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ABSTRACT 

This paper provides a comprehensive overview and evaluation of link 
prediction techniques. The study includes an analysis of various 
methods, ranging from simple heuristics to complex embedding-based 
approaches. The comparative study evaluates the performance of each 
technique across a range of diverse data sets, and offers unique insights 
into the strengths and limitations of each approach, as well as their 
suitability for different types of network structure. For example, the 
research shows that, while some techniques may perform well on small 
and sparse networks, they may not be as effective on larger, denser 
networks. By providing a thorough analysis of various link prediction 
techniques, this study proffers a valuable resource for researchers 
seeking to develop more effective algorithms for predicting links in 
networks. The findings of this study contribute to a deeper 
understanding of the dynamics and structure of networks. 

 OPSOMMING  

Hierdie artikel bied 'n omvattende oorsig en evaluering van 
skakelvoorspellingstegnieke. Die studie sluit 'n ontleding van verskeie 
metodes in, wat wissel van eenvoudige heuristieke tot komplekse 
inbedding-gebaseerde benaderings. Die vergelykende studie sluit ‘n 
evaluering van die prestasie van elke tegniek oor 'n reeks uiteenlopende 
datastelle, en bied unieke insigte in die sterk punte en beperkings van 
elke benadering, sowel as hul geskiktheid vir verskillende tipes 
netwerkstruktuur. Byvoorbeeld, die bevindinge toon dat, hoewel 
sommige tegnieke goed kan presteer op klein en yl netwerke, hulle dalk 
nie so effektief is op groter, digter netwerke nie. Deur 'n deeglike 
ontleding van verskeie skakelvoorspellingstegnieke te verskaf, bied 
hierdie studie 'n waardevolle hulpbron vir navorsers wat meer effektiewe 
algoritmes wil ontwikkel vir die voorspelling van skakels in netwerke. 
Die bevindinge van hierdie studie dra by tot 'n dieper begrip van die 
dinamika en struktuur van netwerke. 

 

 

 

 

1. INTRODUCTION 

Network science is a powerful tool for understanding complex systems across various inherently 
interconnected domains, such as social networks, biological systems, and transportation infrastructure, to 
name a few [1, 2]. A ‘network’ is formally defined as a system comprising nodes that are connected by 
links. Nodes represent individual entities or elements, while links represent the connections or relationships 
between these entities [2]. One of the fundamental tasks in network science is link prediction, which aims 
to identify potential connections between nodes in a network, based on the current network’s connections 
and other node attributes [3, 4]. Accurate and robust link prediction techniques can prove valuable in 
extracting insight from networks so as to lend decision support across numerous use cases, ranging from 
recommending friends in social networks to identifying potential drug targets in biological systems [5, 6]. 
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Over the past few decades, a plethora of link prediction methods has been proposed, encompassing 
traditional approaches that employ network topology, as well as more sophisticated techniques using 
machine learning and graph neural networks (GNNs) [6, 7, 8, 9]. Despite the abundance of research in this 
area, the absence of a comprehensive and unbiased comparative study of a wide range of link prediction 
methods contributes to inconclusive and inconsistent findings, hindering the identification of the most 
suitable technique for a specific application [6, 8, 10]. In addition, a large number of evaluation procedures 
employed in prior studies often disregard crucial considerations that can significantly impact the 
assessment of link prediction performance, such as the trade-offs between true positive rates and false 
positive rates, or the impact of the distance between node pairs on algorithmic performance [10]. 
Furthermore, the efficacy of link prediction techniques can be largely attributed to specific structural 
properties of the network at hand. Prior studies, however, have often been lacking because of limited 
insight into this relationship, focusing primarily on heuristic link prediction methods or overlooking certain 
network structure characteristics [11]. In addition, previous studies typically examined the correlation 
between a single network characteristic and performance [12, 13]. Recognising the correlative relationship 
between network structure and prediction performance is key to both selecting the appropriate method 
for a given application and creating robust prediction techniques.  

In this article, the aim is to address these challenges by undertaking a comprehensive and rigorous 
comparison of a diverse range of link prediction methods. The primary contributions can be summarised as 
follows: 

1. A broad review of state-of-the-art link prediction methods is provided, highlighting their strengths 
and limitations, while emphasising the lack of a single method that outperforms each of its 
counterparts in respect of various test problems. 

2. A standardised, fair, and effective data set selection and algorithmic evaluation criteria is 
formulated and applied, focusing on data set diversity and addressing the class imbalance problem 
that is inherent in link prediction tasks. 

3. An extensive comparative study is carried out in respect of the selected techniques on a diverse 
set of real-world networks, highlighting their strengths and weaknesses and providing practical 
guidelines for selecting the most appropriate technique according to the specific characteristics 
of a given network and application domain. 

4. A detailed correlation analysis is also performed, investigating the relationship between various 
network characteristics and the performance of different link prediction techniques. This analysis 
contributes to a deeper understanding of how the underlying network structure can influence link 
prediction performance. 

5. The importance of fair and effective evaluation is propounded in an effort to advance link 
prediction research and promote the adoption of these techniques in practical scenarios. 

The remainder of this article is organised as follows. A literature review on link prediction methods is 
presented in Section 2. The methodology — encompassing the selection of link prediction methods, data 
sets, evaluation criteria, and correlative analysis — is then outlined in Section 3. A detailed analysis and 
comparison of the link prediction methods is provided in Section 4. The paper concludes in Section 5 with 
a summary and recommendations for future work. 

2. LITERATURE REVIEW 

Given a network, denoted by 𝒢𝒢 = (𝒱𝒱, ℰ), where 𝒱𝒱 denotes the set of nodes and ℰ denotes the set of edges 
(or links), link prediction involves estimating whether a link, denoted by 𝑒𝑒(𝑢𝑢, 𝑣𝑣), is currently present or is 
likely to emerge between a pair of nodes 𝑢𝑢 and 𝑣𝑣, where 𝑣𝑣, 𝑢𝑢 ∈ 𝒱𝒱 and 𝑒𝑒(𝑢𝑢, 𝑣𝑣) ∉ ℰ. A visual representation 
of the link prediction problem is presented in Figure 1.  

The task of link prediction can generally be described according to two distinct categories [5]: 
1. Anticipating future links within a given network, according to which the network’s evolving nature 

underpins the task. This situation relates to tasks such as forecasting future friendships or 
collaborations, from which valuable insights into the factors that drive network evolution can be 
gleaned [13]. 

2. Discerning missing links within an observed network, according to which the network is regarded 
in its current static state. This approach is largely employed to uncover hidden or lost connections 
[14, 15]. 
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A wide range of link prediction approaches has been proposed in the literature. These methods can be 
broadly classified according to three paradigms: heuristic-based, classifier-based, and embedding-based 
methods [8]. Detailed discussions of each of these categories are presented below.  

 

 

Figure 1: The generic link prediction problem. The grey circles represent nodes and the lines 
connecting them represent links. 

2.1. Heuristic-based methods 

Heuristic-based link prediction methods are governed by the assignment of a so-called similarity score, 
denoted by 𝑆𝑆(𝑢𝑢,𝑣𝑣), to each node pair, which is proportional to the likelihood of a link. These scores are 
ranked, after which a threshold is employed to determine the specific link predictions. The threshold is 
often determined empirically or through cross-validation so as to balance the trade-off between precision 
and recall of the predictions [7]. These methods depend on the network’s topological features, and can be 
classified into three categories: neighbour-based, path-based, and random-walk-based metrics [6]. 

The common neighbours (CN) metric is a foundational heuristic in the domain of link prediction, predicated 
on the assumption that two nodes are more likely to form a link if they share a comparatively large number 
of neighbours [16]. In the context of a network, ‘neighbour’ refers to a node that is directly connected to 
another node by a link [2]. For a given pair of nodes 𝑢𝑢 and 𝑣𝑣, the CN metric is defined as  

𝑆𝑆(𝑢𝑢,𝑣𝑣)
𝐶𝐶𝐶𝐶 = |Γ(𝑢𝑢) ∩ Γ(𝑣𝑣)|,  (1) 

where Γ(𝑢𝑢) and Γ(𝑣𝑣) denote the sets of neighbours of 𝑢𝑢 and 𝑣𝑣 in 𝒢𝒢 = (𝒱𝒱, ℰ),respectively. Furthermore, |… | 
denotes the count of nodes in the neighbourhood. 

The Jaccard coefficient (JC) is also based on the principle that shared neighbours between two nodes 
correspond to a reasonable likelihood of a future link [7, 17]. The JC introduces a normalisation factor to 
account for the differences in respect of the degrees of the nodes, which provides a more balanced 
measure. Mathematically, the JC may be defined as 

𝑆𝑆(𝑢𝑢,𝑣𝑣)
𝐽𝐽𝐽𝐽 =

|Γ(𝑢𝑢) ∩ Γ(𝑣𝑣)|
|Γ(𝑢𝑢) ∪ Γ(𝑣𝑣)|

. (2) 
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The Salton index (SI) provides a more nuanced measure by incorporating both the intersection and 
geometric mean of the degrees of the nodes. ‘Degree of a node’ refers to the number of links connected 
to that node in a network [2]. The SI accounts for degree variations among nodes, ensuring a more equitable 
comparison [18]. This can be expressed mathematically as 

𝑆𝑆(𝑢𝑢,𝑣𝑣)
𝑆𝑆𝑆𝑆 =

|Γ(𝑢𝑢) ∩ Γ(𝑣𝑣)|

�𝑘𝑘𝑢𝑢 × 𝑘𝑘𝑣𝑣
, (3) 

where 𝑘𝑘𝑢𝑢 and 𝑘𝑘𝑣𝑣 denote the degrees of nodes 𝑢𝑢 and 𝑣𝑣 respectively.  

The Adamic-Adar (AA) index considers both the quantity of common (i.e., shared) neighbours and the 
assignment of a weighted importance value. The underlying premise is that shared neighbours that have 
smaller degrees are more informative; therefore, it assigns a correspondingly smaller weight to shared 
neighbours having a larger degree [19]. Mathematically, the AA index may be defined as 

S(u,v)
AA = �  

z∈Γ(u)∩Γ(v)

1
log kz

 . (4) 

The preferential attachment (PA) index assumes that nodes having a large degree are more likely to form 
connections. Accordingly, the probability that a new link involves a particular node is calculated based on 
its degree, leading to the so-called ‘rich get richer’ phenomenon [20]. The PA index can be expressed as 

S(u,v)
PA = |Γ(u)||Γ(v)|. (5) 

The resource allocation (RA) index focuses on resource transfer over the network, which involves the 
exchange (or sharing) of information, energy, or influence among the nodes in the network [7]. This metric 
employs the inverse of the degree as the weight [21]. The RA index can be expressed as 

S(u,v)
RA = �  

z∈Γ(u)∩Γ(v)

1
Γ(z). (6) 

Neighbour-based heuristic link prediction methods are commonly associated with advantages such as ease 
of application and scalability, enabling efficient computation for large-scale networks; the majority of the 
computational advantages can be attributed to their simple usage of network topology. Their assumption 
of network homogeneity, however, potentially results in complex structures not being considered 
satisfactorily, leading to diminished predictive performance [7].  

2.2. Learning-based methods 

There has been a notable increase in the recent literature in the development of learning-based link 
prediction methods. These methods integrate heuristic-based link prediction metrics, together with innate 
properties and other external data [8]. These techniques are typically categorised as follows: classifier-
based, probabilistic graph modelling, or matrix factorisation [6].  

In the context of classifier-based methods, consider the nodes 𝑢𝑢, 𝑣𝑣 ∈ 𝒱𝒱 in the graph 𝒢𝒢(𝒱𝒱, ℰ), and let 𝑙𝑙(𝑢𝑢,𝑣𝑣) 
denote the label for the node pair instance (𝑢𝑢, 𝑣𝑣). The task of learning-based link prediction entails 
categorising node pairs as instances, which includes assigning a class label to each pair, during which 
features that describe the characteristics of the pair are used. Therefore, a node pair may be assigned a 
positive label if a link is present between the nodes. On the other hand, if no such link is present, the pair  

is labelled as negative. The label of the corresponding data point in the classification model can therefore 
be defined as 

𝑙𝑙(𝑢𝑢,𝑣𝑣) = �     +1 if (𝑢𝑢, 𝑣𝑣) ∈ ℰ, or
−1 if (𝑢𝑢, 𝑣𝑣) ∉ ℰ.  (7) 
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This formulation corresponds to a binary classification task that can be addressed using various supervised 
learning models [6]. Al-Hasan et al. [3] first proposed a supervised learning approach to link prediction in 
2005 — a methodology that may be regarded as a central tenet of the principles of contemporary learning-
based methods.  

In order to construct an effective link prediction classifier, defining and extracting a set of relevant features 
from a network is important [3, 7]. The features provided by heuristic-based metrics provide an intuitive 
means to this end, and are informative in nature. Non-topological features, on the other hand, have the 
advantage of enhancing the performance of the link prediction problem, but they may not always be easily 
accessible, thus making collection difficult. Moreover, these features are typically domain-specific, 
requiring adequate domain knowledge for identification and discovery. While a general link prediction 
classifier often accounts solely for generic features (such as those related to the node, network, and 
topological traits), practical link prediction applications should also consider non-topological features to 
the greatest possible extent [6, 8]. The scope of this study does not permit the inclusion of such features. 

Classifier-based link prediction methods are flexible, facilitating the selection of many algorithmic 
approaches and feature types that can help to capture diverse network structures [22]. Their success, 
however, can be dependent on feature availability and quality. These approaches can also be 
computationally demanding, especially for large networks [7]. Consequently, addressing feature challenges 
and computational complexity is vital for practical application. 

2.3. Embedding-based methods 

Network embedding-based methods can be equated with dimensionality reduction techniques, according 
to which high-dimensional nodes in a network are mapped to a lower dimensional representation space 
while preserving the node characteristics and attributes in a compressed format [8, 23]. Formally, given a 
network 𝒢𝒢 = (𝒱𝒱, ℰ), the aim of network embeddings is to derive a mapping function 𝑓𝑓: 𝑣𝑣 ⟼ 𝒓𝒓𝑣𝑣 ∈ ℝ𝑑𝑑, where 
𝒓𝒓𝑣𝑣 denotes the real-valued vector representation of node 𝑣𝑣, and 𝑑𝑑 is simply the dimension of the 
representation [24]. Embedding-based methods can be categorised as follows: matrix factorisation, random 
walks, and GNNs [8]. In the context of this study, however, focus is placed on random walks and GNNs, 
given the arguably simpler implementation of the former and the recent popularity of the latter.  

In the context of network analysis, random walks involve traversing a network by moving randomly from 
one node to another, during which network information is collected [25]. DeepWalk is the first random walk 
embedding-based method to be proposed for link prediction [26]. The approach employs random walks in 
order to generate node sequences, and employs a skip-gram model [27] from the domain of representation 
learning (Hamilton, Graph representation learning, 2020). By interpreting node sequences as sentences, 
latent representations can be approximated, providing a novel perspective for network embedding 
approaches [7, 26]. Building on the foundation of DeepWalk, Grover et al. [29] proposed Node2Vec. This 
method introduces a biased random walk strategy that merges breadth-first and depth-first search. 

Although random walk-based embeddings can handle large networks efficiently, their utility is contingent 
on the assumption that node neighbourhoods are indicative of the likely presence of links — an assumption 
that may not hold in complex networks [6]. The quality of embeddings is also sensitive to the chosen 
parameter values; these methods can also fail to capture long-range dependencies effectively. It is 
therefore imperative to evaluate critically the underlying assumptions and limitations when applied to link 
prediction. 

Inspired by convolutional neural networks (CNNs) [30] and network embeddings, GNNs were introduced to 
address the limitations of traditional embedding methods [9]. While CNNs are designed for Euclidean data, 
such as images and text, their performance is typically unfavourable in non-Euclidean data structures — a 
prevalence in complex networks. Moreover, despite their contributions to network embeddings, encoding 
methods such as DeepWalk and Node2Vec are constrained by their shallow learning mechanisms, which 
limit further improvements in network embedding quality. Appropriately, GNNs were developed to mitigate 
these issues [31].  

Graph convolutional networks (GCNs) [32] are an effective adaptation of CNNs, and are designed for semi-
supervised learning on graph data. GCNs learn hidden layer representations that incorporate both local 
network structures and node features without requiring a comprehensively labelled data set (Hamilton, 
Graph representation learning, 2020). Graph sample and aggregation (GraphSAGE) [33] is another 
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influential GNN model that enables inductive learning by generating embeddings for unseen nodes during 
training. Unlike transductive models such as GCNs, GraphSAGE does not operate on the entire graph during 
training. Instead, the model learns to sample and aggregate features from the local neighbourhood of a 
node (Hamilton W. L., Graph representation learning, 2020). Last, graph attention networks (GATs) 
introduce the powerful attention mechanism [34], which significantly enhances the adaptability of the 
model. Unlike previous GNN models that use uniform weights in the aggregation function, GAT assigns 
varying weights to different nodes in a neighbourhood, based on their relative importance [8, 35].  

GNN-based embeddings for link prediction exhibit both strengths and weaknesses. GNNs excel in capturing 
complex structural patterns by leveraging rich connectivity information in graphs. In addition, GNN-based 
approaches are versatile, accommodating various graph properties and auxiliary features. Interpretability 
can be difficult, however, owing to the partial black-box nature of GNNs. Scalability is also a concern in 
the context of large-scale networks, as training and inference can be computationally demanding [9]. 
Addressing these challenges is crucial for the effective application of GNN-based embeddings in link 
prediction. 

It should be noted that different network embedding methods (such as GNN or random walk-based 
approaches) adopt various modelling pipelines for link prediction. Some methods directly generate link 
probabilities, while other methods require additional learning that is based on the node embeddings [24, 
36, 37]. Two prevalent approaches involve employing a measure of similarity between two node 
embeddings, such as the dot product (representing the link probability), or treating the problem as a binary 
classification task. The latter approach, deemed more effective by Gurukar et al. [38], requires the 
computation of node-pair embeddings prior to classification. Therefore, an operator is applied to obtain 
the node-pair representations, which are then provided as input to a binary classifier. The operator choice 
varies across studies, and is sometimes completely left out of the documentation [29, 39, 40].  

3. METHODOLOGY 

In this section, the methodology employed to carry out a comparative study of link prediction techniques 
is described. First, the selection criteria for link prediction methods are outlined. Thereafter, the data sets 
under consideration and the associated pre-processing techniques are discussed in more detail. Evaluation 
techniques are then detailed and, finally, the correlation analysis is clarified. 

3.1. Selection of link prediction methods 

In this paper a computational study of the prevalent link prediction methods in the literature is done, as 
discussed in Section 2. The following heuristic-based methods are considered: CN, JC, SI, AA, PA, and RA. 
In the case of classifier-based methods, the following supervised learning algorithms are considered: 
decision tree [41], random forest (Breinman, 2001), logistic regression [41], support vector machine [43], 
and multi-layered perceptron [44]. Embedding-based methods include DeepWalk, Node2Vec, GCN, 
GraphSAGE, and GAT. The aforementioned selection of algorithms is guided by both diversity (in respect of 
their fundamental working) and their varying performance levels, as reported in different studies [4, 45, 
46]. 

It is reported that these various approaches can exploit different underlying signals of similarity — a finding 
that underscores the empirical prevalence of the ‘no free lunch’ theorem [47]. A comprehensive 
comparison between these methods has not been addressed, despite their apparent success in a wide range 
of empirical studies [5, 6, 11]. It should be noted that studies reporting on such comparisons frequently 
offer an incomplete performance evaluation, often neglecting the critical precision-recall measure. The 
inclusion of precision-recall analysis enriches the understanding of algorithmic performance, and facilitates 
a more informative comparison, especially in the binary classification context [13]. This shortcoming 
inhibits conclusive inferences about the relative merits of these methods, underscoring the need for further 
research that is grounded in more robust evaluations [10]. In addition, a large number of the empirical 
evaluations to date have been based on a limited test suite (or sample size) of network data sets and link 
prediction algorithms, which inhibits both a holistic understanding of algorithmic performance and 
comprehension of the nuances associated with the different approaches. Furthermore, the extent to which 
different methods (or methodological paradigms) capture similar underlying features for link prediction is 
not realised [45]. Appropriately, this study seeks to address these limitations in the literature by considering 
a diverse set of representative link prediction methods for various network data sets, from which insight 
can be drawn so as to aid algorithmic selection decision support. 
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A notable scope limitation is required because of the computational time required to perform 
hyperparameter tuning. Consequently, this study employs the hyperparameter values delineated in the 
original papers of the respective methods. The authors do acknowledge, however, the importance of 
hyperparameter tuning, which can markedly affect link prediction performance, especially upon 
considering network variations across data sets. In Table 1, the implemented hyperparameter values and 
associated Python packages are detailed. The NetworKit [48] package was used for the heuristic-based link 
prediction methods. The experiments in this study were conducted on a MacBook Pro equipped with an 
Apple M1 chip and 8 GB of memory.  

Table 1: Hyperparameters and corresponding values for classifier- and embedding-based methods. 

Method Parameters Package Method 

Decision tree   Criterion = ‘gini’, Splitter = ‘best’, Maximum 
Features = 0.2, Maximum depth of the tree = 3 

Scikit-learn [49] Decision tree   

Gradient 
boosting 

Loss = ‘log loss’, Number of estimators = 25, 
Maximum depth of the tree = 3 

Scikit-learn [49] Gradient 
boosting 

Random forest Criterion = ‘gini’, Number of estimators = 25, 
Maximum Features = 0.2 

Scikit-learn [49] Random forest 

Logistic 
regression 

Maximum iterations = 1000 Scikit-learn [49] Logistic 
regression 

Support vector 
machine 

Enable probability estimates = True Scikit-learn [49] Support 
vector 
machine 

Multi-layered 
perceptron 

Hidden neurons = 100, Activation function = 
'relu', Solver = 'adam', Maximum iterations = 
1000 

Scikit-learn [49] Multi-layered 
perceptron 

DeepWalk 128-dimensional embeddings, Number of walks 
= 10, Walk length = 80, 
Window size = 10, Workers = 1, Concatenation 
similarity operator 

Gensim [50] DeepWalk 

Node2Vec 128-dimensional embeddings, Number of walks 
= 10, Walk length = 80, 
Window size = 10, Workers = 1, p = 1, q = 1, 
Concatenation similarity operator 

node2vec [29] Node2Vec 

GCN 128-dimensional embeddings, Input channels = 
Output channels = 128, Number of layers = 2, 
Learning rate = 0.001, Dot product similarity 
operator 

PyTorch Geometric 
[51] 

GCN 

GraphSAGE 128-dimensional embeddings, Input channels = 
Output channels = 128, Number of layers = 2, 
Learning rate = 0.001, Dot product similarity 
operator 

PyTorch Geometric 
[51] 

GraphSAGE 

GAT 128-dimensional embeddings, Input channels = 
Output channels = 128, Number of layers = 2, 
Learning rate = 0.001, Dot product similarity 
operator 

PyTorch Geometric 
[51] 

GAT 

3.2. Selection of data sets 

Surveys and frameworks reported in prior research predominantly focus on network data from a specific 
domain, such as social networks [6, 11, 22]. This data set selection bias may thus inadvertently obscure the 
perceived performance of a link prediction approach, inhibiting a more comprehensive evaluation of diverse 
problem contexts. To address this limitation, the proposed approach involves the inclusion of data sets 
from multiple domains, facilitating a more robust evaluation of the considered methods and their 
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adaptability to different network types. The algorithmic performance comparison (and the insights inferred 
from it) can form the basis on which data-driven and domain-agnostic algorithmic selection can be 
performed. The adopted experimental design uses eight undirected, unweighted real-world networks 
obtained from diverse domains.   

Visual representations showcasing the structural differences of the respective networks are presented in 
Figure 2. Furthermore, the numerical structural characteristics of each network data set are provided in 
Table 2. The Adole network is sparsely connected with significant modularity. The CA-GrQc network can 
be characterised by its high level of interconnectedness within its communities, but it is sparsely connected 
overall. A ‘community’ is defined as a subset of nodes within the network such that connections between 
the nodes are denser than connections with the rest of the network [25]. The Facebook network shows 
dense connections and a strong community structure. The Jazz network is similarly dense and 
interconnected, with a short average path length. A ‘path’ is a sequence of nodes connected by links, with 
its length being the number of traversed links [25]. The Netscience network has a robust community 
structure, but sparse overall connections. The Power network has distinct communities, but is not densely 
connected and has the longest average path length of all of the networks. The UC Irvine network has nodes 
with a high average degree and short average path length, but lacks a distinct community structure. The 
Yeast network is sparsely connected, but has a prominent community structure. It is assumed that no data 
quality issues are present in the benchmark data sets. 

   
(a) Adole network (b) CA-GrQc network (c) Facebook network 

   
(d) Jazz network (e) Netscience network (f) Power network 

 

 

 

 

 

 (g) UC Irvine network  (h) Yeast network  

Figure 2: Fruchterman-Reingold network layout diagrams [52]. Links are shown in blue; more intense 
blue areas indicate densely interconnected nodes, suggesting compact communities or clusters. 
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Table 2: Network structural characteristics of each data set 

3.3. Description of data pre-processing techniques 

During the data pre-processing phase of link prediction, careful consideration must be given to the nature 
of the input data. This involves splitting present links within the graph 𝒢𝒢 = (𝒱𝒱, ℰ) into train and test sets, 
denoted by ℰ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and ℰ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 respectively, while, importantly, also generating missing links to include in 
these sets. Various sampling strategies can be implemented for the present links so as to split ℰ into ℰ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
and ℰ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, such as random sampling [38], spanning tree [61], and depth-first tree [37]. The choice of link 
sampling strategy can have an impact on the characteristics of the training data, and so can affect model 
performance by potentially excluding informative network features [37]. In this paper, a random sampling 
strategy is implemented that helps to mitigate the risk of introducing bias, ensuring a fair representation 
of the network’s structure in the training data [10]. The computational simplicity of this strategy further 
warrants its selection. 

Apart from partitioning present links, it is also important to generate missing links for inclusion in ℰ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
and ℰ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. However, a challenge relates to the significant imbalance between possible missing and present 
links [10, 13]. Various strategies have been proposed for effective sampling, such as random selection for 
broad coverage, although that approach may disregard structural characteristics and geodesic distance-
based selection, which can introduce bias [3, 13, 62, 63]. Other approaches select links based on specific 
contextual information, such as constraining link selection to nodes having a degree of at least two [4]. A 
judicious combination of strategies is essential to sample effectively from the highly imbalanced set of 
candidates, ensuring balanced and representative train and test sets. In this study a hybrid approach is 
adopted, according to which the generation of missing links is (over)inflated by one order of magnitude 
when compared with the number of present links. Naturally, the intuitive approach is to counter the 
inherent imbalance. Preferential and geodesic sampling methods are integrated, according to which nodes 
with higher degrees are selected that reflect real-world network attachment preferences, while the 
geodesic method samples node pairs within a two-hop distance so as to capture local structure. (A ‘hop’ 
refers to the step or movement from one node to another via a single edge or link [25].) This approach aims 
to construct a diverse and representative set of negative samples, enhancing the robustness of link 
prediction evaluations. This adopted approach is, to the best of the authors’ knowledge, novel. Data pre-
processing was performed using a combination of the NetworKit [48] and NetworkX [64] Python packages. 

The train-test split ratio varies widely in the literature, with Grover and Leskovec [29] employing a 50-50 
split, Gao et al. [65] opting for 60-40, and Lai et al. [66] using 80-20. Such inconsistencies highlight the 
importance of careful consideration in preparing data sets for link prediction analysis. In this paper, an 80-
20 split is adopted, with under-sampling applied to the training set to address class imbalance. To verify 
the model, five-fold cross-validation is employed, offering robustness against overfitting.   
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Adole [53] 9 807 2 536 0.003 0.138 4.683 0.631 12 7.734 0.003 0.001 0.215 

CA-GrQc [54] 13 036 5 145 0.001 0.394 6.245 0.865 441 5.067 0.001 0.001 0.099 

Facebook [55] 88 234 4 039 0.011 0.606 3.693 0.835 15 43.691 0.011 0.001 0.276 

Jazz [56] 2 605 197 0.135 0.601 2.251 0.448 4 26.447 0.135 0.006 0.454 

Netscience [57] 2 742 1 461 0.003 0.694 6.042 0.959 276 3.754 0.003 0.000 0.014 

Power [58] 6 594 4 941 0.001 0.080 18.989 0.935 42 2.669 0.001 0.004 0.054 

UC Irvine [59] 5 337 880 0.014 0.052 3.106 0.241 14 12.130 0.014 0.002 0.326 

Yeast [60] 2 093 1 821 0.001 0.057 6.857 0.856 190 2.299 0.001 0.002 0.088 
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Various strategies have been employed for feature selection in classifier-based link prediction, according 
to which some incorporate proximity, aggregated, and topological features, while others employ neighbour-
based metrics, centrality metrics, community metrics, and geodesic distance [3, 22]. In this article, feature 
extraction is governed by standard network features such as CN, JC, and node degrees, chosen for their 
suitability for capturing network topology without domain-specific knowledge. In order to alleviate 
computational inefficiencies and reduce training times, the extracted scope features are delimited. This 
approach seeks to offer a succinct yet informative representation of the network structure for effective 
link prediction analysis. 

3.4. Evaluation techniques 

A large number of link prediction studies tend to rely heavily on reporting the area under the receiver 
operating characteristic curve (AUROC) as the primary performance metric, overlooking the importance of 
other evaluation measures [8, 11, 13, 67, 68]. Relying exclusively on AUROC may not provide a 
comprehensive evaluation in the context of link prediction. Integrating the area under the precision-recall 
(AUPR) curve with the commonly used AUROC is imperative for a more robust evaluation [8, 10, 13]. AUROC 
employs both the true positive rate and the false positive rate, providing a measure of a model’s 
performance that is biased towards false positives (Hanley & McNeil, 1982). On the other hand, AUPR uses 
precision and recall, providing a measure of the model’s efficacy in identifying positive samples. AUROC is 
suitable when positives and negatives are nearly balanced, whereas AUPR is favoured in cases of class 
imbalance or when differing costs are attached to false positives and negatives — typically the case for link 
prediction. AUROC can therefore be overly optimistic when applied to imbalanced data sets owing to the 
influence of true negatives, rendering AUPR more informative, as it gives the necessary attention to the 
minority class. In summary, employing both AUROC and AUPR yields a multifaceted and more accurate 
assessment of model performance in link prediction tasks, particularly in diverse conditions and data sets 
[13]. Appropriately, both AUPR and AUROC are employed as evaluation metrics. 

3.5. Correlative investigation 

A correlation analysis of network characteristics (summarised in Table 2) and algorithmic performance (i.e., 
AUPR) can yield valuable and actionable insight into algorithmic performance and offer decision support 
for algorithm selection. Appropriately, the Pearson’s coefficient is employed. (The widely adopted 
Pearson’s coefficient is a statistical measure employed to assess linear correlation between two variables 
[70].) The coefficient ranges from −1 to 1, according to which −1, 1 and zero signify a perfectly negative, 
perfectly positive, and no linear correlation respectively. Values between −1 and 1 indicate varying 
strengths of negative or positive correlations. 

It should be noted that previous research in the field has focused primarily on specific categories of link 
prediction method, such as heuristic-based approaches, or has restricted the analysis to specific network 
types, such as social networks [11, 12]. Furthermore, previous studies have typically examined the 
correlation between a single network characteristic and performance, primarily measured using AUROC 
[12]. The investigation presented in this paper is a more comprehensive approach to analysing correlative 
relationships between algorithmic performance (AUPR) and network characteristics (considering a wide 
range of features). The extent of this investigation is another novel contribution to the field of link 
prediction. 

4. ANALYSIS 

In this section, the findings stemming from the computational analyses that were carried out are presented. 
First, the algorithmic performance achieved by each of the link prediction methods is discussed, followed 
by a correlative analysis to discern the relationships between network characteristics and link prediction 
performance. 

4.1. Algorithmic performance 

The performance results of the heuristic-, classifier-, and embedding-based methods are illustrated 
graphically in Figure 3. A variety of noteworthy outcomes can be highlighted from examining the results, 
alluding to some preliminary insight into the qualitative extent to which specific network characteristics 
can affect the performance of link prediction methods. For example, the networks with large clustering 
coefficients, such as Facebook and Netscience, exhibited consistently favourable link prediction 
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performance, as showcased by the high AUROC and AUPR scores across all categories of link prediction 
techniques; it can thus be conjectured that these techniques perform commendably in the context of highly 
clustered networks. Another noteworthy observation is the markedly strong performance of classifier-based 
methods, such as the random forest and the multi-layered perceptron, in respect of the Facebook data set, 
achieving nearly perfect AUROC and AUPR scores, thus reinforcing the notion of their utility in the context 
of networks that have notable clustering and relatively short average path lengths. In the case of the Power 
and Yeast networks (each having long average path lengths), the performance of heuristic- and classifier-
based methods was less satisfactory, underlining their limited utility in the context of these specific types 
of networks. 

Conversely, embedding-based methods such as GCN and GAT exhibited relative superior performance in 
the case of networks with high modularity, such as CA-GrQc and Power. Their performance did show, 
however, a noticeable decline in respect of the Adole and Power networks, which had smaller clustering 
coefficients, indicating an inherent limitation of these methods when applied to less clustered networks. 
The discrepancy between the AUROC and AUPR results, particularly evident in the case of the Power and 
UC Irvine networks, substantiates the assertion that, while AUROC is sensitive to true positive rate, it does 
not account sufficiently for the true negatives, rendering AUPR a more informative measure. Consequently, 
the evaluation of prediction methods needs a careful consideration of both metrics in tandem with network 
characteristics so as to ensure a robust and accurate assessment. 

 
(a) AUROC and AUPR scores for heuristic-based link prediction methods 

 
(b) AUROC and AUPR scores for classifier-based link prediction methods 
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Figure 3: Link prediction results for (a) heuristic-, (b) classifier-, and (c) embedding-based methods 

4.2. Correlative analysis 

Correlations between various network characteristics and the algorithmic performance of the link 
prediction methods are now examined. Attention is particularly devoted to the top six network 
characteristics in respect of the largest correlation magnitude; this delimitation facilitates a more focused 
understanding of the main insights that can be inferred. Performance is assessed exclusively in respect of 
AUPR owing to its stated superiority for link prediction problems. It should be noted that the averaged 
network characteristic values and AUPR scores (across all data sets) were considered in this analysis.  

A summary of the results from the correlative analysis is presented in Figure 4. It can be observed that the 
clustering coefficient has notably strong positive correlations with the performance across the majority of 
link prediction methods. This indicates that these algorithms efficiently exploit the community structures 
that are often reflected by high clustering coefficients. However, modularity reveals less definitive patterns 
in respect of correlations, which is indicative of a more nuanced relationship. One can therefore suggest 
that a network’s modularity should be carefully considered before attempting to select an appropriate 
algorithmic approach. The average degree shows a wide range of positive correlations, especially with 
respect to node-embedding. The average degree shows a wide range of positive correlations, especially 
with respect to node-embedding methods such as DeepWalk and Node2Vec. This may be attributed to the 
notion that a higher average degree generally corresponds to a richness in structural information that can 
be exploited by these methods. 

 
Figure 4: Heatmap illustrating the correlation between network structural characteristics and link 

prediction performance, as measured by AUPR 

 
(c) AUROC and AUPR scores for embedding-based link prediction methods 
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Differences in correlations across various methods are noted. For instance, heuristic methods such as CN 
and JC show a distinct pattern when compared with embedding-based approaches such as DeepWalk and 
Node2Vec. This distinction demonstrates that the influence of network characteristics on performance can 
vary substantially, depending on the applied algorithmic approach. 

5. CONCLUSION 

Based on the insights inferred from the analyses above, it is evident that careful consideration should be 
given to the strengths, limitations, and applicability of various link prediction methods. Experimental 
comparisons highlighted the pivotal role of network characteristics in prediction performance. Accordingly, 
densely connected and community-structured networks (exemplified by Facebook and Netscience) showed 
admirable link prediction performance across various methods. Conversely, sparsely connected networks 
with longer average path lengths (such as the Power and Yeast networks) posed considerable prediction 
difficulties. Among the techniques considered in this study, classifier-based methods — in particular, 
sophisticated models such as multi-layered perceptrons — emerged as superior in performance, adeptly 
addressing intricate network patterns computationally. Heuristic methods displayed a commendable 
performance, while the success of embedding-based methods relied on network density and community 
structure.  

Additional quantitative-based insights were inferred from the correlative analysis that was carried out, 
which demonstrated varied relationships between network properties and prediction performance. 
Notably, a strong positive correlation was observed between the clustering coefficient and the prediction 
performance, while average path length showed a moderately negative correlation.  

For future work, expanding on the test suite by incorporating synthetic data sets into the evaluation is 
recommended. Including synthetic data sets could both facilitate a more comprehensive analysis and enable 
an investigation into algorithm performance under varying (predefined) conditions, thereby enhancing the 
value of the conclusions that are drawn. In addition, developing a structured and automated algorithm 
selection framework for link prediction algorithms, based on network characteristics, could streamline the 
process of choosing the best-suited method, improving efficacy and reducing the risk of selection bias.  

In conclusion, the results from the study have helped to provide an improved understanding of link 
prediction methods via the comprehensive comparative study carried out in this paper. The importance of 
considering network characteristics in method selection is substantiated by the empirical findings. This 
aforementioned is exemplified by the superior accuracy of classifier-based methods and the competitive 
performance of embedding-based techniques in certain problem contexts. Consequently, the findings in 
this study represent a contribute to the field of link prediction by proffering valuable and actionable insight 
into respect of understanding algorithmic performance and by providing a basis on which decision support 
for algorithm selection can be pursued.  
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