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ABSTRACT 

Promotions are a powerful tool at retailers’ disposal, but they are often 
underutilised. This happens when retailers select a suboptimal mix and 
pricing of vendor items to place on promotion. In this study, a 
mathematical optimisation model is developed that specifies the 
optimal mix and pricing of vendor items to put on promotion. First, a 
solution approach is formed by reviewing existing solutions in the 
literature, followed by the formulation of a mixed-integer nonlinear 
programming model. This model is expressed as an integer linear 
programming model to simplify its solving capabilities. Second, the 
model is verified by applying it to a retail dataset to confirm that the 
model is correctly formulated and coded. Last, the model is validated 
to test its scalability and computational abilities. The results show that 
the model is highly scalable. This implies that retailers can implement 
the model practically and effectively to increase the profit obtained 
from promotion events. 

 OPSOMMING  

Promosies is 'n kragtige hulpmiddel tot die beskikking van 
kleinhandelaars, maar dit word dikwels onderbenut wanneer 
kleinhandelaars 'n suboptimale kombinasie en prysbepaling van 
verskafferitems kies om op promosie te plaas. In hierdie studie word 'n 
wiskundige optimeringsmodel ontwikkel wat die beste kombinasie en 
prysbepaling van verskafferitems om op promosie te plaas kan bereken. 
Eers word 'n oplossingsbenadering gevorm deur bestaande oplossings 
binne die literatuur te hersien, gevolg deur die formulering van 'n 
gemengde-heelgetal nie-lineêre programmeringsmodel. Daarna word die 
model geverifieer deur dit op 'n kleinhandeldatastel toe te pas om te 
bevestig dat die model korrek geformuleer en gekodeer is. Laastens 
word die model bekragtig om die skaalbaarheid en berekeningsvermoë 
van die model te toets. Die resultate toon dat die model hoogs skaalbaar 
is. Dit impliseer dat kleinhandelaars die model prakties kan 
implementeer om effektief die wins wat uit promosiegeleenthede verkry 
word te kan verhoog. 

 

1. BACKGROUND 

The value of retail promotions is well-known. The marketing mix is a collection of strategies that companies 
use to market their brand(s). These strategies are associated with the marketing-mix variables of product, 
price, place, and promotion. Promotions can substantially increase short-term sales [1] and cause an influx 
of in-store traffic [2]. Promotions are the most critical factor affecting product sales among all the 
marketing-mix variables [3]. As such, they form the core of marketing-mix decisions [4]. This is reflected 
in the significant portion of marketing-mix budgets that retailers allocate to conduct promotions [5]. The 
harmful aspects of promotions, however, are less well-known. 
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Ailiwadi et al. [6] conducted a prize-winning study in which they quantified the profit impact of every 
promotion offered in 2003 by CVS, a large drug retailer based in the USA. They found that 50% of promotions 
are not profitable because the lower profit margins on promotional items are not sufficiently offset by the 
funding provided by vendors to conduct promotions. In addition, by eliminating promotion events in 15 of 
the worst-performing product categories, CVS would lose $7.8 million in sales but increase its overall profit 

by about $52 million. 

Over-promotion, which occurs when a retailer conducts promotions too often, can also hurt their bottom 
line. The next paragraph describes the phenomena that can be exacerbated if an item is over-promoted or 
if a retailer over-promotes its products.  

Promotions have a saturation effect. Consumers tend to stockpile products during promotional events. 
Repeat purchases tend to drop following promotions [6]. Promotions can change customers’ reference 
prices of a product [7]. Customers might be less likely to purchase an item whenever it is not promoted. 
Finally, promotions might alter the image of a retailer or the image of a promoted brand.   

Retailers should take great care to ensure that promotional margins are sufficiently offset by vendor 
funding, and that promotions are spaced out sufficiently to prevent over-promotion. The question thus 
arises: how are retailers currently planning promotions such that these factors are taken into account? 

In most supermarket chains, promotion planning is done manually using informal heuristics [8]. This makes 
decision-making arduous, over-reliant on managerial experience, and prone to human error. Furthermore, 
by using such methods, retailers frequently select a mix and pricing of vendor items to place on promotions 
that will not result in the optimal profit being obtained.  

There is a clear need for a method that can assist retailers with promotion planning. This study presents a 
mathematical optimisation model that specifies the optimal parameters of vendor items to place on 
promotion, and that takes into account the effects of vendor funding and over-promotion.      

2. RELATED WORK  

Studies that aimed to optimise promotion planning are reviewed to identify possible solution approaches. 
Key aspects that must be identified in related works include the type of data used in the study, the main 
deliverable of the study, the nature of the demand module incorporated in the study, whether the study 
accounts for vendor funding, and whether the study includes optimisation features. In this section, six 
studies that aimed to optimise promotion planning are identified. 

Van Heerde et al. [9] developed a semi-parametric model that uses store-level scanner data to estimate 
sales based on promotion depth and the level to which the promotion is advertised to consumers. Their 
model Indicated an s-shaped relationship between item sales and discount depth. This s-shaped deal-effect 
curve is visualised in Figure 1. 

 

Figure 1: An s-shaped deal-effect curve 
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An s-shaped deal-effect curve implies the existence of two phenomena. First, there is a minimum discount 
depth below which customers are unlikely to change their buying behaviour – a threshold effect. Second, 
there is a maximum discount depth at which the sale rate of promotional items no longer increases with 
the increase of discount size – a saturation effect. As Van Heerde et al.’s [9] model predicts sales for 
multiple periods, the combination of the threshold and saturation effects encompasses the effects of 
stockpiling. Their model does not, however, include the effects of vendor funding, nor does it have any 
optimisation features.   

Guadagni and Little [4] developed a multinomial logit model that predicts sales as a function of brand and 
size loyalty, the binary presence of promotions, the regular retail price, and customer purchase history. 
The study assumes an s-shaped deal-effect curve. Their model was validated using panel data – that is, 
data from individual customers’ purchase histories. The model does not account for discount size nor for 
the effects of vendor funding, and it does not have any optimisation features. 

Tellis and Zufreyden [10] sought to find the optimal timing and depth of retail discounts under various 
circumstances. They developed a nonlinear programming model that maximises promotional profit. Again, 
the authors assumed an s-shaped deal-effect curve. The model was validated using a simulated store-level 
data set. Their model was shown to output effectively the optimal timing and depth of retail discounts over 
multiple brands and periods. Their model did not factor in vendor funding. 

Ma and Fildes [11] developed a decision-support system that is capable of maximising multi-period category 
profits. They first developed an autoregressive distributed lag model to model retail sales, and then 
incorporated the model in a linear programming model that specifies the optimal mix and pricing of 
promotional items. Their demand model resulted in an exponential deal-effect curve, while their linear 
programming model output the parameters that would result in the maximum category profits being 
obtained.  

Cohen et al. [8] also aimed to specify the optimal timing and depth of price discounts. The authors proposed 
an exponential demand model, based on store data, that notably captures promotion fatigue from 
stockpiling events. The demand model was then incorporated in a linear programming model that maximises 
promotional profit. The study did not take vendor funding into account. 

The scopes of the mentioned studies are summarised in Table 1, which indicates that, although numerous 
studies have aimed to optimise promotion planning, none of them includes the effects of vendor funding 
while simultaneously incorporating optimisation features.  

Table 1: Summary of related studies’ scopes 

Study authors Main deliverable Type of 
data used 

Nature of 
demand 
model 

Vendor 
funding 
effects 

Optimisation 
features 

Van Heerde et al. 
[9] 

A semi-parametric model 
that estimates the deal-
effect curve 

Store S-shaped   

Guadagni & Little 
[4] 

A multinomial logit 
model to predict sales 

Panel S-shaped   

Tellis & 
Zufreyden [10] 

A nonlinear programming 
model that optimises 
profit 

Store S-shaped  ✓ 

Ma & Fildes [11] A nonlinear programming 
model that optimises 
profit 

Store Exponential  ✓ 

Cohen et al. [8] A linear programming 
model that optimises 
profit 

Store 
Power-
based 

 ✓ 
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Guadagni and Little [4] indicated that vendor funding plays a major role in the profitability of retail 
promotions. The model developed during the current study outputs the optimal parameters of retail 
promotions, given vendor funding. This makes the study highly significant in the field. 

3. LITERATURE STUDY 

This literature study explores two topics. The first is the relevance of demand models to this study – that 
is, the existing models that predict retail sales, and how they could be incorporated into this study. The 
second topic delves into the various mathematical optimisation methods that exist. 

3.1. The relevance of demand models to this study 

Modelling demand in retail settings is complex. Demand can differ, depending on a host of factors, such as 
retailer location, product category, and an item’s level of display. Furthermore, the true nature of the 
relationship between an item’s price and its rate of sale is unknown [5].  

Numerous attempts have been made to model demand in retail settings. Among these, AC Nielson’s 
SCAN*PRO model is the best-known [12]. The SCAN*PRO model was created to assist retailers with making 
marketing-mix decisions. The model predicts the impact that a product’s price, its competitor’s price, and 
its display level will have on its sales. 

Blattberg and Wisniewski [13] developed another well-known demand model, commonly known as the ‘B&W 
model’. Its main purpose is to show how price changes influence observed patterns of brand competition. 

Van Heerde et al.’s [9] demand model is discussed in Section Error! Reference source not found..  The a
uthors benchmarked their model against the SCAN*PRO and B&W models, and found that their model 
resulted in a smaller weighted average. The results from their benchmark analysis are summarised in Table 
2. Note that the mean square error of the Scan*Pro and B&W models are shown relative to the mean square 
error of the semiparametric model. 

Table 2: Comparison of well-known demand models 

 Dataset 

1 2 3 

Semiparametric model  112084.0 6866.1 328.2 

SCAN*PRO model -50.6% -11.0% -16.8% 

B&W model -20.3% -9.0% -17.5% 

Van Heerde et al. [9] found that there is an s-shaped relationship between an item’s price and its rate of 
sale. This finding is well-supported by Blattberg et al. [5]. An s-shaped relationship between an item’s price 
and its rate of sale implies a saturation and a threshold effect. The gradual slope on the left-hand side of 
the curve shown in Figure 1 portrays the threshold effect. Once the threshold has been passed, the number 
of sales increases rapidly as the size of the discount increases. A saturation point is ultimately reached, 
and the slope levels off once again. At this point, the number of sales no longer increases as the size of the 
discount is increased. 

The choice of a demand model is crucial to ensure that the optimisation model accurately captures 
customer behaviour. For this reason, it is recommended that the demand model be based on historical sales 
data, if available. 

3.2. Background to optimisation methods 

Optimisation methods allow for the selection of the best alternative in the sense of a given objective 
function [14]. Mathematical optimisation is an extensive subject; however, it was determined that similar 
studies relied on linear and nonlinear programming to optimise retail promotions. Thus, only linear and 
nonlinear programming methods are explored in this study. 
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Linear programming is an optimisation technique to determine the values of decision variables that 
maximise or minimise a linear objective function, subject to linear constraints [14]. 

The standard form of a linear programming problem is 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝒄𝑻𝒙  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑨𝒙 = 𝒃 and 

𝒙 ≤ 𝟎, 

where 𝒄 ∈ ℝ, 𝒃 ∈ ℝ𝒎 and 𝑨 ∈ ℝ𝑚×𝑛 

(1) 

The use of linear programming to solve business problems has precedence. Jain et al. [15] used this method 
to maximise the Central Bank of India’s net return from loans. Akpan [16] used this technique to optimise 
the use of raw materials in a bakery. Lidia [17] used linear programming to help companies to make fixed-
asset acquisition decisions. This technique is well-established, and has been used in many applications. 

Numerous algorithms have been invented to solve linear programming problems. These include Khachiyans’s 
method, the affine scaling method, and Karmarkar’s method [14]. The simplex method, however, is the 
most popular, primarily owing to its efficiency. The simplex method works by moving progressively from a 
position of zero production and zero contribution until no further contributions can be made. A feasible 
solution is produced at each step, and each solution is more optimal than the one before it [18]. 

If all the unknown variables of a linear programming problem are required to be integers, the problem is 
called an integer linear programming problem. If only some of the unknown variables are required to be an 
integer, the problem is called a mixed-integer programming problem. Integer and mixed-integer 
programming problems are much harder to solve than their continuous counterparts [19]. 

The branch-and-bound method is commonly used to reduce the solving time of such problems. The method 
involves separating the problem into relaxed sub-problems and fathoming the optimality of the solutions 
obtained for each sub-problem [20]. 

Nonlinear programming problems are those in which the objective function or some of the constraints are 
nonlinear. Most nonlinear programming problems are NP-hard [21]. Some methods can solve nonlinear 
programming problems in a reasonable time; however, approximating a linear equivalent to a nonlinear 
problem remains a popular solution approach [22]. 

4. MATHEMATICAL MODEL DEVELOPMENT 

The literature review indicated that a demand model can be incorporated into a linear or a nonlinear 
programming problem to create a tool that can help retailers to optimise promotion planning. The same 
approach is followed to create a mathematical model that specifies the optimal mix and pricing of vendor 
items that a retailer should place on promotion. This section documents the development of the potential 
mathematical model. 

This section consists of three subsections. The model’s notation and assumptions are described in the first 
subsection; the nonlinear formulation of the optimisation model is described in the second section, and a 
linear approximation to the optimisation model is described in the third section. 

4.1. Notation and assumptions of the mathematical model 

The following indices were used: 

𝑖 ∈ 𝐼 is the index of items in a single product category. 

𝑡 ∈ 𝑇 is the index of periods for which the retailer wants to plan promotions. 

𝑘 ∈ 𝐾 is the index of permissible prices an item may assume. 
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The following input variables were used: 

𝑐𝑖𝑡 is the cost of item 𝑖 at time 𝑡. 

𝑅𝑖𝑡 is the rebate received for promoting item 𝑖 at time 𝑡. 

𝑞𝑖𝑡
0  is the regular sale price of item 𝑖 at time 𝑡. 

𝑞𝑖𝑡
𝑘  is the 𝑘th permissible price item 𝑖 may assume at time 𝑡 such that 𝑞𝑖𝑡

0 > 𝑞𝑖𝑡
1 > ⋯ > 𝑞𝑖𝑡

𝐾. 

𝐿𝑖 is the maximum number of times that item 𝑖 may be placed on promotion throughout the 
planning horizon. 

𝐿𝑇𝑜𝑡𝑎𝑙 is the maximum number of promotions that may take place. 

The binary decision variable 𝑥𝑖𝑡
𝑘  is equal to 1 if item 𝑖 should be sold at the price 𝑞𝑖𝑡

𝑘  at time 𝑡. The demand 

for product 𝑖 at time 𝑡, if it is sold at the price 𝑞𝑖𝑡
𝑘 , is given by the function 𝑑𝑖𝑡(𝑞𝑖𝑡

𝑘 ). Note that the demand 

for a product is independent of the period in which it is sold.  

Finally, it was assumed that: 

1. The model would be applied to one product category at a time. 

2. The retailer would carry enough stock to meet demand. 

3. A rebate was the percentage of an item’s cost paid back to the retailer if they discounted an item 
sufficiently below its selling price.  

4.2. Nonlinear formulation of the optimisation model 

The approach proposed by Cohen et al. [8] was adapted to allow for multiperiod promotion planning and 
the inclusion of vendor-driven rebates. The objective of the proposed mixed-integer nonlinear programming 
model was to maximise 

∑ ∑ (𝑝𝑖𝑡 − 𝑐𝑖𝑡 + 𝑅𝑖𝑡)𝑇
𝑡=1

𝐼
𝑖=1 × 𝑑𝑖𝑡(𝑝𝑖𝑡)  (2) 

subject to the constraints 

𝑝𝑖𝑡 = ∑ 𝑞𝑖𝑡
𝑘 × 𝑥𝑖𝑡

𝑘  𝐾
𝑘=1   ∀𝑖, 𝑡 (3) 

∑ 𝑥𝑖𝑡
𝑘 ≤ 1 𝐾

𝑘=1   ∀𝑖, 𝑡 (4) 

∑ ∑ 𝑥𝑖𝑡
𝑘 ≤ 𝐿𝑖

𝐾
𝑘=1  𝑇

t=1   ∀𝑖 (5) 

∑ ∑ 𝑥𝑖𝑡
𝑘 ≤ 𝐿𝑇𝑜𝑡𝑎𝑙

𝐾
𝑘=1

𝐼
𝑖=1   ∀𝑡 (6) 

𝑥𝑖𝑡
𝑘 ∈ {0,1}  ∀𝑖, 𝑡, 𝑘 (7) 

The objective function (2) maximises the profit gained throughout the planning horizon, given the demand 
associated with selling an item at a specific price. Constraint (3) allows an item’s price at each point in 
time to be expressed as a value from its matrix of permissible prices. Constraint (4) ensures that an item 
has, at most, a single price at each point in time. Constraints (5) and (6) are added to prevent over-
promotion. Constraint (5) ensures that item 𝑖 is placed on promotion no more than 𝐿𝑖 times throughout the 
planning period, while constraint (6) ensures that the maximum number of promotions is not exceeded. 

Constraint (7) ensures that 𝑥𝑖𝑡
𝑘  is binary.  

4.3. Linear formulation of the optimisation model 

Nonlinear programs are harder to solve than their linear counterparts [22]. In addition, most optimisation 
software can only solve special instances of nonlinear programming problems. Thus the decision was made 
to linearise the optimisation model. 
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The linearisation method proposed by Cohen et al. [8] was followed. The method eliminated the need for 
an online demand model by incorporating an additional matrix of constraints that considered the demand 
for each item at each price. This method is illustrated in Figure 2.  

 

Figure 2: [8] Proposed linearisation method by Cohen et al. 

The method was applied to the nonlinear programming model. The profit gained by selling item 𝑖 at its 
regular selling price at the time 𝑡 is: 

𝑃𝑟𝑜𝑓𝑖𝑡(𝑞𝑖𝑡
0 ) = (𝑞𝑖𝑡

0 − 𝑐𝑖𝑡) × 𝑑𝑖𝑡(𝑞𝑖𝑡
0 ). (8) 

For every other permissible price, 𝑞𝑖𝑡
𝑘 , the profit obtained by selling item 𝑖 at time 𝑡 is: 

𝑃𝑟𝑜𝑓𝑖𝑡(𝑞𝑖𝑡
𝑘 ) = (𝑞𝑖𝑡

𝑘 − 𝑐𝑖𝑡 + 𝑅𝑖𝑡) × 𝑑𝑖𝑡(𝑞𝑖𝑡
𝑘 ). (9) 

The unilateral deviation in profit obtained by applying a single promotion, 𝑏𝑖𝑡
𝑘 , is: 

𝑏𝑖𝑡
𝑘 = 𝑃𝑟𝑜𝑓𝑖𝑡(𝑞𝑖𝑡

𝑘 ) − 𝑃𝑟𝑜𝑓𝑖𝑡(𝑞𝑖𝑡
0 ). (10) 

Since equations (8), (9), and (10) can be computed offline, they do not add to the complexity of the model. 
An integer linear programming formulation of the optimisation model is obtained by maximising the 
unilateral deviation in profit obtained by applying a single promotion.  

In other words, the objective of the linear optimisation model is: 

𝑃𝑟𝑜𝑓𝑖𝑡(𝑞𝑖𝑡
0 ) + 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 ∑ ∑ ∑ 𝑏𝑖𝑡

𝑘 × 𝑥𝑖𝑡
𝑘𝐾

𝑘=1
𝑇
𝑡=1

𝐼
𝑖=1   (11) 

subject to the constraints 

𝑝𝑖𝑡 = ∑ 𝑞𝑖𝑡
𝑘 × 𝑥𝑖𝑡

𝑘  𝐾
𝑘=1   ∀𝑖, 𝑡 (12) 

∑ 𝑥𝑖𝑡
𝑘 ≤ 1 𝐾

𝑘=1   ∀𝑖, 𝑡 (13) 

∑ ∑ 𝑥𝑖𝑡
𝑘 ≤ 𝐿𝑖

𝐾
𝑘=1  𝑇

t=1   ∀𝑖 (14) 

∑ ∑ 𝑥𝑖𝑡
𝑘 ≤ 𝐿𝑇𝑜𝑡𝑎𝑙

𝐾
𝑘=1

𝐼
𝑖=1   ∀𝑡 (15) 

𝑥𝑖𝑡
𝑘 ∈ {0,1}  ∀𝑖, 𝑡, 𝑘 (16) 

Each constraint of the linear formulation serves the same purpose as its nonlinear counterpart. 

5. VERIFICATION OF THE MATHEMATICAL MODEL 

In the previous section, an integer linear programming model is proposed that specifies the optimal mix 
and pricing of items a retailer should place on promotion at different periods. In this section, the model is 
verified by applying it to a true retail dataset. The model is considered correct if it results in a feasible 
and meaningful solution. In this section, a description of the dataset, the demand model, and the model’s 
variables is given. This is followed by a discussion of the results from the verification run. 
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5.1. Data description 

The model was applied to a store-level dataset. The dataset was extracted from the Dominick's Finer Foods 
database, which is maintained by the Kilts Center for Marketing at the University of Chicago’s Booth School 
of Business. The dataset is included in the R bayesm-package [23]. 

The dataset recorded the sale of seven major canned tuna brands in a single retailer over 338 weeks. Also 
included was the weekly level of display, price, and wholesale price of each brand. However, the dataset 
did not contain rebate data. Thus the rebate variable was omitted from this run of the model. Data 
processing was done using the R programming language [24]. 

An attempt was made to optimise retail promotions for three products: Starkist (Product 1), Chicken of the 
Sea (Product 2), and Bumblebee (Product 3), over a four-week planning period. These values were chosen 
arbitrarily.  

The following parameters were therefore defined:  

𝑇 = {1,2,3,4}  (17) 

𝐼 = {1,2,3}  (18) 

5.2. Modelling of demand 

The data from the first year was modelled to reduce variation caused by time-based effects. Similarly, only 
data from Products 1, 2, and 3 was modelled to reduce variation caused by cross-item effects. The number 
of sales and the selling price of each item during the first year were combined into two arrays, sales and 
price, respectively. The data points that were modelled are plotted in Figure 3. 

 

Figure 3: Plot of points that were modelled 

Figure 3 indicates no discernable relationship between item sales and item price. Different linear 
transformations were therefore applied to the data. Least-squares regression models were then fitted. The 
best fit among these was the one that resulted in the largest suitable R2-value, and it was chosen to 
represent 𝑑𝑖𝑡. For the general case, however, a retailer could explore any statistical learning method that 
accurately models demand. A summary of each fit is shown in Table 3. 
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Table 3: Summary of different linear regression demand models 

Response variable Predictor variable R2-value (%) 

Sales price 26.67 

log(sales) log(price) 70.58 

Sales log(price) 32.43 

arctan(sales) exp(price) 86.85 

arctan(sales) log(price) 89.17 

The arctan-log transformation resulted in the largest R2-value (98.17%). This was a relatively high R2-value, 
which implied that the model accurately predicted item sales as a function of the item price. The least-
squares fit of this transformation is: 

𝑎𝑟𝑐𝑡𝑎𝑛(𝑠𝑎𝑙𝑒𝑠) = −3.874 × 104 × 𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒) + 1.571  (19) 

Equation (19) can be rewritten to obtain the demand model: 

𝑑𝑖𝑡(𝑝𝑖𝑡) = 𝑡𝑎𝑛(−3.874 × 104 × 𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒) + 1.571)  (20) 

The demand model is illustrated in Figure 4. 

 

Figure 4: Demand model, 𝒅𝒊𝒕(𝒑𝒊𝒕) associated with tuna case study 

5.3. Defining model variables 

The wholesale price of each item during each week was extracted from the dataset. Each value was stored 
in the 3 × 4 variable 𝑐𝑖𝑡. Similarly, the regular selling price of each item during each week was extracted 

from the dataset and stored in the 3 × 4 variable 𝑞𝑖𝑡
0 . 

For each iteration of 𝑖 and 𝑡, the variable 𝑞𝑖𝑡
𝑘  was defined as a sequence from 0 to 1.78 in increments of 

0.02. The values of 𝑞𝑖𝑡
𝑘 , which were higher than item 𝑖’s regular price at time 𝑡, were replaced with null. 

This forced the model to select only prices below its regular selling price – i.e., promotional prices. 

No limitations were placed on the maximum number of promotions that could take place – i.e., 𝐿𝑖 = ∞ and 

𝐿𝑇𝑜𝑡𝑎𝑙 = ∞. The remaining variables, 𝑃𝑟𝑜𝑓𝑖𝑡(𝑞𝑖𝑡
0 ), 𝑃𝑟𝑜𝑓𝑖𝑡(𝑞𝑖𝑡

𝑘 ), and 𝑏𝑖𝑡
𝑘 , were finally calculated. The variable 

𝑏𝑖𝑡
𝑘 , was used as input to the optimisation model.  
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5.4. Results from verification run 

The problem was configured in IBM CPLEX. A feasible solution to the problem was obtained in 2.02 seconds. 
In each case, the model selected promotions. This indicated that the retailer might need to take special 

care when selecting 𝐿𝑖- and 𝐿𝑇𝑜𝑡𝑎𝑙 values to prevent over-promotion. The results from the verification run 
are summarised in Table 4. 

Table 4: Summary of solver’s output 

Non-zero output  Suggested prices 

𝒊 = 𝟏 𝒊 = 𝟐 𝒊 = 𝟑 𝒊 = 𝟏 𝒊 = 𝟐 𝒊 = 𝟑 

𝑥𝑖𝑡
33 𝑥𝑖𝑡

33 𝑥𝑖𝑡
33 𝒕 = 𝟏 $0.64 $0.64 $0.64 

𝑥𝑖𝑡
34 𝑥𝑖𝑡

34 𝑥𝑖𝑡
34 𝒕 = 𝟐 $0.66 $0.66 $0.66 

𝑥𝑖𝑡
34 𝑥𝑖𝑡

34 𝑥𝑖𝑡
34 𝒕 = 𝟑 $0.66 $0.66 $0.66 

𝑥𝑖𝑡
34 𝑥𝑖𝑡

34 𝑥𝑖𝑡
34 𝒕 = 𝟒 $0.66 $0.66 $0.66 

The left side of Table 4 indicates the non-zero decision variables, while the right side indicates the 
corresponding price of each non-zero variable. 

The verification run resulted in an objective value of $506,325.71. The theoretical profit obtained by selling 
each item at its regular selling price throughout the planning period was $24,863.35. If promotions were 
applied as the model suggests, the total theoretical profit would be $531,189.10 (refer to Equation (11)). 
The true profit that was obtained by selling each item at its regular selling price throughout the planning 
period was $145,328.80. This meant that the model theoretically increased the profit by 265.52%. 

The true profit increase that might follow from applying the model was expected to be significantly lower 
than this number. The theoretical increase was misleading, because it assumed that the demand model 
was 100% accurate, which would likely never be the case. The demand model does not account for over-
promotion, nor for the market share each brand owns, nor for vendor funding effects. To benchmark this 
solution effectively, the retail data before and after it had been implemented by a retailer would be 
required. This fell outside the scope of this study. 

Regardless, a feasible and meaningful solution to the problem was obtained. The model was therefore 
considered correct.  

6. VALIDATION OF MATHEMATICAL MODEL 

In the previous section the proposed model was verified as correct. In this section, the effectiveness of the 
model is validated in respect of its computability and scalability. This is tested by systematically increasing 
the number of model variables.  

This section has two subsections. In the first, a description of the simulated dataset used to validate the 
model is given; and in the second, a discussion of the results from the validation run is provided. 

6.1. Description of the simulated dataset 

A simulated dataset was used, as its parameters could be easily varied. The dataset was simulated using 
the R programming language [24]. The computation time and percentage increase in profit (relative to the 
total theoretical profit) were recorded during each run. The simulated dataset recorded the store data of 
a single product category over four weeks – i.e., 𝑇 = {1,2,3,4}. Initially, product costs were generated 
randomly using a 𝑈(250,300) distribution. Vendors specified costs quarterly. The percentage change in a 
product’s cost each quarter was generated randomly using a 𝑈(−15,15) distribution. The retailer had a 
regular price margin of 30%. There was a 10%  chance that a vendor would provide a rebate if a product 
were sold at 15% or more below its regular price. The rebate values were between one and five per cent 
of an item’s cost price. This percentage was generated randomly using a 𝑈(1,5)-distribution. 
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The demand for product 𝑖 at time 𝑡 if it is sold at the price 𝑝𝑖𝑡 is: 

𝑑𝑖𝑡(𝑝𝑖𝑡) =
90

0.1+𝑒0.4×𝑝𝑖𝑡−10  
(21) 

The demand model is shown in Figure 5. Note that it is s-shaped. This implies a threshold and saturation 
effect. Once again, no limitations were placed on the number of promotions that could take place.  

 

Figure 5: Demand model associated with the simulated dataset 

The number of variables was increased by increasing the number of items included in the problem 
formulation. The choice between increasing the number of items and increasing the number of periods was 
arbitrary; both would increase the number of model variables. The same was true for decreasing the 
interval size of 𝐾. Varying the effect of each model parameter was therefore redundant. 

6.2. Discussion of results  

The results from the experiment are summarised in Table 5.  

Table 5: Results from computability and scalability test 

Number of items Total number of 
variables 

Computation time (s) Profit increase (%) 

4 12.833 02.20 130.94 

8 25,665 02.27 141.22 

12 38,497 02.46 148.80 

16 51,329 02.62 154.87 

20 64,161 02.78 148.66 

24 76,993 02.92 149.50 

28 89,825 03.11 149.76 

32 102,657 03.25 149.90 

36 115,489 03.45 151.00 

40 128,321 03.62 152.51 

60 192,481 03.51 149.21 

120 384,961 06.98 146.21 

240 769,921 11.73 148.04 
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Note how the inclusion of each new item introduced 3,209 new variables to the model. This was because 
of the multidimensional nature of the variables. The total number of variables in the model is given by 
Equation (22).  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 1 + (𝐼 × 𝑇 × 𝐾 × 2)  (22) 

This equation is important, as some solvers allow a limited number of variables and constraints. Retailers 
should thus consider this equation when selecting intervals of 𝐼, 𝑇, and 𝐾.  

The results from the experiment are more telling when they are shown in graphic form. Figure 6 is a plot 
of computation time vs the number of items included in the problem formulation.  

Remember that an increase in the number of items is analogous to an increase in the other model 
parameters. It can therefore be concluded that the model is highly scalable with respect to computation 
time. 

 

Figure 6: The effect of increasing the number of model variables on computation time 

Figure 7 is a plot of profit increase vs the number of items included in the problem formulation. 

 

Figure 7: The effect of increasing the number of model variables on profit increase 
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The percentage profit increase initially increases rapidly as the number of items increases. This increase 
peaks when 16 items (51,329 total variables) are included in the problem formulation. After this point, the 
percentage profit stabilises around approximately 148%, regardless of the addition of new variables. This 
shows that the model is highly scalable with respect to the percentage profit increase. The model can 
therefore be implemented in practice by retailers. 

7. SUMMARY AND CONCLUSION 

In this section, a summary of the project is given, future recommendations are made, and a conclusion is 
given. 

7.1. Project summary 

Retailers frequently underuse promotions by not selecting the optimal mix and pricing of vendor items to 
place on promotion. This is partly because retailers rely on informal heuristics to design their promotions. 
While there are studies that aim to optimise promotion planning, no study that includes optimisation 
features provides for vendor funding, which significantly influences the profitability of retail promotions. 
This study aimed to solve this problem. 

A solution approach was formed through a literature study. A nonlinear mixed-integer programming model 
was developed that incorporated a demand model to output the optimal mix and pricing of vendor items 
that a retailer should place on promotion. A linear integer approximation of this model was formulated to 
make it easier to solve. The integer linear programming model was applied to a true retail dataset. The 
results were feasible and meaningful, and the model could therefore be considered correct. Finally, the 
model was validated and shown to be highly scalable.  

7.2. Future recommendations 

This study only considered demand as a function of price. Retail demand, however, depends on a host of 
variables. Modelling retail demand, therefore, becomes exceedingly complex. 

There is much room to explore how the demand model could be developed. For example, its scope could 
be expanded to include cross-promotional and stockpiling effects.  

It could also be made to account for the market share that each brand owns and the seasonal factors that 
affect product demand at different points in time. 

The performance of the optimisation model could be significantly improved by improving the accuracy of 
the demand model. Finding ways to do so would thus be a challenging but crucial task for future 
researchers. 

In addition, many vendor funding strategies exist. This study assumed a simplified rebate system. The model 
could be expanded to include multiple rebate systems to increase its effectiveness in optimiseing promotion 
planning. 

Retailers might also consider promoting perishable items that are nearing their expiration dates, regardless 
of demand. This allows retailers to reduce the losses from spoiled inventory. Thus, the optimisation model 
could be expanded to distinguish between perishable and non-perishable goods.   

Finally, in its current state the optimisation model requires specialised skills and software to be solved. 
However, few retailers possess the resources needed to apply this model. Thus, the possibility of 
incorporating this model into an enterprise resource planning system could be investigated.    
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7.3. Conclusion 

The business world creates many opportunities for mathematical optimisation. The retail sector in 
particular is especially primed for such methods, thanks to the abundance of store data collected by point-
of-sale systems. This study found that many retailers fail to exploit these circumstances and, in doing so, 
fail to grow their bottom lines. The hope, therefore, is that this study would emphasise the importance of 
applying industrial engineering practices in the retail sector.   
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