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ABSTRACT 

A variable sample size (VSS) synthetic chart to monitor the coefficient of 

variation ( )  is proposed in this paper to improve the performance of the 

existing synthetic   chart. A description of how the chart operates, as well 

as the formulae for various performance measures (i.e., the average run 
length (ARL), standard deviation of the run length (SDRL), average sample 
size (ASS), and expected average run length (EARL)) are proposed. The 
algorithms that optimise the out-of-control ARL (ARL1) and EARL (EARL1), 
subject to the constraints in the in-control ARL (ARL0) and ASS (ASS0), are 
also proposed. Subsequently, optimal charting parameters for various 
numerical examples are obtained. The proposed chart shows a significant 
improvement over the existing synthetic  -chart. Comparisons with other 

 -charts also show that the proposed chart performs better than the 

Shewhart-   and VSS-   charts under all cases, while showing better 

performance than the exponentially weighted moving average (EWMA) and 

VSS EWMA-
2  charts for moderate and large shift sizes. Finally, this paper 

shows the implementation of the proposed chart on an actual industrial 
example. 
 

OPSOMMING 

'n Veranderlike Steekproefgrootte sintetiese grafiek om die 
variasiekoëffisiënt (  ) te monitor, word in hierdie artikel voorgestel om 

die werkverrigting van die bestaande sintetiese grafiek te verbeter. 'n 
Beskrywing van hoe die grafiek werk, sowel as die formules vir verskeie 
prestasiemaatstawwe (d.w.s. die gemiddelde lopielengte, 
standaardafwyking van die lopielengte, gemiddelde steekproefgrootte en 
verwagte gemiddelde lopielengte) word voorgestel. Die algoritmes wat die 
buite-beheer gemiddelde lopielengte) en verwagte gemiddelde lopielengte  
optimeer, onderhewig aan die beperkings in die in-beheer gemiddelde 
lopielengte en gemiddelde steekproefgrootte, word ook voorgestel. 
Vervolgens word optimale parameters vir verskeie numeriese voorbeelde 
verkry. Die voorgestelde grafiek toon 'n aansienlike verbetering teenoor 
die bestaande sintetiese  grafiek. Vergelykings met ander  -grafieke 

toon ook dat die voorgestelde grafiek beter presteer as die Shewhart-   en 

Veranderlike Steekproefgrootte-
2  kaarte onder alle gevalle, terwyl dit 

beter prestasie toon as die eksponensieel geweegde bewegende 

gemiddelde 
2   kaarte vir matige en groot skofgroottes. Ten slotte, hierdie 

artikel toon die implementering van die voorgestelde grafiek op 'n werklike 
voorbeeld in die industrie. 

 

1 INTRODUCTION 

By convention, most control charts monitor changes in the mean ( )  and/or standard deviation ( ) — for 

example, Coelho, Chakraborti and Graham [1], Teoh, Fun, Khoo and Yeong [2], and many others. However, 
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not all processes have a constant  . In addition,   may change according to  . One of the reasons this 

may happen is changes in process outputs as a result of different planning decisions, or it may be due to 
the inherent properties of the process. Dubious conclusions will be reached if such processes are monitored 

through conventional X  and R or S charts, since shifts in   and/or   do not mean that the process is out 

of control (OOC).  
 

A chart monitoring the coefficient of variation ( )  was first proposed by Kang, Lee, Seong and Hawkins 

[3], where 





= . For this type of chart, an OOC condition is only signalled with a change in the relationship 

between   and  . In other words, as long as 



 does not shift from the in-control (IC) value of  , the 

process is IC. Yeong, Khoo, Tham, Teoh and Rahim [4] have reviewed several areas of application when 
monitoring   is important. 

 
Numerous new charts are proposed to monitor  , one of which is the synthetic chart by Calzada and 

Scariano [5]. The synthetic chart produces an OOC signal if successive samples falling outside the control 
limits are close to each other. It is preferred by practitioners, as it is easy to understand and implement, 
and is free from the inertia effect faced by the exponentially weighted moving average (EWMA) chart. The 
synthetic-   chart outperforms the  -chart by Kang et al. [3], but is inferior to the EWMA chart proposed 

by Castagliola, Celano and Psarakis [6]. Thus this paper will improve the performance of the synthetic-   

chart by introducing the variable sample size (VSS) scheme into the synthetic-   chart.  

 
The VSS feature is an adaptive feature in which charting parameters are varied according to the most recent 
sample information. The adaptive feature was recently incorporated into charts monitoring  . Castagliola, 

Achouri, Taleb, Celano and Psarakis [7] first proposed the variable sampling interval (VSI)-   chart. Later, 

Castagliola, Achouri, Taleb, Celano and Psarakis [8] proposed variable sample size (VSS)-   charts. 

Subsequently, Khaw, Khoo, Yeong and Wu [9] and Yeong, Lim, Khoo and Castagliola [10] proposed the 
variable sample size and sampling interval (VSSI) and the variable parameters (VP)-   charts respectively. 

[7] to [9] incorporated adaptive features into the simpler Shewhart-type   charts. This encouraged Yeong 

et al. [4] and Anis, Yeong, Chong, Lim and Khoo [11] to incorporate the VSI and VSS features respectively, 
into more complicated charts, such as the EWMA charts. From these studies, adapting the charting 
parameters according to the most recent sample information results in a significant improvement. 
 
No studies are available in the literature on adaptive-type synthetic-   charts. The synthetic-   charts are 

attractive to practitioners, as they wait until two successive samples fall outside the control limits before 
deciding whether the process is IC or OOC, unlike Shewhart-type   charts, which immediately send OOC 

signals when a sample falls outside the control limits. Thus this paper will propose a VSS synthetic-   chart, 

which is expected to improve the performance of the existing synthetic-   chart. This paper is organised 

as follows: Section 2 reviews the existing synthetic-   chart and describes the transformed statistics (Ti) 

that will be adopted in this paper. Then Section 3 introduces the proposed VSS synthetic-   chart and the 

formulae to evaluate various performance measures. Next, Section 4 proposes the algorithm to obtain the 
optimal charting parameters, and shows the optimal performance of the proposed chart based on numerical 
examples. Section 5 compares the performance of the proposed chart with other   charts, while the 

proposed chart is implemented on an actual industrial example in Section 6. Finally, the conclusion is 
provided in Section 7.   

2 THE SYNTHETIC-   CHART AND TRANSFORMED STATISTICS (TI) 

The synthetic-   chart is made up of two sub-charts — i.e., the   and conforming run length (CRL) sub-

charts. In the   sub-chart, if ˆ LCL   or ˆ UCL   (where ˆ,  and LCL UCL  are the sample  , lower control 

limit and upper control limit respectively), the sample is a non-conforming sample; conversely, if ̂  falls 

between the LCL and UCL, it is a conforming sample. The CRL sub-chart defines the number of conforming 
samples between successive non-conforming samples (including the ending non-conforming sample) as the 

CRL. If CRL L, where L is a pre-determined threshold, then the process is considered to be OOC. 
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The LCL and UCL of the   sub-chart are computed as  

        ( ) ( )0 0ˆ ˆ ,LCL K   = −      (1) 

and  

        ( ) ( )0 0ˆ ˆ ,UCL K   = +                  (2) 

where K represents the control limit coefficient, while ( )0 ˆ   and ( )0 ˆ   are the IC mean and standard 

deviation of ̂ respectively. Reh and Scheffler [12] approximated ( )0 ˆ   and ( )0 ˆ   as 

( )
2 4 2

2 4 60 0 0
0 0 0 0 02 3

3 71 1 1 7 1 19
ˆ 1 3 15

4 4 32 4 32 128n n n

  
     

     
 + − + − − + − − −               

       (3)    

and 

( )
4 2

2 4 2 6 0 0
0 0 0 0 0 02 3

1 1 1 3 1 7 3 3
ˆ 8 69 ,

2 8 2 4 16n n n

 
      

    
 + + + + + + + +    

     
            (4) 

where 0  and n are the IC   and sample size respectively. 

 
Note that the LCL and UCL are functions of n. For the existing synthetic-   chart, which adopts fixed sample 

sizes, there is only one pair of (LCL, UCL). However, if variable sample sizes are adopted — for example, 
small and large sample sizes (nS and nL) — there will be a pair of (LCL, UCL) for nS and another pair of (LCL, 
UCL) for nL. In addition, VSS charts involve lower and upper warning limits (LWL and UWL) to establish the 
warning region, where, similar to the LCL and UCL, they are also functions of n. Thus, if two levels of 
sample sizes are adopted (nS and nL), there will be two pairs of (LCL, UCL) and two pairs of (LWL, UWL) — 
i.e., one pair of (LCL, UCL) and (LWL, UWL) for nS, and another pair of (LCL, UCL) and (LWL, UWL) for nL. 
Furthermore, both the warning and the control limits are asymmetric limits. This results in a significant 
increase in the computational effort to design the chart because of the larger number of charting 
parameters. It also results in a difficulty during implementation and interpretation, as the samples need to 
be plotted against different pairs of limits [8]. 
 
Thus the approach by Castagliola et al. [8] is adopted: instead of directly monitoring ̂  of the ith subgroup 

( )ˆi , the transformed statistics Ti are monitored instead. The statistics Ti are defined as  

    ( )ˆln ,i iT a b c= + −                                                    (5) 

where , 0a b   and c are parameters that depend on ( )n i  and 0 . Here, ( )n i  is the sample size of the ith 

subgroup. The parameters ( ), ,a b c  can be estimated as  

( )1

0.5

1 0.5

,

ln

N

r

r

F r
b

x x

x x

−

−

=
 −
 

− 

                                                        (6) 

( )
0.5

1
ln ,

1 exp

r

N

x x
a b

F r

b

−

 
 

− 
= −   

 −    
  

                                                   (7) 

and 

  
0.5 ,

a

bc x e
−

= −                                                              (8) 

where ( )( ) ( )( )1 1

ˆ ˆ0 0.5 0, , 0.5 ,rx F r n i x F n i  − −= = , ( )( )1

ˆ1 01 ,rx F r n i −

− = −  are the quantiles for the 

distribution of ̂ , and ( )1

NF r−  is the inverse standard normal distribution. Note that ( )1

ˆ .F

−  is the inverse 
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cumulative distribution function (cdf) of ˆ,  where ( )( )
( )

1

ˆ 0

1

0

,

1 1,t

n
F n i

n i
F n

  




−

−

=
 
 − −
 
 

, with ( )1 .tF −  

being the inverse cdf of the non-central t distribution. 
 

Castagliola et al. [8] have shown that, for  0.01,0.1 ,r  the Ti statistics are well approximated by a standard 

normal distribution, as 0.01r   will avoid giving too much weight to the tails of the ̂  distribution, while 

0.1r   will capture enough information from the tails. Through simulations, Castagliola et al. [8] have 

shown that the Ti statistics follow the standard normal distribution for  0.01,0.1r . This is achieved by 

simulating a large number of ̂  from different values of n and 0 , computing the Ti statistics based on 

different r values between 0.01 and 0.1, and performing an Anderson-Darling test to show that the Ti 
statistics follow a standard normal distribution for all values of r within that range. In this paper, as in that 

of Castagliola et al. [8], the intermediate value of 0.05r =  is adopted. However, practitioners can also 

choose other values of  0.01,0.1r  for the Ti statistics to follow the standard normal distribution; hence 

any value of  0.01,0.1r will not have an impact. Note that the Ti statistics are only approximated well by 

a standard normal distribution if the observations of the quality characteristic being monitored are 
independent and identically distributed normal variates. 

3 THE VARIABLE SAMPLE SIZE (VSS) SYNTHETIC-


 CHART 

The proposed chart works in a similar way to the existing synthetic-   chart, except that the sample size 

is varied at two levels, as shown in Figure 1. 

 
Figure 1: The   sub-chart of the VSS synthetic   chart 

 
Figure 1 shows that the conforming region is separated into the central and warning regions. When 

iW T W−   , the sample belongs to the central conforming region, while when iW T K   or iK T W−   −

, the sample falls in the warning conforming region. When iT K  or iT K − , the sample is non-

conforming. The samples that fall in the central conforming, warning conforming, and non-conforming 

regions are denoted as 0 ,0C W  and 1 respectively.  
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The sample size ( )n i  of the ith subgroup depends on the region in which 1iT −  falls. If 1iT −  falls in the central 

conforming region, then ( ) Sn i n= ; but if 1iT −  falls in the warning conforming region or the non-conforming 

region, then ( ) Ln i n= . 

 
Let  

( ), ,i SA P W T W n + = −                                              (9) 

( ), ,i LA P W T W n − = −                                            (10) 

( ) ( )( ), ,i i SB P K T W W T K n + = −   −                                (11) 

( ) ( )( ), ,i i LB P K T W W T K n − = −   −                                  (12) 

( ) ( )( ),i i SC P T K T K n + =  −   ,                                  (13) 

( ) ( )( ),i i LC P T K T K n − =  −   .                                  (14) 

 

The probability A+  is obtained as follows: 

( ),i SA P W T W n + = −    

    ( )( )ˆln ,i sP W a b c W n = −  + −   

    ˆ ˆexp , exp ,S S

W a W a
F c n F c n

b b
  
   − − −   

= + − +      
      

                                                           

1, 1,

exp exp

S S S S

t S t S

n n n n
F c n F c n

W a W a

b b

 

   
   
   = + − − + −

− − −      
      
      

                                                    (15) 

where ( )ˆ .F  is the cdf of ̂  and ( ).tF  is the cdf of the non-central t distribution. Castagliola et al. [6] 

have shown that ( )ˆ , 1 1,t

n n
F x n F n

x
 



 
= − − 

 
 

. 

 

Similarly, the probabilities , , , ,A B B C C− + − + −  can be obtained as follows: 

1, 1, ,

exp exp

L L L L

t L t L

n n n n
A F c n F c n

W a W a

b b

 

−

   
   
   = + − − + −

− − −      
      
      

                                                                         (16) 

1, 1, 1, 1, ,

exp exp exp exp

S S S S S S S S

t S t S t S t S

n n n n n n n n
B F c n F c n F c n F c n

K a W a W a K a

b b b b

   

+

       
       
       = + − − + − + + − − + −

− − − − − −              
              
              

                               (17) 

1, 1, 1, 1, ,

exp exp exp exp

L L L L L L L L

t L t L t L t L

n n n n n n n n
B F c n F c n F c n F c n

K a W a W a K a

b b b b

   

−

       
       
       = + − − + − + + − − + −

− − − − − −              
              
              

                                 (18) 

1 1, 1, ,

exp exp

S S S S

t S t S

n n n n
C F c n F c n

K a K a

b b

 

+

   
   
   = − + − + + −

− − −      
      
      

                                                                                (19) 

1 1, 1, .

exp exp

L L L L

t L t L

n n n n
C F c n F c n

K a K a

b b

 

−

   
   
   = − + − + + −

− − −      
      
      

                                                                                  (20) 

 
The formulae for the average run length (ARL), standard deviation of the run length (SDRL), expected 
average run length (EARL), and average sample size (ASS) will be developed using a Markov chain approach. 
The states of the Markov chain are defined based on L consecutive samples; thus there will be a total of 
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( )2 1L +  IC states that are transient and one OOC absorbing state. The OOC absorbing state refers to the 

state where CRL L .  

 
For L = 2, the transient states are defined as 

State 1: 00C  

State 2: 00W  

                                                            State 3: 01   

State 4: 10C  

State 5: 10 ,W  

where 0 denotes the conforming region, while State 6 will be the absorbing state. For 3L  , the transient 

states are defined as 

State 1         : 00...00...00C  

State 2         : 00...00...00W  

                                                           State 3         : 00. . .00. . .01 

 State 4         : 00...00...10C  

State 5          : 00...00...10W  

 

                                                           State 2L       : 10...00..00C  

State ( )2 1L + : 10...00..00W , 

while State ( )2 2L +  will be the absorbing state. 

 

A ( ) ( )2 1 2 1L L+  +  matrix that consists of the transition probabilities among the transient states, as defined 

in the previous paragraph, can be obtained. This transition probability matrix is denoted as Q . For 2L = , 

Q  can be obtained as follows: 

0 0

0 0

0 0 0

0 0 0

0 0 0

A B C

A B C

A B

A B

A B

+ + +

− − −

− −

+ +

− −

 
 
 
 =
 
 
 
 

Q .                                            (21) 

 

For 3L  , Q  is a ( ) ( )2 1 2 1L L+  +  matrix with all elements zero, except: 

1. For the first row, ( ) ( ) ( )1,1 , 1,2 , 1,3Q A Q B Q C+ + += = = .  

2. For the second row, ( ) ( ) ( )2,1 , 2,2 , 2,3Q A Q B Q C− − −= = = .  

3. For the third row, ( ) ( )3,4 , 3,5 .Q A Q B− −= =  

4. For rows i, where ( )4,..., 2 1i L= − , if i is even, ( ) ( ), 2 , , 3Q i i A Q i i B+ ++ = + = , while if i is odd, 

( ) ( ), 1 , , 2Q i i A Q i i B− −+ = + = . 

5. For row ( )2L , ( ) ( )2 ,1 , 2 ,2Q L A Q L B+ += = . 

6. For row ( )2 1L + , ( ) ( )2 1,1 , 2 1,2Q L A Q L B− −+ = + = . 

 
The transition probability matrix can then be obtained as follows: 

,
1

 
=  
 

Q r
P

0
                                                            (22) 

where Q  is the ( ) ( )2 1 2 1L L+  +  matrix as shown in the preceding paragraph, = −r 1 Q1  with 1  being a 

( )2 1 1L +   vector of ones, and 0  is a ( )1 2 1L +  vector of zeros. Note that state ( )2 2L +  of P  in (14) is 

the OOC state. 
 
The ARL and SDRL can then be computed as  
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          ( )
1TARL
−

= −q I Q 1                 (23) 

and                   

  ( )
2 22 ,TSDRL ARL ARL
−

= − − +q I Q Q1             (24)            

where q  is the ( )2 1 1L +   vector of initial probabilities for the transient states, I  is the ( ) ( )2 1 2 1L L+  +  

identity matrix, and 1  is a ( )2 1 1L +   vector of ones. For a zero-state condition, except for the 3rd element 

of q  which is one, all other elements are zeros. This paper will design the proposed chart based on the 

zero-state condition. 
 

To calculate the OOC ARL ( 1ARL ) and OOC SDRL ( 1SDRL ), 1 0  = =  ( > 1) is substituted into Equations 

(15) to (20), where 1  is the OOC   and   is the shift size, to obtain the OOC Q  from Equation (21). To 

compute the IC ARL ( 0ARL ) and SDRL ( 0SDRL ), 0 =  is substituted into Equations (15) to (20) to obtain 

the OOC Q  from Equation (21). The 1ARL  and 1SDRL  are then calculated by substituting the OOC Q  into 

Equations (23) and (24) respectively, while 0ARL  and 0SDRL  are calculated by substituting the IC Q  into 

Equations (23) and (24) respectively. 
 
The exact value of   is not always known, and without knowing its exact value, the ARL1 cannot be 

computed. For this scenario, the EARL will be adopted as a performance measure. The EARL does not 
require the shift size to be estimated as an exact value; instead, it only needs to be estimated as a range 

( )min max,  .  

 
The following shows the computation of the EARL: 

( ) ( )
max

min

0, , , , , ,S LEARL f ARL n n W K d







   =                            (25) 

where ( )f   is the probability density function (pdf) of  . As in the study of Castagliola et al. [6],   is 

assumed to be uniformly distributed over ( )min max,  . The integral cannot be obtained analytically; thus the 

Gauss-Legendre quadrature is adopted to solve the integral.  
 
Subsequently, the formula for the ASS will be shown. The ASS needs to be evaluated so that the IC ASS 
(ASS0) can be maintained at a specific value, especially when the cost of sampling is of concern to the 
practitioner.  
 
The formula for the ASS is developed through a Markov chain approach, as proposed by Castagliola et al. 

[8]. First, P  in Equation (22) is transformed into a similar matrix *
P , where 

* .
0T

 
=  
 

Q r
P

q
                                                       (26) 

From *
P , once the process reaches the OOC state (State ( )2 2L + ), the process will restart at State 3. 

 

Let ( )0 1 2 2, ,
T

L   +=π  be the stationary probability vector of *
P , where j  is the stationary 

probability for the process to fall in the jth state, where 0,1,...,2 2j L= + . π  can be computed as follows:  

1

0

−  
=  

 

q
π R ,                        (27) 

where the matrix R  is obtained by deducting 1 from the diagonal elements of the transpose of *
P ; then 

replace the third row of this matrix with ones. 
 
The ASS is then computed as 

( ) .S L L S L S LASS n n n n n n n= π                          (28) 

 
 



 

8 

4 NUMERICAL EXAMPLES 

This section shows the algorithms to obtain the optimal charting parameters ( )* * * * *, , , ,S LL n n W K . Next, the 

optimal charting parameters ARL1 and SDRL1 for the numerical examples with different values of 0 ,  and n   

are shown. Furthermore, the optimal charting parameters and EARL1 for different 0  and n  are also shown 

for the case when   could not be specified. 

 

Two algorithms are proposed. In the first algorithm, ( )* * * * *, , , ,S LL n n W K  is chosen to minimise ARL1, subject 

to constraints in ARL0 and ASS0. In the second algorithm, ( )* * * * *, , , ,S LL n n W K  is chosen to minimise the EARL 

instead, subject to constraints in ARL0 and ASS0. 
 
The following are the steps to implement the first algorithm: 

1. Specify the values of n, 0 , ARL0 and  . 

2. Set L = 1. 

3. Set 2Sn = . 

4. Set 1Ln n= + , where n is the sample size. 

5. Obtain ( ),W K  so that 0ARL =  and ASS0 = n, by solving Equations (23) and (28) with 0 = . Note 

that   is determined by the practitioner.  

6. With the current combination of ( ), , , ,S LL n n W K , compute ARL1 and SDRL1 from Equations (23) and 

(24) respectively, with 0 = .  

7. Increase Ln  by 1. 

8. Repeat Steps 5 to 7 until maxLn n= , where maxn  is determined by the practitioner based on the 

availability of resources. In this paper, max 31.n =  

9. Increase Sn  by 1. 

10. Repeat Steps 4 to 9 until 1Sn n= − . 

11. Increase L by 1. 
12. Repeat Steps 3 to 11 until the ARL1 for L+1 is larger than the ARL1 for L.  

13. The combination with the smallest ARL1 is the optimal charting parameters ( )* * * * *, , , ,S LL n n W K . 

 

In the second algorithm, ( )* * * * *, , , ,S LL n n W K  is chosen to minimise the EARL instead. The steps to obtain 

( )* * * * *, , , ,S LL n n W K  are similar to Steps 1 to 13 in the preceding paragraph, with modifications made for the 

following steps: 

1. Specify the values of n, 0 , ARL0, min  and max . 

6. With the current combination of ( ), , , ,S LL n n W K , compute EARL1 from Equation (25). 

13. The combination with the smallest EARL1 is the optimal charting parameters ( )* * * * *, , , ,S LL n n W K . 

 

Table 1 shows the ( )* * * * *, , , ,S LL n n W K , ARL1 and SDRL1 values for  5,7,10,15n ,  1.1,1.2,1.5,2.0   and 

 0 0.05,0.10,0.15,0.20  . The ARL0 is set as 370.4. To interpret Table 1, we refer to the combination 

0 0.05, 5 and 1.1n = = = , which shows that ( ) ( )* * * * *, , , , 28,2,30,1.60,2.19S LL n n W K = , with ARL1 = 68.92 and 

SDRL1 = 92.75.  
 

From Table 1, most of the optimal charting parameters show a large difference between *
Sn  and *

Ln  , where 

all the * 2Sn = , while most of the *
Ln  are equivalent or close to maxn . A larger n results in smaller ARL1 and 

SDRL1 values. For example, for 0 0.05 =  and 1.1 = , ( ) ( )1 1, 68.92,92.75ARL SDRL =  when n = 5, while 

( ) ( )1 1, 36.64,48.39ARL SDRL =  when n = 15. Thus a larger n results in a better performance. The improvement 
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is more significant when   is small. A smaller W and a larger K are also observed for a larger n, which 

translates into a larger warning region but a smaller conforming region. 
 
Similar to n, smaller ARL1 and SDRL1 are observed for larger  , since a larger shift requires fewer samples 

to detect the shift. A larger   also results in smaller L and K. This shows that a smaller conforming region 

is adopted; but successive non-conforming samples should happen quite close to each other for the process 

to be considered as OOC. A larger 0  results in a slight increase in the ARL1 and SDRL1, especially for small 

shift sizes. 
 

Table 1: The ( )* * * * *, , , ,S LL n n W K  and the corresponding ARL1 and SDRL1 for the VSS synthetic-   chart  

 
 

Table 2 shows the ( )* * * * *, , , ,S LL n n W K  and EARL1 values for  5,7,10,15 ,n  0 0.05,0.10,0.15,0.20   and 

( ) (min max, 1,2  =  by using the second algorithm. Similar to Table 1, the ARL0 is set as 370.4. For instance, 

for ( ) (min max, 1,2  = , 0 0.05 =  and 5n = , ( ) ( )* * * * *, , , , 28,2,30,1.60,2.19S LL n n W K = , with 1 15.39EARL = .  

 
 
 

 

  0 0.05 =  
0 0.10 =  

0 0.15 =  
0 0.20 =  

5n =  

1.1 
(28, 2, 30, 1.60, 

2.19) 
 (68.92, 92.75) 

(30, 2, 31, 1.61, 
2.22) 

 (69.71, 93.85) 

(25, 2, 30, 1.61, 
2.19) 

 (70.63, 94.56) 

(28, 2, 28, 1.55, 
2.23) 

 (72.89, 97.26) 

1.2 
(13, 2, 31, 1.59, 

2.10) 
 (14.34, 21.27) 

(19, 2, 30, 1.59, 
2.16) 

 (14.65, 21.29) 

(17, 2, 29, 1.57, 
2.15) 

 (15.47, 22.39) 

(20, 2, 31, 1.64, 
2.17) 

 (16.84, 24.53) 

1.5 
(6, 2, 31, 1.64, 

2.00) 
 (1.47, 2.00) 

(9, 2, 31, 1.64, 
2.05) 

 (1.49, 2.01) 

(9, 3, 31, 1.71, 
2.20) 

 (1.54, 1.90) 

(8, 2, 31, 1.64, 
2.05) 

 (1.62, 2.28) 

2.0 
(4, 2, 31, 1.64, 

1.95) 
 (1.00, 0.11) 

(3, 2, 31, 1.64, 
1.91) 

 (1.00, 0.12) 

(3, 2, 31, 1.64, 
1.92) 

 (1.00, 0.15)  

(5, 2, 31, 1.64, 
1.99) 

 (1.01, 0.17) 

7n =  

1.1 
(29, 2, 31, 1.44, 

2.23) 
 (57.57, 77.59) 

(30, 2, 31, 1.44, 
2.24) 

 (58.30, 78.54) 

(29, 2, 31, 1.42, 
2.25) 

 (58.97, 79.25) 

(29, 2, 31, 1.43, 
2.26) 

 (62.11, 83.28) 

1.2 
(20, 2, 31, 1.41, 

2.19) 
(10.62, 14.72) 

(19, 2, 30, 1.39, 
2.19) 

 (10.99, 15.20) 

(19, 2, 31, 1.43, 
2.19) 

 (11.69, 16.37) 

(17, 2, 31, 1.41, 
2.19) 

 (12.09, 16.96) 

1.5 
(6, 2, 31, 1.44, 

2.02) 
 (1.32, 1.33) 

(6, 2, 31, 1.44, 
2.03) 

 (1.34, 1.38) 

(6, 2, 31, 1.44, 
2.03) 

 (1.38, 1.46) 

(6, 2, 31, 1.43, 
2.04) 

 (1.43, 1.56) 

2.0 
(3, 2, 31, 1.44, 

1.93) 
 (1.00, 0.08) 

(3, 2, 31, 1.44, 
1.93) 

 (1.00, 0.09) 

(4, 2, 31, 1.44, 
1.98) 

 (1.00, 0.10) 

(3, 2, 31, 1.43, 
1.94) 

 (1.00, 0.13) 

10n =  

1.1 
(29, 2, 31, 1.17, 

2.28) 
 (45.81, 61.37) 

(30, 2, 31, 1.18, 
2.29) 

 (47.15, 63.17) 

(27, 2, 31, 1.18, 
2.28) 

 (48.89, 65.37) 

(30, 2, 31, 1.17, 
2.31) 

 (50.58, 67.58) 

1.2 
(12, 2, 31, 1.16, 

2.16) 
 (8.11, 10.96) 

(19, 2, 31, 1.18, 
2.23) 

 (8.36, 10.79) 

(11, 2, 31, 1.15, 
2.16) 

 (8.71, 11.86) 

(20, 2, 31, 1.17, 
2.25) 

 (9.24, 11.91) 

1.5 
(4, 2, 31, 1.18, 

2.00) 
 (1.23, 0.91) 

(4, 2, 31, 1.18, 
2.01) 

 (1.24, 0.94) 

(3, 2, 31, 1.18, 
1.97) 

 (1.27, 1.04) 

(4, 2, 31, 1.17, 
2.02) 

 (1.31, 1.08) 

2.0 
(2, 2, 31, 1.17, 

1.91) 
 (1.00, 0.06) 

(2, 2, 31, 1.16, 
1.91) 

 (1.00, 0.06) 

(2, 2, 31, 1.17, 
1.91) 

 (1.00, 0.08) 

(2, 2, 31, 1.17, 
1.92) 

 (1.00, 0.09) 

15n =  

1.1 
(30, 2, 31, 0.82, 

2.36) 
 (36.64, 48.39) 

(29, 2, 31, 0.82, 
2.36) 

(37.49, 49.56) 

(30, 2, 31, 0.82, 
2.37) 

 (38.74, 51.20) 

(28, 2, 31, 0.82, 
2.37) 

 (40.82, 54.00) 

1.2 
(12, 2, 31, 0.82, 

2.23) 
 (6.25, 7.67) 

(12, 2, 31, 0.82, 
2.23) 

 (6.41, 7.89) 

(13, 2, 31, 0.82, 
2.25) 

 (6.68, 8.18) 

(18, 2, 31, 0.82, 
2.30) 

 (7.12, 8.36) 

1.5 
(3, 2, 31, 0.82, 

2.02) 
 (1.18, 0.63) 

(4, 2, 31, 0.82, 
2.06) 

 (1.19, 0.63) 

(3, 2, 31, 0.82, 
2.02) 

 (1.21, 0.70) 

(5, 2, 31, 0.82, 
2.10) 

 (1.24, 0.70) 

2.0 
(2, 2, 31, 0.82, 

1.95) 
 (1.00, 0.04) 

(2, 3, 31, 0.82, 
2.04) 

 (1.00, 0.05) 

(2, 2, 31, 0.82, 
1.96) 

 (1.00, 0.06) 

(2, 2, 31, 0.82, 
1.96) 

 (1.00, 0.07) 
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Table 2: The ( )* * * * *, , , ,S LL n n W K  and the corresponding EARL1 for the VSS synthetic-   chart  

 
 

Similar to Table 1, there is a large difference between Sn  and Ln . A smaller value of EARL1 is shown for a 

larger n. A smaller W and a larger K are also observed for a larger n. Overall, a similar trend is observed 
for Tables 1 and 2 

5 COMPARISON 

The proposed chart is compared with the following   charts: the synthetic-  , VSS-  , VSS EWMA- 2 , 

EWMA- 2  and Shewhart-   charts.  

Table 3 shows the ARL1 values of the proposed VSS synthetic-   chart and the five competing charts, as 

mentioned in the previous paragraph. The ARL1 values are shown for  5,7,10,15n ,  1.1,1.2,1.5,2.0   and 

0 0.05 = , with the ARL0 being set as 370.4. To facilitate comparisons, the relative ARL (RARL), which is 

the ratio of the ARL1 for the competing chart against the ARL1 for the VSS synthetic-   chart, is shown in 

Table 3. For instance, for n = 5 and 1.1 = , the RARL  for the Shewhart-   chart is 
159.86

2.32
68.92

= . The 

proposed chart outperforms competing charts with a RARL that is larger than unity. 
 

Table 3: The ARL1 for the Shewhart-  , VSS-  , EWMA- 2 , VSS EWMA- 2 , synthetic-  , and VSS 

synthetic-   charts 

 

  

Shewhart-   VSS-   EWMA-
2  VSS 

EWMA-
2  

Synthetic-   VSS 
synthetic

-   

n = 5 

ARL1 RARL ARL1 RARL ARL1 RARL ARL1 RARL ARL1 RARL ARL1 

1.1 159.86 2.32 103.22 1.50 51.03 0.74 30.08 0.44 115.42 1.67 68.92 

1.2 64.69 4.51 28.33 1.98 20.38 1.42 11.98 0.84 37.67 2.63 14.34 

1.5 10.57 7.19 4.72 3.21 5.76 3.92 4.00 2.72 5.76 3.92 1.47 

2.0 2.89 2.89 2.22 2.22 2.36 2.36 2.10 2.10 1.97 1.97 1.00 

  n = 7 

ARL1 RARL ARL1 RARL ARL1 RARL ARL1 RARL ARL1 RARL ARL1 

1.1 141.22 2.45 88.30 1.53 39.32 0.68 23.66 0.41 97.69 1.70 57.57 

1.2 50.26 4.73 23.84 2.24 15.44 1.45 9.49 0.89 27.65 2.60 10.62 

1.5 7.21 5.46 3.67 2.78 4.26 3.23 3.12 2.36 3.95 2.99 1.32 

2.0 2.05 2.05 1.75 1.75 1.80 1.80 1.71 1.71 1.51 1.51 1.00 

  n = 10 

ARL1 RARL ARL1 RARL ARL1 RARL ARL1 RARL ARL1 RARL ARL1 

 

0  *L  *
Sn  *

Ln  *W  
*K  EARL1 

5n =  

0.05 28 2 30 1.60 2.19 15.39 

0.10 25 2 30 1.61 2.19 15.66 

0.15 30 2 31 1.61 2.21 15.55 

0.20 28 2 28 1.55 2.23 16.20 
7n =  

0.05 29 2 31 1.44 2.23 13.58 

0.10 30 2 31 1.44 2.24 13.71 

0.15 29 2 31 1.42 2.25 13.84 

0.20 29 2 31 1.43 2.26 14.36 
10n =  

0.05 29 2 31 1.17 2.28 11.78 

0.10 30 2 31 1.18 2.29 12.01 

0.15 27 2 31 1.18 2.28 12.29 

0.20 30 2 31 1.17 2.31 12.59 
15n =  

0.05 30 2 31 0.82 2.36 10.36 

0.10 29 2 31 0.82 2.36 10.51 

0.15 30 2 31 0.82 2.37 10.74 

0.20 28 2 31 0.82 2.37 11.10 
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1.1 102.27 2.23 74.43 1.62 30.09 0.66 19.13 0.42 78.87 1.72 45.81 

1.2 37.09 4.57 18.43 2.27 11.60 1.43 7.29 0.90 19.24 2.37 8.11 

1.5 4.77 3.88 2.90 2.36 3.16 2.57 2.51 2.04 2.71 2.20 1.23 

2.0 1.52 1.52 1.41 1.41 1.41 1.41 1.47 1.47 1.22 1.22 1.00 

  n = 15 

ARL1 RARL ARL1 RARL ARL1 RARL ARL1 RARL ARL1 RARL ARL1 

1.1 95.85 2.62 60.49 1.65 22.46 0.61 16.02 0.44 58.48 1.60 36.64 

1.2 25.03 4.00 13.85 2.22 8.43 1.35 6.12 0.98 12.24 1.96 6.25 

1.5 3.02 2.56 2.20 1.86 2.30 1.95 2.02 1.71 1.86 1.58 1.18 

2.0 1.19 1.19 1.17 1.17 1.15 1.15 1.16 1.16 1.07 1.07 1.00 

 
From Table 3, the VSS synthetic-   chart shows a smaller ARL1 than the Shewhart-  , VSS-   and synthetic-

  charts for all n and   values. The magnitude of improvement is quite large for small values of n and 

. In particular, comparison with the synthetic-   chart shows that the VSS feature results in a significant 

improvement. For example, for n = 5 and 1.1 = , the ARL1 = 115.42 for the synthetic-   chart, while ARL1 

= 68.92 for the VSS synthetic-   chart. This shows that incorporating the VSS feature results in an 

improvement of 40.29% in the ARL1 criterion. 
 

However, the VSS synthetic-   chart does not outperform the EWMA- 2  and VSS EWMA- 2  charts for all 

the shift sizes. With the exception of small shift sizes of 1.1 = , Table 3 shows that the VSS synthetic-   

chart outperforms the EWMA- 2  chart for most cases. This is expected, since the EWMA- 2  chart is well-

known for its sensitivity to small shifts. However, the VSS synthetic-   chart is not as complicated as the 

EWMA- 2  chart, which makes it more user-friendly for practitioners. Furthermore, the EWMA- 2  chart only 

shows a better performance for 1.1 = , while, for other values of  , the VSS synthetic-   chart shows a 

better performance. The VSS synthetic-   chart outperforms the VSS EWMA- 2  chart for moderate and 

large shift sizes of 1.5 =  and 2.0 = , but is inferior to the VSS EWMA- 2  chart for 1.1 =  and 1.2 = .  

 
Performance in terms of the ARL1 criterion can only be evaluated if   is known. Since   may not be known 

in practical applications, EARL1 comparisons are also made. Table 4 shows the EARL1 values of the VSS 

synthetic-   chart and the five competing charts for  5,7,10,15n  and  0 0.05,0.10,0.15,0.20  . Similar 

to Table 3, the relative EARL (REARL) is provided for ease of comparison, where the REARL is computed 
and interpreted in a similar way to the RARL. 
 

Table 4: The EARL1 for the Shewhart-  , VSS-  , EWMA- 2 , VSS EWMA- 2 , synthetic-  , and VSS 

synthetic-   charts 

 

0  

Shewhart-   VSS-   EWMA- 2  VSS  

EWMA- 2  

Synthetic-   VSS 
synthetic-

  

n = 5 

EARL1 REARL EARL1 REARL EARL1 REARL EARL1 REARL EARL1 REARL EARL1 

0.05 38.06 2.47 23.16 1.50 15.72 1.02 11.24 0.73 27.18 1.77 15.39 

0.10 38.34 2.45 23.25 1.48 15.84 1.01 11.25 0.72 27.39 1.75 15.66 

0.15 38.34 2.47 23.38 1.50 16.04 1.03 11.44 0.74 27.74 1.78 15.55 

0.20 39.57 2.44 23.63 1.46 16.36 1.01 11.61 0.72 28.25 1.74 16.20 

0  
n = 7 

EARL1 REARL EARL1 REARL EARL1 REARL EARL1 REARL EARL1 REARL EARL1 

0.05 32.12 2.37 19.94 1.47 12.52 0.92 9.00 0.66 22.76 1.68 13.58 

0.10 32.41 2.36 20.07 1.46 12.62 0.92 9.00 0.66 22.96 1.67 13.71 

0.15 32.90 2.38 20.27 1.46 12.81 0.93 9.20 0.66 23.31 1.68 13.84 

0.20 33.62 2.34 20.54 1.43 13.08 0.91 9.32 0.65 23.82 1.66 14.36 

0  
n = 10 

EARL1 REARL EARL1 REARL EARL1 REARL EARL1 REARL EARL1 REARL EARL1 

0.05 26.66 2.26 16.93 1.44 9.89 0.84 7.17 0.61 18.70 1.59 11.78 

0.10 26.93 2.24 17.03 1.42 9.98 0.83 7.24 0.60 18.89 1.57 12.01 

0.15 27.39 2.23 17.21 1.40 10.14 0.83 7.51 0.61 19.22 1.56 12.29 

0.20 28.04 2.23 17.49 1.39 10.37 0.82 7.52 0.60 19.69 1.56 12.59 

0  
n = 15 

EARL1 REARL EARL1 REARL EARL1 REARL EARL1 REARL EARL1 REARL EARL1 
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0.05 21.30 2.06 14.31 1.38 7.60 0.73 6.00 0.58 14.73 1.42 10.36 

0.10 21.53 2.05 14.34 1.36 7.66 0.73 6.00 0.57 14.90 1.42 10.51 

0.15 21.93 2.04 14.43 1.34 7.79 0.73 6.20 0.58 15.19 1.41 10.74 

0.20 22.50 2.03 14.60 1.32 7.98 0.72 6.39 0.58 15.59 1.40 11.10 

 
From Table 4, the VSS synthetic-   chart outperforms the Shewhart-  , VSS-   and synthetic-   charts for 

all values of n  and 0  considered in Table 4. This result is consistent with the comparison based on the 

ARL1 criterion in Table 3. However, the VSS synthetic-   chart only slightly outperforms the EWMA- 2  chart 

for n = 5, but does not perform as well as the EWMA- 2  chart for cases with  7,10,15n . By comparison, 

the VSS EWMA- 2  chart outperforms the proposed chart for all values of n  and 0  considered in Table 4. 

6 AN ILLUSTRATIVE EXAMPLE 

This section shows the implementation of the VSS synthetic-   chart with the example by Castagliola et al. 

[8], who have shown that it is not appropriate to use X  and S control charts to monitor the process owing 
to an unstable mean and standard deviation. However, Castagliola et al. [8] conducted a regression analysis 
that showed a constant proportionality between the standard deviation and the mean of the process. Thus 
monitoring   is a good alternative for this process. This section illustrates the monitoring of this process 

using the VSS synthetic-   chart. 

 

Table 5 (left-hand side) shows the sample mean ( )iX , sample standard deviation ( )iS  and sample   ( )ˆi  

for the Phase-I data, which consist of m = 30 samples, with size n = 5, where ˆ i
i

i

S

X
 = .  

 
Table 5: Phase-I and Phase-II data  

 

i Phase-I Phase-II 

iX  iS  ˆi  ( )n i  iX  iS  ˆi  iT  

1 292.600 2.701 0.00923 2 413.397 3.89 0.00941 0.45548 

2 289.000 0.707 0.00245 2 417.426 9.644 0.02310 1.94014 

3 291.400 2.073 0.00711 30 415.871 5.949 0.01430 3.14730 

4 288.000 3.937 0.01367 30 415.777 4.435 0.01067 0.59318 

5 290.000 0.707 0.00244 2 417.93 7.805 0.01868 1.56002 

6 288.200 1.303 0.00452 2 423.277 7.915 0.01870 1.56189 

7 535.400 8.264 0.01544 2 418.865 8.058 0.01924 1.61195 

8 518.400 7.224 0.01394 30 414.957 2.107 0.00508 -4.02142 

9 529.200 9.203 0.01739 30 417.808 4.978 0.01191 1.49900 

10 527.000 9.591 0.01820 2 412.646 2.721 0.00659 -0.02961 

11 533.600 4.929 0.00924 2 424.2 8.064 0.01901 1.59077 

12 439.200 3.114 0.00709 30 414.715 4.168 0.01005 0.12606 

13 447.200 2.774 0.00620 2 413.253 4.509 0.01091 0.67587 

14 443.400 8.173 0.01843 2 413.459 3.824 0.00925 0.43063 

15 434.000 2.549 0.00587 2 422.247 1.63 0.00386 -0.62883 

16 436.000 1.224 0.00281 2 416.87 5.941 0.01425 1.09971 

17 437.600 2.408 0.00550 2 418.77 7.791 0.01860 1.55250 

18 419.600 4.037 0.00962 2 411.295 5.532 0.01345 1.00533 

19 422.400 4.159 0.00985 2 413.229 11.899 0.02879 2.34952 

20 416.800 3.962 0.00951 30 423.45 3.97 0.00937 -0.39779 

21 420.400 4.979 0.01184 2 417.444 3.495 0.00837 0.28869 

22 421.600 2.302 0.00546 2 416.918 6.67 0.01600 1.29312 

23 418.400 4.393 0.01050 2 412.434 7.092 0.01720 1.41662 

24 410.400 4.219 0.01028 2 418.307 5.981 0.01430 1.10547 

25 449.000 6.204 0.01382 2 422.797 5.151 0.01218 0.84672 

26 441.600 3.781 0.00856 2 417.55 1.658 0.00397 -0.60128 

27 393.200 6.220 0.01582 2 413.16 7.159 0.01733 1.42959 

28 401.800 1.483 0.00369 2 421.391 5.792 0.01374 1.04001 

29 412.600 3.049 0.00739 2 413.397 3.89 0.00941 0.45548 

30 461.400 7.700 0.01669 2 417.426 9.644 0.02310 1.94014 
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0  is estimated as  

30

0
1

1
ˆ ˆ 0.00975 0.01.

30
i

i

 
=

= =                                              (29) 

Castagliola et al. [8] showed that the Phase-I data are IC. Thus the 0̂  in Equation (29) can be adopted. 

 
Next, Phase-II data, which consist of m = 30 samples, are collected, and are shown in Table 5 (right-hand 

side). Similar to the Phase-I data, the ,i iX S  and ˆi  values of the Phase-II samples are also shown. As the 

transformed statistics Ti in Equation (5) are monitored in the VSS synthetic-   chart, Table 5 also shows 

the Ti for each sample.  
 
According to Castagliola et al. [8], it is important to detect a shift of 20% in  . Thus the chart is optimised 

to detect a shift of 1.20 = . From the methodology in Section 4, for 05, 0.01 and 1.20,n  = = =

( ) ( )* * * * *, , , , 23,2,30,1.58,2.17S LL n n W K = . From these optimal charting parameters, if 1.58 1.58iT−   , 

( )1 2n i + = , while if 1.58iT   or 1.58iT  − , ( )1 30n i + = . The sample size for each sample ( )n i  is shown in 

Table 5. Since * 2.17K = , the sample is non-conforming if 2.17iT   or 2.17iT  − . The iT  values in bold in 

Table 5 are the samples that are non-conforming. If CRL  23, the chart will give an OOC signal. Adopting 

these optimal charting parameters results in ( ) ( )1 1, 14.02,20.16ARL SDRL = .  

 
Figure 2 shows the   sub-chart for the Phase-II data. From Figure 2, we can see that there are three non-

conforming samples: samples 3, 8, and 19. From Figure 2, 1 2 33, 5 and 11CRL CRL CRL= = = . Since all the 

CRLs are less than 23, OOC signals will be produced at samples 3, 8, and 19. 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2: The   sub-chart of the VSS synthetic-   chart corresponding to the Phase II data  

 

For comparison, this paper will also show the monitoring of the Phase-II data with the synthetic-   chart 

without the VSS feature. Similar to the VSS synthetic-   chart, the synthetic-   chart is optimised to detect 

a shift of 1.20 = , which results in the optimal charting parameters ( ) ( )* * *, , 39,0.002217,0.01942L LCL UCL =

. Note that, since the synthetic-   chart adopts fixed sample sizes, there is no need to monitor the 

transformed statistics iT . Instead, ˆi  is monitored directly. Figure 3 shows the   sub-chart for the 

synthetic-   chart without the VSS feature. 
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Figure 3: The   sub-chart of the synthetic-   chart corresponding to the Phase II data 

 

From Figure 3, only sample 9 is a non-conforming sample, with 1 9CRL = . Thus sample 9 is an OOC sample. 

This shows that the synthetic-   chart only managed to detect one OOC sample at sample 9, whereas the 

VSS synthetic-   chart detected three OOC samples at samples 3, 8, and 19. This shows that the VSS 

synthetic-   chart improves the performance over the synthetic-   chart. 

 
Figures 2 and 3 can only be obtained if   is known in advance. Since   may not be known in advance, we 

also consider the case when   is unknown. By adopting the methodology in Section 4 for 05, 0.01n = =  

and ( ) ( min max, 1,2  = , ( ) ( )* * * * *, , , , 23,2,30,1.58,2.17S LL n n W K =  for the VSS synthetic-   chart, while 

( ) ( )* * *, , 39,0.002217,0.01942L LCL UCL =  for the synthetic-   chart, which are the same optimal charting 

parameters as those for 1.20 = . Since the same optimal charting parameters are adopted, the design 

based on the EARL also gives OOC signals for the same samples as the design based on the ARL.  

7 CONCLUSION 

The synthetic-   chart is attractive to practitioners, as it waits for two successive samples to fall outside 

the control limits before deciding whether the process is IC or OOC. However, the existing synthetic-   

chart is based on fixed sample sizes, where the same sample size is adopted irrespective of the current 
sample information. To improve the performance of the existing synthetic-   chart, a VSS synthetic- 

chart is proposed in this paper to monitor  . In the proposed chart, the sample size alternates between 

the small and the large sample sizes, dependent on whether the previous sample is in the central, warning, 
or non-conforming regions. Formulae to evaluate the ARL, SDRL, EARL, and ASS are developed, and 
optimisation algorithms to obtain the optimal charting parameters are proposed. Tables of optimal charting 
parameters are also provided to facilitate a quick implementation of the proposed chart. The optimal 

charting parameters show that there is a large difference between Sn  and Ln . Thus practitioners are 

encouraged to adopt a smaller sample size when ̂  is in the central region, and to adopt larger sample 

sizes when ̂  falls in the warning or non-conforming region. The proposed chart shows a significant 

improvement over the existing synthetic-   chart. Furthermore, the VSS synthetic-   chart also 

outperforms the VSS-   and Shewhart-   charts for all shift sizes, while outperforming the EWMA-
2  and 

VSS EWMA-
2  charts for moderate and large shift sizes. Note that, with the exception of very small shift 

sizes, the VSS synthetic-   chart shows a better performance than the EWMA- 2  chart. 
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