sensitive to both high and low 
extreme temperatures [23],[28]. Both datasets had 1.8% missing data over the five-day intervals from 1 
August 2015 to 28 December 2019. A representation of the final temperature datasets, after imputations, 
can be seen in Figures 5 and 6 in Section 6.2. 
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3.3. Total phosphorous 

Two datasets were used to determine the total phosphorous (TP) levels on the Hartbeespoort dam. The 
first was a water quality dataset downloaded from the National Eutrophication Monitoring Programme 
website [29]. It contained 2 668 relevant phosphate data points measured in mg/L at stations on the dam 
between 11 March 1980 and 18 July 2018. 

A second dataset was obtained from the Centre for Water Sciences and Management at North-West 
University [30],[31]. It contained the chemical and physical properties of many South African dams, 
including recordings of phosphate (PO4) levels from stations on the Hartbeespoort dam. The average was 
taken for instances with multiple recordings for any given day. This resulted in 315 data points representing 
the PO4 levels between 1 December 1999 and 14 December 2011 on the dam. 

The two datasets were compared, and after verifying that the data were indeed similar, the datasets were 
combined to create a single TP dataset with 2 706 averaged daily data points between 11 March 1980 and 
18 July 2018. Unfortunately, no data could be found for the period after 19 July 2018. The data points in 
the TP dataset, on average, were recorded every 5.18 days. This was very similar to the sample frequency 
of the WHC dataset. The percentage of missing data for the TP dataset that ended on 18 July 2018 was 
8.45%. Section 4.3 discusses how the data was extrapolated for the additional period from 19 July 2018 to 
28 December 2019. The final dataset, after imputations of the current missing data and extrapolation to 
extend the data to the required timeline, can be viewed in Figure 7 in Section 6.2. 

3.4. Total nitrogen 

The second dataset downloaded from the Centre for Water Sciences website for the TP data also contained 
data on nitrogen compounds [30],[31]. The dataset included recordings of the sum of nitrite and nitrate 
(NO2+NO3) and of ammonium (NH4) levels, which, when added together, represent the total nitrogen (TN) 
levels of the dam. 

However, before the two nitrogen compounds could be combined to form one TN dataset, the missing data 
of each needed to be imputed separately. The average number of days between data points was 15. This 
meant that, on average, there were two recordings per month, with some months completely missing, such 
as October and November 2011. The percentage of missing data for the two compounds was 7.6% and 0.3% 
for NO2+NO3 and NH4 respectively. 

The datasets represented data from 1 December 1999 to 14 December 2011. The data had to be 
extrapolated from 1 August 2015 to 28 December 2019. This is discussed in Section 4.4. A time series graph 
of the final TN dataset can be seen in Figure 8 in Section 6.2. 

4. DATA PREPARATION 

After the available datasets had been identified, the data had to be prepared in a data preparation phase 
before the machine learning model could be built. Figure 2 illustrates the method followed in this research. 
The method was based on various techniques (which are discussed below) in order to impute the missing 
data and to extrapolate the TP and TN datasets needed to prepare the data, combined with the standard 
regression ML model building steps [17]. Coding in both phases was done in MATLAB [32]. 

 

Figure 2: Process flow diagram used to make final WHC predictions 
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During the data preparation phase, missing data in the identified datasets was first imputed using the 
multiple KNN imputation method, and then validated. Next, the TN and TP datasets were extrapolated to 
the same timeline as the WHC dataset, using Monte Carlo simulations and identified seasonal patterns. 
After the data preparation, the finalised MaxTemp, MinTemp, and simulated TN and TP datasets were used 
as the input features in the model building phase to create ML models, with WHC as the target variable to 
be predicted. The model building phase is discussed further in Section 5. 

4.1. Multiple KNN imputation of missing data within datasets 

Imputation was used to deal with the missing data in the current timeline [33]-[36]. Multiple KNN imputation 
was used, as it is an efficient imputation method that imputes the missing data with its KNN multiple times 
[37]-[40]. 

The multiple KNN imputation was coded in MATLAB [41]. The dataset was split into groups, and the missing 
point was imputed with the KNN value in the group, using the built-in knnimpute function. This was done 
iteratively with variations in the groupings so that the missing point was imputed with a range of values. 
The average of all the imputed values per point was then used as the final imputed value. The number of 
iterations was initially set to 100 and increased in increments of 100. More than 500 iterations did not result 
in large differences between imputations, as the differences were less than 0.001; thus 500 was deemed 
the best number of iterations to use. 

4.2. Validating imputations 

The imputations were visually inspected to determine whether they were valid and represented the 
observed dataset well. The descriptive statistics of the observed datasets, both with and without 
imputations, were also calculated and compared. Finally, we also checked that the imputed data points 
fell within the 95% confidence intervals of the original dataset. This was done for all the imputed feature 
datasets and for the WHC target variable dataset. 

4.3. Extrapolating TP dataset 

The TP dataset did not coincide with the timeline of the WHC dataset, and had to be extrapolated to the 
required dates between 1 August 2015 and 28 December 2019. Five scenarios were developed in which the 
TP dataset was generated differently. Table 1 describes the methods used to generate the TP dataset in 
each scenario. 

Usually, the Kolmogorov–Smirnov test (KS-test) is used to compare similarities between datasets [42]. In 
the case of the TP scenarios, the KS-test values were too close to one another, and could not be used to 
differentiate between the scenarios. Therefore, the generated datasets were compared using the two-
sided T-test [43], which tested whether the generated dataset came from a distribution with a similar 
variance and mean as the observed TP dataset. The closer the p-value was to 1, the better the fit between 
the generated and the observed TP datasets, with a similar mean and variance. Scenario 5 had the highest 
T-test p-value of 0.9, and was thus used to create the extrapolated TP dataset. 

Table 1: Scenarios used to generate the TP dataset 

Scenario Description of method 

1 Monte Carlo simulation was used together with the seasonal curve of the observed TP 
dataset. The curve was fitted to the daily average TP. Coefficients for the curve with a 
95% confidence interval were generated using MATLAB. 

2 Simulated deltas were added to the TP dataset generated using Scenario 1 to obtain a 
dataset with a wider variance. Repetitive patterns were analysed, and a dataset lagging 
by 1 506 points from the observed TP dataset was created. This number was identified by 
the partial autocorrelation function (PACF) in MATLAB as a significant lag for the dataset. 
The difference between the observed TP dataset and the lagged dataset, referred to as 
‘the deltas’, was calculated. A probability distribution was fitted to the deltas and 
simulated using Monte Carlo simulation. 
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3 Simulated deltas were added to the TP dataset generated in Scenario 2, but lagged by 2 
220 points. This lag was identified during time series analysis as the point where the 
seasonal cycle started to repeat. 

4 TP values were extrapolated from the curve fitted to the daily average TP, similar to 
Scenario 1. The simulated deltas generated in Scenario 2 were then added to the 
extrapolated TP data. 

5 TP values were again extrapolated from the curve fitted to the daily average TP, similar 
to Scenario 1. Simulated deltas from Scenario 3 were added to the extrapolated TP data. 

4.4. Extrapolating TN dataset 

Similar to the TP dataset, five scenarios were developed to extrapolate the TN dataset. A time series 
analysis was conducted on the observed TN dataset to determine the significant number of lags to be used 
and to identify repetitive patterns. This time series analysis revealed a repetitive annual seasonal pattern 
that could be represented by a polynomial curve. The plotted PACF also identified lags 1 and 2 as significant 
and, thus, were used to generate the TN dataset in Scenarios 2 and 3, respectively. 

The KS-test was used to compare the generated datasets, and similarly to the T-test values, a value close 
to 1 meant the two datasets had similar probability distribution functions. The scenario with the highest p-
value was scenario 3, and so was used to extrapolate the final TN dataset. 

5. MODEL BUILDING 

5.1. Feature analysis 

The features identified as important for WHC predictions were Date, MaxTemp, MinTemp, and the 
generated TP and TN datasets. Based on a suggestion from [44], the features were analysed to ensure that 
they resulted in good final predictions. Feature analysis was conducted to determine the features that 
would positively impact the model’s performance. 

The first analysis was to calculate Pearson’s correlation between all features. Correlations of 70% or higher 
indicate a very strong correlation [45], and could imply that one feature is redundant in the model. Features 
with a high correlation can also be combined into one feature to represent both correlating features. 

The second analysis was to calculate the significance of each feature. MATLAB was used to perform an F-
test and to calculate the corresponding p-value for each feature. Features with a p-value below 0.05 are 
considered significant [46]. The F-test statistic’s p-value reveals how well the feature describes the target 
variable, with high values indicating high significance. 

The information obtained from the Pearson’s correlation analysis and F-test statistic was used to identify 
various combinations of features for the model building phase, to develop the best possible ML model. 

5.2. Training models and selecting features 

The datasets were split into train, test, and unseen datasets during model building, as described in Section 
6.2. The unseen data used to make final predictions were all the data from 1 June 2018 to 28 December 
2019. Data from 1 August 2015 to 31 May 2018 were used to train and test after being split randomly using 
an 80:20 ratio. 

Five types of regression ML model were chosen, based on similar case studies [18]-[20]. These models were 
the ensemble (boost), ensemble (bag), decision tree, ANN, and SVM. ‘Ensemble (boost) model’ refers to an 
ensemble model that uses the boosting algorithm, while the ‘ensemble (bag)’ uses the bagging algorithm 
and builds on multiple decision trees [45]-[47]. The latter was expected to perform better than the decision 
tree model, but was included here for completeness. Each model was trained on the four identified feature 
combinations, and the RMSE for each model–feature combination was determined. An RMSE value close to 
zero indicates a model with good performance and that the model is a good fit [48],[49]. The results of the 
four feature combinations were compared to determine the best feature combination to use for prediction. 
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5.3. Hyperparameter tuning and testing models 

The hyperparameters of the models were optimised using the Bayesian optimisation function in MATLAB. 
This function used a grid search functionality to test different combinations of hyperparameter values, and 
calculated the RMSE for 30 iterations on the test dataset. The hyperparameters with the lowest test RMSE 
were chosen as the best ML model and used to make the final predictions. 

5.4. Making final predictions on unseen dataset 

The final predictions were made on the unseen dataset, which contained data from 1 June 2018 to 28 
December 2019. The best ML model was used to make the final predictions and to calculate the RMSE. The 
final predictions were also depicted on a graph together with the observed target values for visual 
inspection. The final results of the data preparation and model building phases are presented in the next 
section. 

6. RESULTS 

In this section we first present the results of the feature analysis and identified feature combinations. Next, 
the finalised datasets, after the data preparation phase had been completed, are presented. Finally, the 
results of the various ML models using the identified feature combinations, as well as the final predictions 
of unseen data of the chosen ML model and feature combination, are provided. 

6.1. Feature analysis 

Pearson’s correlation was calculated to compare the input features with one another. The correlations 
were calculated in MATLAB, with the results shown in Table 2. The light pink shaded cells in Table 2 indicate 
that the MaxTemp and MinTemp variables had a very strong correlation of 73%. An alternative to having 
two correlated features in the model was to replace the variables with an average value called AvgTemp. 
Figure 9 shows the AvgTemp dataset and its breakdown into the training, test, and unseen datasets used in 
the ML model building. 

Table 2: Pearson’s correlation matrix for features 

 Date MaxTemp MinTemp TP TN 
 Date 1 0.02 -0.14 0.04 0.01 
 MaxTemp 0.02 1 0.73 0.27 -0.05 
 MinTemp -0.14 0.73 1 0.21 -0.20 
 TP 0.04 0.27 0.21 1 0.03 
 TN 0.01 -0.05 -0.20 0.03 1 

Next, the significance of the features was tested by calculating the corresponding p-values of the F-test 
statistic. Figure 3 shows the p-values for all features. Values below 0.05 represent features of significance. 
The figure shows that the Date, MaxTemp, MinTemp, and AvgTemp features all had p-values of 0 and thus 
had high significance. 

The TN and TP features had p-values of 0.67 and 0.98 respectively. These values were greater than 0.05 
and could, therefore, be considered insignificant. However, the literature has shown that nutrients play a 
vital role in WHC and growth [7],[50]. Thus an additional feature named TNTP was introduced. This 
additional feature is the ratio of TN to TP, calculated by dividing TN by TP. It was added, as it is often used 
in the literature to determine the limiting factor in eutrophication [51],[52]. In Figure 3, the TNTP feature 
has a p-value of 0, which means that it is significant. Figure 10 in Section 6.2 shows the TNTP dataset. 
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Figure 3: F-test statistic’s corresponding p-value of features 

Using this information and the correlation results, four combinations of features were identified, as shown 
in Table 3. The four feature combinations were used to train each of the five models to determine the best 
combination of features. Various representations of the Date feature were tested (for example, having 
month, day, and year separate), but representing this feature as a serial number resulted in the best RMSE 
values, and so the feature was left as-is. 

Table 3: Combinations of features used to train models 

 
 

Features Reason for choice 
 Date Max-

Temp 
Avg-
Temp 

Min-
Temp TP TN TNTP  

Co
m

bi
na

ti
on

 

A X X  X X X  Original features 

B X  X  X X  
Replacing correlating 
features with one that 
combines both 

C X X  X   X 
Replacing insignificant 
features with one that 
combines both 

D X  X    X Replacing all correlating 
and insignificant features 

6.2. Finalised datasets 

The imputed WHC target dataset was split into training, testing, and unseen datasets in preparation for the 
model building phase. The unseen dataset was WHC data from 1 June 2018 to 28 December 2019, as shown 
in Figure 4. The remaining data were split randomly at a ratio of 80:20 to form the training and testing 
datasets respectively, as done in [53]. To make this split, the cvpartition function in MATLAB was used. 
Figure 4 shows how the dataset was split. 

 

Figure 4: Time series plot of WHC dataset used as the target variable 
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The datasets used as input features in the model building phase are shown in Figures 5 to 10. These figures 
show how the datasets were split into training, testing, and unseen datasets in the same way that was done 
for the target variable. 

6.3. Model building 

The validation RMSE of each model that was trained using the different feature combinations is shown in 
Figure 11. All the SVM models had a much higher validation RMSE than the other models, with an average 
RMSE value of 8.94. It was clear that the SVM model did not perform well compared with the other models, 
and it was not developed further. The ensemble (bag) and decision tree models performed similarly, with 
an average RMSE of 3.20 and 3.70 respectively. The ensemble (bag) consists of multiple decision tree 
models, and thus it is logical that the ensemble (bag) would outperform the decision tree models. 
Therefore, the decision tree model was also excluded from further development. 

The average RMSE on the remaining three ML models was calculated for each feature combination to 
determine which resulted in the lowest RMSE across the three remaining models. The results are shown in 
Figure 12. 

 

Figure 5: Time series plot of MaxTemp dataset used as a feature 

 

Figure 6: Time series plot of MinTemp dataset used as a feature 



188 

 

Figure 7: Time series plot of TP dataset used as a feature 

 

Figure 8: Time series plot of TN dataset used as a feature 

 

Figure 9: Time series plot of AvgTemp dataset used as an additional feature 
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Figure 10: Time series plot of TNTP dataset used as an additional feature 

 

Figure 11: Validation of RMSE values for each model trained using different features 

 

Figure 12: Average validation RMSE of each model using different features 
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Combination C resulted in the lowest average validation RMSE of 3.41. Therefore, the Date, MaxTemp, 
MinTemp, and TNTP features were used to train the final model. The ensemble (boost), ensemble (bag), 
and ANN models were optimised using hyperparameter tuning on the training dataset with the Bayesian 
optimiser function in MATLAB, and then tested using the test dataset. The ensemble (bag) algorithm with 
the hyperparameters of minimum leaf size = 2 and number of learners = 13 resulted in the lowest test RMSE 
of 2.73, and it was therefore selected as the best ML model. 

6.4. Final predictions 

The final predictions made on unseen data are shown in Figure 13 together with the observed unseen WHC 
dataset. These predictions resulted in an RMSE of 7.31. This was much higher than the results of the test 
dataset with an RMSE of 2.73. However, it is clear in Figure 13 that the model became inaccurate after May 
2019. When excluding predictions after May 2019, the RMSE was 4.01. 

Further analysis was performed by calculating the 95% confidence intervals of the observed data. Figure 14 
depicts these intervals and the observed and predicted values from June 2018 to December 2019. Even 
though the values became inaccurate after May 2019, they remained within the 95% confidence interval for 
all except two data points near October 2019. The observed WHC values were more volatile from September 
2019, causing the confidence interval to fluctuate significantly after this date. 

A final test was conducted to evaluate the model’s performance if the training, testing, and unseen datasets 
were randomly selected points over the complete WHC dataset. The data were again split into three 
datasets: training, testing, and unseen. The model returned an RMSE of 3.63, confirming that day-to-day 
predictions instead of months in advance result in more accurate results. The plot in Figure 15 shows the 
predictions on the randomly selected unseen dataset. 

 

Figure 13: Time series plot of final WHC predictions 

 

Figure 14: Confidence interval limits of unseen WHC data 
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Figure 15: Plot of WHC predictions on the randomly selected unseen dataset 

7. DISCUSSION 

WHC predictions for 1 June 2018 to 28 December 2019 were made using the ensemble (bag) model 
combining Date, MaxTemp, MinTemp, and TNTP features. The feature analysis indicated that the ratio of 
the features TN to TP had a higher significance than keeping the features separate, and allowed the model 
to learn patterns from both nutrients that were not evident when kept separately. 

The ensemble (bag) model was the chosen final model, as it had the lowest test RMSE compared with the 
ensemble (boost) and ANN models. This was expected from the literature, as the ensemble (bag) model 
outperformed other models in most cases [54]. The RMSE of the predictions made by the final ensemble 
(bag) model was 7.31. This was much higher than the test RMSE of 2.73. 

The final predictions were significantly centred around the average observed WHC, but the model was able 
to mimic the trends seen in the observed. It was evident that, from May 2019, the model did not make 
predictions that were close to the observed WHC. There was also more volatility in the last section of the 
observed WHC, which could explain why the predictions were inaccurate. The RMSE calculated for the 
predictions up to May 2019 was 4.01, which was significantly lower. This meant that the model’s 
performance was close to its performance during testing until May 2019. Therefore, the model made good 
predictions up to 11 months after the known data – from 1 June 2018 to 1 May 2019. 

8. CONCLUSION 

The research aimed to illuminate whether WHC could be accurately predicted for 1 June 2018 to 28 
December 2019 using ML models based on the limited available data. Data from 2020 to 2022 were excluded 
from this research owing to the impact of the COVID-19 pandemic and the consequent limitations on the 
human movements that indirectly influence WHC on the dam. The most influential factors for WHC were 
identified. Those factors included date, minimum and maximum temperature per day, and estimations of 
the nutrients found in the dam in the form of TN and TP. 

Missing data in the datasets was imputed using multiple KNN imputations. The quality of the imputations 
was visually validated, and fell well within the 95% confidence interval limits of the observed data. Reliable 
and consistent data for the nutrients in the dam were limited; so those datasets had to be extrapolated to 
the correct timeline. To extrapolate, various simulation methods were developed and tested. The chosen 
scenarios were the ones that resulted in the highest statistical test p-values. 

Five different ML models were built with different combinations of features that were based on their 
significance and correlation with one another. The features chosen were Date, MaxTemp, MinTemp, and 
TNTP. The ensemble model using the bag algorithm was the chosen final model with the lowest test RMSE 
of 2.73. Visual inspection also validated that the model made accurate predictions within the 95% 



192 

confidence interval of the observed WHC data from 1 June 2018 to 1 May 2019, with an RMSE of 4.01. This 
implied that the best ML model could provide good estimate predictions up to 11 months in advance. 
Therefore, we believe that using the ensemble bag algorithm would illuminate the planning of WHC 
biological control in future decision-making. 
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