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ABSTRACT 

This paper presents a decision-support system developed to plan the 
harvest and packing of table grapes. Variability in harvest readiness and 
volume can significantly impact producer-exporters’ ability to meet 
market demands. The decision-support system incorporates planning 
aspects specific to table grape production, such as limiting 
transportation of unpacked stock, pack-to-order, and distinguishing 
between specific product requirements (i.e., packaging type and 
cultivar). This decision-support system uses several operational data 
sources. It assists decision-makers in minimising deviation from the 
demand plan and the distances harvest is transported between the 
orchards and processing sites. The conceptual architecture and software 
implementation tools to realise the decision-support system and a real-
world case study are presented. The decision-support system accounts 
for multiple dynamic supply and processing network restrictions. 

 OPSOMMING  

Hierdie artikel stel 'n besluitsteunstelsel voor wat ontwikkel is om die 
oes en verpakking van tafeldruiwe te beplan. Veranderlikheid in 
oesgereedheid en volume kan produsent-uitvoerders se vermoë om aan 
markvereistes te voldoen, aansienlik beïnvloed. Die besluitsteunstelsel 
inkorporeer beplanningsaspekte spesifiek vir tafeldruifproduksie, soos 
die beperking van vervoer van onverpakte voorraad, pak-vir-bestelling, 
en onderskeid tussen spesifieke produkvereistes (d.w.s. verpakkingstipe 
en kultivar). Hierdie besluitondersteuningstelsel gebruik verskeie 
operasionele databronne. Dit help besluitnemers om afwyking van die 
aanvraagplan en die afstande wat oes-opbrengs tussen die boorde en 
verwerkingaanlegte vervoer word, te minimeer. Die konsep-argitektuur 
en sagteware-implementeringsinstrumente om die besluitsteunstelsel te 
realiseer asook 'n werklike gevallestudie word aangebied. Die 
besluitsteunstelsel is verantwoordelik vir veelvuldige dinamiese aanbod- 
en verwerkingsnetwerkbeperkings. 

 

 

 

 

1. INTRODUCTION 

Decision-making in producing, processing, and distributing fresh fruit is complex. Products ripen at various 
times throughout a season, depending on the cultivar and weather, and can result in harvest and processing 
peaks. Planning processing and distribution activities can be problematic and have the qualities of a ‘push 
supply chain’ [1]. Fresh fruit is perishable, and maintaining post-harvest quality depends on handling 
techniques and sustaining the cold chain [2]. This study focuses on table grapes as a product. 
The problem we focused on can be described as follows: A mega-producer of 28 table grape cultivars has 
391 orchards distributed over a large geographical area spanning three provinces in South Africa. The table 
grapes ripen during specific time slots of the year, which dictate the harvest and packing time windows. 
Local and international customers order specific volumes of particular cultivars, while many require unique 
packing material. The mega-producer has 13 packing sites at different positions from the orchards. The 
packing sites have fixed capacities and various constraints; for example, the packing type (loose bunches 
or punnets). The produce is delivered to 53 target markets in 28 countries.  
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Planning the harvesting and packing of the product involves uncertainty and complex decision-making 
because materials, resources, and many role-players are involved. Owing to unforeseen changes that occur 
during the harvest period, it is often necessary to revise the harvest and pack plans, which may take hours 
or even days because of the manual process that is followed. A digital decision-support system (DSS) that 
sources data from existing and evolving data stores to create timely, quality decision suggestions could be 
of value to the mega-producer and key decision-makers. This paper presents the research done on the 
development of such a DSS. 
Research on fresh produce production and processing decisions has a diverse commodity base, including 
citrus, pome fruit, vegetables, and wine grapes. Although this provides a strong reference for planning 
table grape production, it does not account for the specific problems faced by table grape producers: 

• Table grapes are highly perishable, and harvesting at the right time is crucial for a quality end product. 
This requirement differentiates table grapes from longer-lasting commodities such as citrus or pome 
fruit, which can have a longer shelf life. 

• Table grapes must enter the cold chain as soon as possible after harvesting. Post-harvest quality depends 
on maintaining the cold chain, careful handling, and packaging stock before transportation. Bruising 
table grapes during post-harvest activities can result in sub-prime marketability, whereas bruising of 
wine grapes has little impact on the end product. 

• Sorting and classing grapes differs from pome and citrus owing to the manual processing that is required. 
Fruit with simplistic dimensions, such as apples and oranges, can be graded through automated 
machines. Class A fruit is separated from substandard fruit (classes B and C, which are sold at the local 
market or used for juice) as well as waste products on entering a pack site and further sorted by 
mechanical means according to market specifications. In contrast, table grapes are classed and graded 
in the vineyard before harvesting. The waste product is manually separated from the end product by 
cutting out individual rotten berries during the packing phase to limit double handling. 

The work in this paper contributes to the body of knowledge by providing a unique real-world case for 
harvest and processing decisions for table grapes. Second, the DSS presented here allows for coordination 
between harvest fields and production facilities. It incorporates planning specific market demands in a 
‘push supply chain’ environment in which the product is produced long before demand realises, and the 
adjustments required in a real-world setting. Last, the DSS presented in this study incorporates a 
geographically diverse setting with multiple farms and processing sites. The DSS allows for the bi-objective 
optimisation of two selected key performance indicators. 
The paper is organised as follows. Section 2 provides a brief review of the literature on the fresh produce 
decision-making domain for harvest and production decisions. Section 3 presents a model-based bi-
objective optimisation DSS for the tactical planning of harvest and processing table grapes. Section 4 
reports findings from a real case comparing human decision-making with the DSS model. The final section 
(Section 5) provides recommendations for future work. 

2. HARVEST AND PROCESSING MODELS IN THE FRESH PRODUCE DECISION-SUPPORT DOMAIN 

An analysis of five systematic literature reviews ([3], [4], [5]; [6]; [7]) on harvest and processing decision 
support identified the following research key opportunities: 
1. A need exists for more integrated harvest and processing planning models, especially in the 

coordination between harvest fields and production facilities ([3], [4]). Kusumastuti et al. [5] 
established that, where harvest and production decisions are modelled together, a central processing 
unit is considered as opposed to geographically diverse farms and processing facilities. Taskiner and 
Bilgen [7] observed research opportunities to explore the complexities emanating from multi-farm and 
processing facility cases. 

2. Product diversity varied with specific handling techniques, leading to a need for commodity-specific 
models, as opposed to generic fresh produce models [7]. 

3. An often-neglected aspect of research models is the heterogeneity in products (such as variety and 
packaging types). This includes complexity in real-world authentic scenarios in case studies or 
hypothetical cases. Soto-Silva et al. [6] noted that only five of the 28 articles they reviewed were 
based on existing databases; the rest all used hypothetical data or described the application to real 
cases. 

4. Research in the field navigates towards hypothetical cases, with a limited number of authors using real 
data sets to validate their research. This raises the question of the applicability of those models that 
are based on hypothetical data. Taskiner and Bilgen [7] established a need for models that could 
assume the complexities of large real data sets, such as metaheuristics, mat heuristics, and hybrid 
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solutions. Soto-Silva et al. [6] reviewed models applied (real or case study models) to the fresh fruit 
industry only. They included 28 articles published between 1976 and 2015, studying all supply chain 
aspects. Of these 28 articles, only three focused on both harvest and production decisions. 

5. Most studies reviewed focused on economic aspects, such as maximising profit or minimising costs. 
They note that there might be a benefit in exploring more specific objectives relevant to a specific 
problem [7]. 

These reviews focused on the modelling approaches, decision types, and main themes of past papers. From 
the opportunities listed above and the desire to develop a DSS that would be useful in a real-world case, 
we identified related work to modelling approaches. 

Table 1 summarises the harvest and processing decisions support models researched by others in the field. 
A combination of hypothetical cases (HC), case studies (CS), and real cases (RC) was studied. The table 
indicates that 16 of the 27 articles used mixed integer linear programming (MILP) and mixed integer 
programming (MIP). Stochastic programming (SP) was used where uncertainty had to be modelled, such as 
Munhoz and Morabito [25] using robust optimisation (RO). In one case, fuzzy logic was used to model 
production uncertainties [23]. 

Table 1: Previous modelling approaches 

Reference Type Model Method Objective 

Miller et al. [8] RC LP Fuzzy logic Min. cost 
Munhoz and Morabito [9] CS LP Goal prog. Min. costs, min. deviation from  

mean product ratio 
Kazaz [10] RC SP Exact Max. profit 
Caixeta-Filho [11] RC LP Exact Max. production, max. total revenue 
Ferrer et al. [12] RC MILP Heuristics Min. operational cost, penalise quality loss 
Arnaout and Maatouk [13] HC MILP Heuristics Min. costs (with quality penalty) 
Vlah Jeric and Soric [14] HC MIP Heuristics Max. producer profit 
Bohle et al. [15] HC SP RO Min. operational cost, min. quality loss 
Rong et al. [16] CS MILP Exact Min. costs 
Ahumada and Villalobos [17] CS MIP Exact Max. revenue 
Ahumada and Villalobos [18] CS MIP Exact Max. income 
Ahumada et al. [19] HC SP Exact Max. revenue 
Munhoz and Morabito [20] CS SP RO Min. total cost 
Rocco and Morabito [21] RC LP Exact Min. costs 
Catalá et al. [1] CS MILP Lexicographic Min. total negative deviations of  

sales, max. total profit 
Basso and Varas [22] CS MIP MH Min. order delay, final completion, and processing 

time 
Ghezavati et al. [23] CS MIP Exact Max. profit 
Herrera-Cáceres et al. [24] RC MILP Exact Max. production 
Grillo et al. [25] RC MILP AW Max. total profit, max. mean product freshness 
Cheraghalipour et al. [26] CS MILP MH Min. cost, max. responsiveness to customers 
Cano Marchal et al. [27] HC SP Exact Max. profit 
Jeric and Soric [28] HC MIP MH Max. profit, min. delivery cost 
Roghanian and 
Cheraghalipour [29] 

CS MIP MH Min. costs, CO2 emissions, max. 
customer responsiveness 

Varas et al. [30] RC MILP MH Min. costs, max. quality 
Tan and Cömden [31] HC SP Exact Max. total profit 
Gómez-Lagos et al. [32] CS MIP MH Min. cost of harvesting, fruit lost, harvest days 

Trivedi et al. [33] CS ILP Exact Min. cost 
RC: Real case; CS: Case study; HC: Hypothetical case; LP: Linear programming; SP: Stochastic programming; MILP: 
Mixed integer linear programming; MIP: Mixed integer programming; RO: Robust optimisation; MH: Metaheuristics; 
AW: Additive weighting; Min.: Minimise; Max.: Maximise. 
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Multi-objective optimisation was used in 12 of the studies, with only seven of these using metaheuristics as 
a solution approach. The metaheuristic (MH) methods used included those requiring the decision-maker to 
have a preference before running the model (a priori), such as the lexicographic method [1], weighted 
Tchebycheff [30], and additive weighting (AW) [25]. A posteriori methods exploring the Pareto set included 
the non-dominated sorting algorithm II (NSGA-II) ([26], [28], [29]) and the greedy randomised adaptive 
search procedure (GRASP) [32]. Jeric and Soric [28] concluded that they were the first to use multi-
objective methods in the integrated planning of supply and production of perishable goods. 

Most authors focused their models on the economic impact of the decision, with models favouring either 
cost savings or increasing revenue. Both Ferrer et al. [12] and Varas et al. [30] considered cost and quality 
as individual objectives, whereas Grillo et al. [25] included mean product freshness with total profit in a 
bi-objective model. Besides maximising total profit, Catalá et al. [1] aimed to minimise the total deviation 
from the customer demand, thus parallelling this study. Cheraghalipour et al. [26] also attempted to meet 
customer demands; however, they focused on the reverse logistics of the citrus supply chain. Gómez-Lagos 
et al. [32] presented a three-objective model, attempting to minimise the harvest days, fruit lost owing to 
failed maturity, and the harvesting cost. 

Several studies used a penalty function, omitting quality as an objective. These studies penalised the main 
objective with a quality loss function in a single-objective optimisation model ([12], [22]). 

None of the studies identified and evaluated focused on table grapes, with a limited number focusing on 
customers’ specific market needs. The studies did not consider the geographical spread of farms and 
processing sites as was done in this study. Recommendations from these studies allude to the need for 
multi-objective techniques to approach the complexity often established in real-world cases. 

Next, the design of the decision-support system is described. 

3. DESIGN OF THE DECISION-SUPPORT SYSTEM 

The design of the DSS is based on user and stakeholder requirements. Interviews were conducted with 
diverse groups to do a user requirement elicitation. The selected stakeholders are all part of the decision-
making, and all are affected by the outcomes of decisions made. The interviews were transcribed, and the 
system requirements were analysed using the six-step process of thematic analysis by Braun and Clarke [34] 
and Maguire and Delahunt [35]. The following roles were interviewed, with an indication of their level of 
decision-making: 
1. Strategic: strategic financial manager (SFM) and chief marketing manager (CMM) 
2. Tactical: logistics manager (LM) and production manager of managers (PUMoM) 
3. Operational: data analyst (DA), production unit managers (PUMs) and pack site managers (PSMs) 
The thematic analysis yielded design drivers for the DSS. Apart from that the available data sources that 
affect harvest and pack plan decisions were identified and analysed. The data sources are presented next. 

3.1. Data sources 

These data sets required by the DSS are as follows; the relationships are shown in Figure 1. The arrows 
indicate flow of data. 
1. Market plan: the plan is dictated by customers and changes throughout the year. The LM and CMM 

maintain it. 
2. Harvest estimate: this estimate is a guide for decision-makers to plan. It is based on historical data 

and is inaccurate since environmental factors such as rain or extreme temperatures can affect the 
yield. 

3. Packaging material: if the harvest and pack plan changes, it may affect the packing materials needed. 
Materials often depend on the customer and require unique printing. 

4. Pack capacity: this was a major topic during the interviews. The pack sites have many factors to 
consider during planning, including constraints like the number of staff, range (loose fruit or punnets), 
and the number of changeovers required. 

5. Budget: the seasonal income and expenses are estimated and monitored to dictate what must be 
produced and when it should be sold. 
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6. Pack actual: this is a record of the actual product packed and shipped to date during the season and is 
used to adjust real execution to achieve planned delivery. 

7. Pack and harvest plan: the harvest and pack plan are pivotal as it represents the union of two evolving 
plans, such as the market plan and the harvest estimate. It also represents the link between tactical 
planning and operational realities. The harvest and pack plan guides the production managers on which 
customer orders to serve weekly. The plan may be disturbed by realities like downtime at a pack site. 

With the stakeholder requirements defined and the data sources known, the architecture of the DSS could 
be developed and is subsequently presented. 
 

 

Figure 1: Data sets that affect harvest and pack decisions 

3.2. Proposed architecture 

The proposed architecture of the DSS is shown in Figure 2 and is briefly discussed next.  

 

Figure 2: Proposed DSS architecture 
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Sprague [36] advised that a DSS includes a user interface, a database, and an analytical method. In this 
study, a MySQL database represents a warehouse. The extract transform and load (ETL) process, model, 
and email push notification application are written in Python 3.8, while Microsoft Power BI and Plotly (a 
Python graphing library) is used for data presentation. We used open-source technologies to make 
replication of the DSS possible without additional third-party licensing requirements. The technologies used 
for the DSS are shown in Table 2. 

Table 2: Enabling technologies for the decision-support system 

Operating system  Ubuntu 20.04.4 LTS: GNU/Linux 5.4.0-100-generic x86 64 
Data pipeline (ETL) Python 3.8, Crontab 
Database MySQL: 8.0.28-0ubuntu0.20.04.3 (Ubuntu) 
Model and Bot Python 3.8 
Data visualisation systems Plotly, Microsoft Power BI, Microsoft Excel 

The data sources provide transactional data piped via the ETL process to a structured data warehouse. A 
good pack plan with two objectives is searched for by a multi-objective optimisation (MOO) algorithm called 
NSGA-II [37]. There is a plethora of MOO algorithms available, and we selected NSGA-II due to its popularity 
– it was outside the scope of this study to find the most suitable algorithm for the DSS. This is a study on 
its own and will be done in the future. The results of the MOO and other important user-specific insights 
are presented with business intelligence software Plotly, Microsoft Power BI and Microsoft Excel. These 
insights help formulate business decisions during the harvest and pack period. 

The heart of the DSS is the bi-objective optimisation model used for the tactical planning of the harvest 
and processing of table grapes. Sharma [38] provides a review of multi-objective optimisation techniques. 
The model is presented next. 

3.3. Bi-objective optimisation model 

The following defines a tactical planning model for harvest and processing decisions in a producer-exporter 
environment with multiple table grape production and processing sites. 
Indices 
o Orchards, o ∈ {1, . . . , O} 
v Varieties, v ∈ {1, . . . , V } 
p Pack sites, p ∈ {1, . . . , P } 
j Packaging type of the considered demand, j ∈ {1, . . . , J } 
t Pack weeks in the planning horizon, t ∈ {1, . . . , T } 
c Customers, c ∈ {1, . . . , C} 
g Variety group of the considered demand, g ∈ {1, . . . , G} 
f Farms to include in pack planning, f ∈ {1, . . . , F } 
i    Index for each demand combination of customer c, variety group g, pack type j, and pack week t,  

   i ∈ {1, . . . , I} 
b Index for each harvest estimate combination of orchard, variety, and pack week, i ∈{1, . . . , B} 

Sets 
di   [c, g, j, t] List of combinations i, of customer c, of variety group g, with pack type j, with a  

  demand to be packed in week t 
hb [o, v, t] List of combinations b of orchard o, with variety v, to be harvested in pack week t 
Vg List of varieties part of variety group g Of List of orchards part of farm f 
Ebi List of harvest estimates b that meet the criteria for demand i 
Spi List of pack sites p with the capacity to meet the criteria for demand i 
Tibp List of all demands i that have harvest estimates (Ebi) and pack capacity options (Spi) 
Pvg Customer preferences for variety v in variety group g 
Rcv 0 if the customer c may not receive variety v 

   1 allowed 
Nop 0 if produce from orchard o may not pack at pack site p 

   1 allowed 

Parameters 
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Kop Distance between orchard o and pack site p 
Lpjt Capacity (kg) of pack site p for pack type j in week t 
Hovt Harvest estimate (kg) of orchard o with variety v harvested in week t  
Dcgjt Demand (kg) of customer c for variety group g in pack type j for week t  
Ac Priority for customer c 

Decision variables 
Qovpjtc Quantity (kg ) of product allocated to customer c from orchard o with a variety v packed in pack 
site p in pack type j in week t, towards meeting demand combination i. 

Objective functions 
The two objective functions are: 

min 𝑍𝑍1 = ∑ ∑ ∑ ∑ 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − ∑ ∑ ∑ ∑ ∑ ∑ 𝑅𝑅𝑐𝑐𝑐𝑐𝑄𝑄𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶
𝑐𝑐=1

𝑇𝑇
𝑐𝑐=1

𝐽𝐽
𝑐𝑐=1

𝑃𝑃
𝑜𝑜=1

𝑉𝑉
𝑐𝑐=1

𝑂𝑂
𝑜𝑜=1

𝑇𝑇
𝑐𝑐=1

𝐽𝐽
𝑐𝑐=1

𝐺𝐺
𝑐𝑐=1

𝐶𝐶
𝑐𝑐=1   [kg], and              (1) 

min 𝑍𝑍2 =
∑ ∑ ∑ �∑ ∑ ∑ 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇

𝑜𝑜=1
𝐽𝐽
𝑜𝑜=1

𝑉𝑉
𝑜𝑜=1 �𝑃𝑃

𝑜𝑜=1
𝑂𝑂
𝑜𝑜=1

𝐶𝐶
𝑜𝑜=1 ×𝐾𝐾𝑜𝑜𝑜𝑜
∑ ∑ ∑ ∑ ∑ ∑ 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶

𝑜𝑜=1
𝑇𝑇
𝑜𝑜=1

𝐽𝐽
𝑜𝑜=1

𝑃𝑃
𝑜𝑜=1

𝑉𝑉
𝑜𝑜=1

𝑂𝑂
𝑜𝑜=1

  [km].      (2) 

Equation(1) measures the deviation between the total demand and the total allocated stock in the pack 
plan. It is important for the producer to meet customer demand, so the ideal of zero deviation between 
delivered mass and demanded mass is pursued. Equation (2) measures the distance that one kilogram of 
stock has to travel to be packed. Both objectives are minimised. 

Constraints 

Allocation to pack site p for pack type j in week t should be less than the pack capacity Lpjt in pack site p 
for pack type j in week t: 

∑ ∑ ∑ 𝑄𝑄𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐿𝐿𝑜𝑜𝑐𝑐𝑐𝑐𝑉𝑉
𝑐𝑐=1

𝑂𝑂
𝑜𝑜=1

𝐶𝐶
𝑐𝑐=1 ,∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇.                                         (3) 

Allocation of grapes from orchard o of variety v in week t should be less than the harvest estimate Hovt for 
that orchard o for variety v in week t: 

∑ ∑ ∑ 𝑄𝑄𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐻𝐻𝑜𝑜𝑐𝑐𝑐𝑐
𝐽𝐽
𝑐𝑐=1

𝑃𝑃
𝑜𝑜=1

𝐶𝐶
𝑐𝑐=1 ,∀𝑜𝑜 ∈ 𝑂𝑂,∀𝑣𝑣 ∈ 𝑉𝑉,∀𝑡𝑡 ∈ 𝑇𝑇.                            (4) 

Allow only feasible orchard o to pack site p combinations according to list Nop, where 

∑ ∑ ∑ 𝑄𝑄𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑜𝑜𝑜𝑜 = 0𝐽𝐽
𝑐𝑐=1

𝑉𝑉
𝑐𝑐=1

𝐶𝐶
𝑐𝑐=1 ,∀𝑜𝑜 ∈ 𝑂𝑂𝑓𝑓,∀𝑝𝑝 ∈ 𝑃𝑃.                            (5) 

The total allocation of variety group g to customer c in week t less than total demand Dcgjt: 

∑ ∑ ∑ 𝑄𝑄𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐽𝐽
𝑐𝑐=1

𝑂𝑂
𝑜𝑜=1

𝑃𝑃
𝑜𝑜=1 ,∀𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐,∀𝑔𝑔 ∈ 𝐺𝐺,∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑐𝑐 ∈ 𝐶𝐶,∀𝑡𝑡 ∈ 𝑇𝑇.                          (6) 

The above model was implemented in the DSS, and the outcomes of the DSS was evaluated via a case study 
and subsequent interviews with the originally interviewed end users. This qualitative validation process 
ensured end-user satisfaction regarding the DSS outputs, as explained during the requirement interviews. 
The case study is described next. 

4. PERFORMANCE COMPARISON OF THE MODEL WITH THE HUMAN-DRIVEN SYSTEM 

The solutions created by the DSS were compared to the results of the human-driven system currently used 
at a large South African producer-exporter. Data from the 2022 table grape harvesting season were used 
for the comparison. Currently, the logistics manager (LM) manually creates and adjusts the pack plan. 
Keeping the system up to date in a frequently changing environment becomes arduous and takes several 
hours to adjust. The data analyst (DA) for the group mentioned that it takes the LM nearly three weeks to 
develop an initial plan before the season starts. 
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Maintaining and adjusting the input data (pack capacities, harvest estimates, and demands) is a team 
effort, with little quality assurance performed on some of the input parameters. The following issues 
complicate a like-for-like comparison because the two systems work with various input parameters – one 
system works with known parameters in the dataset, the other does not (the human system uses input data 
provided via phone calls that is not recorded in the data): 

1. The manual entry planning data and pack capacities are over-allocated during certain weeks or sites. 
Pack capacities need to be more adequately maintained and adjusted since adjusting pack capacities 
at a site often occurs through a phone call with the PSM. 

2. Harvest estimates for grapes sourced from farms owned by the subject company (internal producers) 
are maintained and checked by the DA. Harvest estimates for externally sourced farms (external) do 
not update their harvest estimates as accurately as internal producers. 

3. Internal harvest estimates are over-allocated week-by-week by the LM. A conversation between the 
LM and the PUM will cause a decision not documented or reflected in the harvest estimate data. 

4. The manual pack plan does not allocate harvest estimates at an orchard level as this is at a too granular 
level for the LM to maintain. Pack plans are produced and managed by considering farms and cultivars, 
rather than individual orchards. This additional feature distinguishes the proposed tactical model from 
the current system but prohibits an exact ‘like-for-like’ comparison. 

5. The assignments of orchards to pack sites are subjective and vary from week to week, i.e., assigning 
an orchard to a pack site may be allowed during the planning of the current week but may become 
infeasible the following week. 

To compare the existing human system with the model, a realistic parameter set was selected to imitate 
internal company heuristics used by the LM. In this parameter set, sites, where farms can have produce 
packed are limited to a small sample based on proximity, organizational structure, and history. Only 
produce from internal farms (i.e., no in-sourcing of stock) was used because internal harvest estimates are 
well maintained by the operational teams and are checked by the DA. 

Figure 3 displays the result of running the model for 15 November 2021 and comparing it to the actual plan 
created by the manual process on that date. The manual plan yields a deviation from demand of 6.54 
million units for objective 1 and 18 km for objective 2 (“deviation” means the difference between what 
was ordered and what could be supplied). Since all solutions on the Pareto frontier are equally good, we 
arbitrarily selected the solution pointed out by the red arrow for discussion (Solution A in Figure 3). The 
solution is at coordinates (25.37 km, 5 729 973 units). The selected solution has an improved deviation from 
demand of 12% less than the manual solution, while the latter provides 18 km as opposed to the 25.37 km 
obtained via the optimisation model of the DSS. (The values of the total deviation to the right of Solution 
A differ, but the differences are not clear due the scale of the vertical axis.) 

  

Figure 3: Comparison between the single solution of the manual plan and solutions of the DSS 
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The NSGA-II algorithm allocates more harvest to the demands, resulting in a lower value for objective 1, 
but higher objective 2 value (km). This can be ascribed to the NSGA-II algorithm allocating more harvest to 
allowable pack sites further away from the farm than the manual plan. Site 6 in Tables 3 and 4 is a good 
example. The DSS allocates 922 235 units, whereas the manual plan only allocates 721 750 units. All the 
farms feeding this site are shown in Table 4. The DSS allocates 29 598 units from Farm 15, whereas the 
manual process only allocates 5 982 units. The resulting distance for this combination is the same (as the 
pack site is located 160.17 km from the farm), but the total distance for the solution (all farms supplying 
site 6) results in 26.3 km compared to 8.58 km). Another example is ‘Farm 10’: it was allocated 73 235 
units by the model vs. 35 292 units by the manual plan. The distance between ‘Site6’ and ‘Farm10’ is 128.25 
km. This illustrates that, overall, the DSS solution allocates much more produce to be packed (which is 
desired), but the produce will be transported further on average than the distance of the manual plan. 

Table 3: Assignment values comparison between solutions derived  
from the manual plan and Solution A of the DSS 

Pack 
site 

DSS 
(units) 

Manual plan 
(units) 

         DSS 
         (km) 

       Manual 
     (km) 

Site 3 575 523 403 395 3.0 2.53 
Site 4 370 395 281 161 2.5 2.51 
Site 5 402 585 288 779 1.9 1.79 
Site 6 922 235 721 750 26.3 8.58 
Site 9 139 847 105 129 5.2 4.09 
Site 14 710 004 405 711 34.5 36.70 
Site 22 163 714 167 567 1.0 1.00 
Site 30 279 646 232 359 36.6 36.57 
Site 35 197 514 239 781 32.1 24.40 
Site 36 560 859 282 514 106.6 93.56 
Site 41 266 937 456 740 2.7 0.75 
Site 51 129 556 316 027 16.5 16.46 

Table 4: Fitness of manual plan compared to one algorithm  
solution for Site 6 

Farm DSS 
(units) 

  Manual 
  (units) 

DSS 
(km) 

Manual 
(km) 

Farm15 29 598   5 982 160.17 160.17 
Farm19 44 553   1 800 128.78 128.78 
Farm10 73 235   3 529 128.25 128.25 
Farm12 56 535   3 208 67.20 67.20 
Farm8 21 233   2 778 15.17 15.17 
Farm16 697 081 672 690 0.33   0.33 

Note that the sites are the same number of kilometers from one another for both solutions. The difference 
comes in with the total km for the solutions (shown by Pack site 6 in Table 3 – 26.3 km vs 8.56 km). These 
values represent the distance one kilogram must travel to be packaged. 

Invariably, allocating more stock to options further away results in a differently weighted answer. The user 
can limit allocation between farms and sites too far away but will then be restricted in the number of units 
that may be packed. 

Figures 4 and 5 present comparisons of the cumulative harvest estimate and pack capacity allocations for 
different cultivars. The black line and circle markers, denoting the cumulative allocation by the DSS, 
consistently displays an allocation pattern similar to the harvest estimate in white seedless and red seedless 
grapes (the two largest cultivar groupings). Black seedless grapes indicate a similar allocation pattern 
between the manual and DSS plans. 
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Figure 4: Cumulative harvest estimate allocation as from dates indicated 

  

Figure 5: Cumulative pack capacity allocation (as on 15 November 2021) 

An example of capacity allocation is shown in Table 5, which compares the results of the DSS with that of 
the manual plan over a given period for pink seedless grapes. The allocation percentage is calculated as 
the ratio of the units allocated by the DSS and the pack capacity. The DSS never exceeds available capacity, 
while the manual allocation either exceeds or under-allocates the capacities. Under-allocation is due to 
the human manager reacting to heuristic rules from experience and making short-term decisions on an ad 
hoc basis. The deviation values are calculated as the ratio of the DSS allocation to the pack capacity, and 
the ratio of the manual allocation to the pack capacity. 
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Table 5 further shows the restriction in packing capacity for the sites allocated to the farm producing pink 
seedless grapes in weeks 1–2 of 2022. Pink seedless grapes are allocated 100% of capacity in the first week 
of January when the manual system allocates more of the harvest estimate. 

Table 5: Example of packing capacity allocation (percentage of pack capacity) for sites processing 
pink seedless grapes (‘22-01’ means week 1 of year 2022) 

Type Week Site Pack capacity 
(units) 

  DSS 
(units) 

Manual 
(units) 

DSS 
(%) 

Manual 
   (%) 

Loose 22–01 Site 5 35 640 35 641 31 520 100   88% 
  Site 41 15 681 15 681 23 183 100% 148% 
 22–02 Site 5 35 640 35 639 40 772 100% 114% 
  Site 41 15 681 15 146 17 335   97% 111% 
Punnet 22–01   Site 3 74 497   7 497 34 487 100%  46% 
  Site 4 56 925 56 926 55 067 100%   97% 
  Site 5 24 502 24 502 26 208 100% 107% 
  Site 41 10 454 10 454 19 464 100% 186% 
 22–02 Site 3 74 497 74 496 28 000 100%   38% 
  Site 4 56 925 56 368 10 139   99%   18% 
  Site 5 24 502 24 502 14 903 100%   61% 
  Site 41 10 454 10 455 22 000 100% 210% 
Total   435 398 434 307 323 078   
 Total deviation from capacity for period over all sites: 99.74% 74.20% 

The DSS spreads the load throughout the system equally and it can, therefore, be concluded that the DSS 
is better at allocating demands based on the input variables. 

This study indicates that a DSS could help the LM plan further into the future and adapt to an ever-changing 
environment. Comparing a model-generated plan with an actual plan indicated an increasing divergence 
between the human and machine plans. The plan provided by the DSS can allocate demands to a specific 
orchard, whereas this level of granularity adds excessive complexity, which is problematic for a human 
decision-maker to maintain. 

Since several farms can pack product at various sites, changes in one part of the plan merit updating the 
entire plan. The DSS finds sensible, feasible solutions amidst the changing environment. Human decision-
makers often neglect the reallocation opportunities and rely on interpersonal relations to fix sudden 
changes to a node in the plan. As the business scales, or if the logistics team changes internally, this 
institutional knowledge must adapt or be transferred to another human. The risk remains that human 
decision-makers can leave their posts while the company loses the years of institutional knowledge and 
relationships built on the person. 

Human decision-makers can change and restrict allocation informally. When using the DSS, emphasis must 
be adjusted to solidifying business rules prohibiting informal decision-making. 

The DSS provided a better solution in a significantly shorter time compared to the system used by the 
company. It also allows for the refinement of options, as the DSS can be applied every time the business 
status changes. 

To conclude, the DSS output provides pack plan instructions from which business decisions can be made 
(Figure 2). A three-week planning process can now be executed within four hours while using the 
mathematical model presented in (1) – (6). The manual method is cumbersome, reactive and does not 
guarantee good solutions. Note that the DSS is descriptive, not prescriptive – it shows what good scenarios 
are available but does not force the decision-maker to accept any solution. 
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5. CONCLUSIONS AND FUTURE WORK 

A decision-support system (DSS) for harvest and processing planning for table grape producers was 
presented. The DSS uses a mathematical formulation of two conflicting objectives and several constraints. 
A metaheuristic, NSGA-II, was implemented to find feasible bi-objective solutions of harvest and processing 
plans in reasonable time. A case study with real-world data was used to evaluate the quality of the 
solutions. The case study comparison shows that a DSS can facilitate improved decisions and save time by 
producing a Pareto-optimal set of solutions in four hours or less, while the manual process took up to three 
weeks to develop an initial plan of which the quality was not known. With the developed DSS, the role of 
the human decision-maker shifts from detailed logistics to finding the trade-offs among the Pareto-optimal 
solutions. Adjustments to frequent changes can be incorporated considering the entire interconnected 
system and support the LM to focus on communication and coordination. More demand can be serviced 
when the model is granted more processing facilities. Internal company heuristics restrict this to simplify 
decision-making parameters. An algorithm can easily handle this added complexity, providing improved 
options and alleviating the human from details. 

The DSS and its embedded mathematical model are unique and contribute to the following gaps identified 
in Section 2: 

• The study focused on table grape producer-exporters’ harvest and processing decisions. It considers 
the commodity-specific handling requirements not found in the existing literature. The two objectives 
of the model set it apart from past models. Many past models focussed only on the economic impact 
of models. 

• This model focussed on meeting the specific demand requirements and ensuring that it can be packed 
as close to the source as possible to limit transportation quality degradation of highly perishable 
products. 

• It incorporates planning of specific market requirements for customers with frequent changes to supply 
and processing abilities (order-to-promise). 

• A geographical spread of farms and processing plants was used for the case study. The model is built 
to find the best possible solution for packing stock at the closest possible facility while meeting as 
much customer demand as needed. 

• Instead of using traditional economic performance measures, two conflicting objectives were 
formulated: the mass of fruit deviating from the target (kilogram, minimised) and the distance each 
kilogram a product is transported (km). 

Future work will include incorporating grape quality and sizing into the model. At the time of writing, this 
data was not available from source systems and had to be excluded. Including vessel schedules in the model 
can ensure that an order is completed before loading. A restriction on accreditation for a customer-pack-
site combination can be beneficial to cater to instances with market restrictions on export fruit. Parts of 
the DSS have been implemented by the producer-exporter and full-scale implementation remains an 
ongoing process. 

Only the NSGA-II was used to establish a bi-objective feature for the DSS, and other metaheuristics should 
be evaluated for suitability (efficacy, speed) in the DSS. 
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