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ABSTRACT 

This paper presents the design and analysis of a novel five degrees-of-
freedom (DOF) parallel kinematic manipulator (PKM) for part-handling, 
sorting, general positioning, and robotic machining applications. The 2-
R(Pa-IQ)RR, R(Pa-IQ)R manipulator has two rotational DOFs, one parasitic 
rotation, and three translational DOFs. In comparison with other 5- and 6-
DOF PKMs, this PKM possesses three pairs of coplanar legs that contain 
nested kinematic chains, and it makes exclusive use of revolute and 
prismatic joints. The inverse kinematic analysis is a novel extension of the 
geometric (vector) method with the analysis of inner and outer kinematic 
chains. The forward kinematic analysis was solved using the Newton 
Raphson (NR) method. The results of the forward and inverse kinematic 
analyses were validated with SolidWorks® and MATLAB® simulations. 

OPSOMMING 

Die ontwerp en analise van ŉ nuwe vyf grade van vryheid parallele 
kinematiese manipuleerder (PKM) vir onderdeel hantering, sortering, 
algemene posisionering en robot masjinering toepassings word aangebied. 
Die manipuleerder het twee rotasie vryheidsgrade, een parasitiese rotasie 
en drie translasie vryheidsgrade. In teenstelling met ander vyf- en ses 
vryheidsgraad PKM’s, besit hierdie PKM drie pare saamvlakkige bene wat 
geneste kinematiese kettings bevat en dit maak uitsluitlik gebruik van 
omwentelings- en prismatiese gewrigte. Die inverse kinematiese analise is 
ŉ nuwe uitbreiding van die geometriese (vektor) metode saam met die 
analise van binne- en buite kinematiese kettings. Die vorentoe kinematiese 
analise is opgelos deur die Newton-Raphson metode. Die resultate van 
beide die vorentoe- en inverse kinematiese analises is gevalideer met 
SolidWorks® en MATLAB® simulasies. 

 

1 INTRODUCTION 

In recent decades, there has been much interest, and there have been significant advancements, in the 
field of parallel kinematic manipulators (PKMs). They have been adopted in industry for tasks such as 
positioning, pick–and-place operations, motion simulation, machining tasks, and medical operations [1]. A 
PKM is defined as a robotic system that has two or more closed-loop kinematic chains. Each kinematic chain 
is connected to a common base and to a common end effector [1]. PKMs exhibit higher mechanical stiffness 
and lower inertia than serial architectures [1]. They are capable of a high payload–to-weight ratio; however, 
PKMs generally have smaller workspaces than serial robots. PKMs are known to require complex calibration 
methods and kinematic analyses. The forward kinematic analysis, in particular, generally leads to non-
linear equations that require the use of numerical methods to solve [2]. 
 
Serial and parallel kinematic architecture robots have been explored as alternative machining centres to 
computer numerically controlled (CNC) machines. Researchers such as Karim and Verl [3] and Brüning et 
al. [4] confirmed that there is a high economic potential for using robotic systems to perform machining 
tasks in the aerospace and automotive industries. The disadvantages of serial robotic systems include the 
error accumulation in joints that is propagated through all links; also, they possess relatively low 
mechanical stiffness, are prone to vibrating, and require complex programming [3, 4]. Research conducted 
on serial robotic platforms showed that, under heavy machining, stiffness is compromised and joint error 
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propagation is observed [5, 6]. A PKM designed for machining tasks can be employed for high-accuracy 
positioning, part-handling, and sorting applications. Owing to its high stiffness and the averaging of joint 
errors, a PKM would be better suited for — but not limited to — machining applications. 
 
Researchers have proposed various PKMs and hybrid architectures that can be employed for machining, 
positioning, part-handling, and sorting tasks in industry. A number of these robotic platforms have been 
successfully commercialised; however, they are large and expensive [1, 7, 8]. This research was motivated 
by the need for a compact, affordable, and multi-purpose robotic architecture with larger ranges of rotation 
than most 5- and 6-DOF PKMs. The PKM was designed to validate machining, part-handling, sorting, and 
general positioning applications. 
 
The paper presents the design and synthesis of a novel 5-DOF PKM. The kinematic analyses are presented 
and the merits of the novel architecture are evaluated. This paper is arranged as follows: Section 2 analyses 
parallel kinematic platforms that can be used for machining, part-handling, sorting, and general position 
applications; and industrially available platforms are reviewed. Section 3 presents the description of the 
novel design; Section 4 presents the inverse kinematic analysis; Section 5 presents the forward kinematic 
analysis; Section 6 presents the results from simulations used to validate the forward and inverse kinematic 
models; and Section 7 concludes with insights from this study and recommends areas for future research 
and development. 

2 APPLICATIONS OF PARALLEL ROBOTS 

PKMs can accomplish a wide variety of tasks. Within this class of robots, architectural sub-classes exist that 
influence the functionality of the PKM [9]. Applications of interest were reviewed. Concerning part-handling 
and sorting, Yang et al. [10] produced a modified robust control system for the 2-DOF diamond parallel 
robot. This robotic platform was designed for high-speed and high-precision part handling and assembly. 
Experimental results showed that the modified control system was successful and could produce more 
accurate trajectories than traditional potential difference methods. Ahangar et al. [11] produced a novel 
3-DOF Delta-type PKM with redundant actuation, which could be used in a production line with the addition 
of a magnetic joint. In a study carried out by Al-Naimi, Taeim and Alajdah [12], a 3-DOF PKM was designed 
to detect, locate, grasp, and transfer a part to a different position while using machine vision. The robotic 
platform conducted tasks within acceptable accuracies. A 6-DOF PKM was developed by McCann and Dollar 
[13] for dexterous spatial manipulation. The design was based on the Stewart platform, and the results 
showed that the PKM could manipulate shapes in space with minimal sensing. The machine did, however, 
encounter challenges when grasping irregular objects. Other notable PKMs known for their good 
performance in part-handling and sorting applications are the ABB IRB 360 Flex Picker [14], Delta Robots 
developed by SIG Pack Systems [1], and the Fanuc M-31A manipulator [12]. PKMs that possess up to four 
DOFs for part handling and sorting are generally high-speed robotic platforms with low inertia. The motors 
are located at the base. PKMs that possess five or six DOFs for such applications have higher inertia, but 
possess greater stiffness, allowing for fine positioning and more dexterous manipulation. 
 
For general positioning, a novel 5-DOF PKM developed by Guo et al. [15] was used as a ship active vibration 
isolation system using PID control and force-position redundant control. ADAMS®-MATLAB Simulink® 
simulations were used to improve further the control of the PKM. The results showed that acceptable 
tracking was achieved and that vibration isolation was successful. Research conducted by Fiore, Giberti 
and Sbaglia [16] entailed the kinematic optimisation of a 5-DOF PKM for additive manufacturing. The 
workspace was designed for the desired task through a genetic algorithm. The PKM could achieve 
movements that were not feasible with traditional additive manufacturing machines. Gonzalez and Asada 
[17] developed a 6-DOF triple scissor extender (TSE) PKM for aircraft assembly applications. The purpose 
of this design was to achieve a large workspace by reaching high ceilings and fine positioning of the end 
effector. The testing showed that the TSE PKM could reach 1.2 meters in the X and Y directions and that 
fine positioning was realised. A 6-DOF PKM researched by Stenzel, Sajkowski and Hetmańczyk [18] was 
applied to simulations of selected manoeuvres for emergency vehicles. The platform simulated the forces 
acting on the load of a vehicle for driving over a speed bump and for obstacle avoidance. The 6-DOF Fanuc 
F-200iB was investigated by Barnfather, Goodfellow and Abram [19] to determine and minimise position 
errors in the robotic platform during non-cutting stages. Position errors were observed in the micron range 
and were pose-dependent. It was proposed that the systematic error be reduced through in-situ process 
monitoring. PKMs possessing five and six DOFs are better suited for positioning tasks than PKMs possessing 
four DOFs or fewer. The workspace can be tailored to suit the desired task. There is a trade-off between 
large workspace and machine stiffness. Larger workspaces require all motors to be mounted at the foot 
points of the PKM. 
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Briot, Pashkevich and Chablat [20] identified that the load-bearing advantage and higher positional 
accuracy of parallel robots, compared with serial robots, make them a more suitable robotic platform for 
machining applications [21]. A 6-DOF free leg hexapod was developed by Olarra, Allen and Axinte [22] for 
miniature machining applications. An algorithm was developed to alter the machine’s architectural 
configuration. This generated the required workspace to suit the desired application through an optimal 
foot configuration. A study undertaken by Glavonjic et al. [23] produced a desktop 3-DOF spatial PKM for 
machining applications. The study was aimed at producing a low-cost educational robotic platform. The 
results showed that the platform could only machine soft materials. The Orthoglide, developed by Chablat 
and Wenger [24], possessed three translational degrees of freedom, and was also considered for machining 
applications. The PKM used parallelogram joints. These platforms have been developed and tested, but 
have not been adopted industrially. Some of these platforms have future work pending, inclusive of testing 
and experimentation. 
 
Choi, Cho and Kim [25] developed a PKM that was mobile and could move to a desired location to perform 
machining tasks. The first prototype that was built was inferior to a CNC machine for feed rate and accuracy 
of cut. Further research was required to develop path-planning algorithms, and additional sensors were 
required to aid in the control of the machine. In a research study carried out by Jin et al. [26], their team 
developed a PKM, named PAW, for drilling and trimming tasks for aircraft wings. It was designed to be 
mounted on a gantry structure that allowed it to move to different locations. The machine possessed one 
translational and two rotational DOFs. Dimensional analysis confirmed that the PAW PKM performed 
machining tasks better than mechanisms currently employed in industry. Compared with a Tricept-type 
PKM, it performed better for accuracy and stiffness owing to the removal of the wrist segment employed 
by Tricept-type PKMs. The Exechon, which is industrially available, improved on the Tricept-type PKM 
architecture. The Exechon, like Tricept-based PKMs, is a hybrid PKM with a 3-DOF PKM portion and a 2-DOF 
serial wrist mounted on the end effector [27]. The OKUMA PM 600 possesses six DOFs, and has been 
commercialised. The design was based on the Stewart platform. It is used for machining aluminium and 
work pieces that require less polishing [7]. PKMs employed in industry are generally large and expensive.  
 
Performance indices were obtained for some industrial 5- and 6-DOF PKMs. They are presented in Table 1. 

Table 1:  Performance indices of some 5- and 6-DOF PKMs 

PKM 
Workspace x*y*z 

(mm) 
Rotation 
(degrees) 

Accuracy Repeatability 

Fanuc F200iB [28] ±520*±510.93* 
437.27 

Depends on end effector 
mounting 

N/A ±0.1 mm 

Hexabot [29] ±152.2(X-Y)*178 ±25 N/A 10 µm 

OKUMA PM 600 [30, 31] Ø600 (X-Y)*400 ±25 5 µm N/A 

Mikrolar P1500 [32] Ø725 (X-Y)*273 ±25 50 µm 25 µm 

Mikrolar Hex-A-Jet P3000 
[33] 

Ø1219 (X-Y)*508 ±15 (X, Y axis) 
±5 (Z axis) 

±0.05 mm 0.03 mm 

Metrom Pentapod P800 
[34, 35] 

Ø600 (X-Y)*400 ±90  ±0.020 mm 0.003 mm 

Hexapode300 [34] 700*700*300 N/A 8 µm/300 mm ±1 µm 

 
Research indicates that, although novel PKMs are analytically functional and have excellent performance 
potential, their adoption in industry is hindered by some PKMs being developed as an educational exercise, 
with future work pending [11, 36, 37]. Further research is needed to adopt a PKM that is compact and 
affordable, for a range of tasks in industry. 

3 PKM DESCRIPTION 

The novel architecture, named the 2-R(Pa-IQ)RR, R(Pa-IQ)R parallel manipulator, is shown in Figures 1 and 
2. Notable characteristics of the PKM are listed below: 
 

 The architecture is capable of x, y, and z translation and rotations about the x- and y-axes. 

 The leg arrangement restricts the independent rotation about the z-axis, but permits it as a parasitic 
motion. 

 All prismatic joints are actuated, and all revolute joints are passive. 

 Legs are paired to create a nested kinematic loop inside an outer, closed kinematic loop. 
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 Each pair of legs is constrained to move along the same plane relative to each other. 

 When the PKM performs translational motion, the nested kinematic loop takes on the shape of a 
parallelogram (Pa) structure, shown in Figure 1(a). 

 When the end effector is rotated, the nested kinematic loop takes on the shape of an irregular 
quadrilateral (IQ) structure, shown in Figure 1(b). 

 

        
 

Figure 1: (a) The parallelogram (Pa) shape formed by the pair of legs. (b) The irregular quadrilateral 
(IQ) shape formed by the pair of legs. 

 

 

Figure 2: The additive manufactured desktop prototype 

4 INVERSE KINEMATIC ANALYSIS 

4.1 Methodology 

The inverse kinematic analysis solves the joint angles and/or the actuator lengths for a given position and 
orientation of the end effector for a kinematic chain. The geometric (vector) method was selected, since 
it is simpler than the Denavit-Hartenberg (DH) method for PKMs [2]. The roll, pitch, and yaw rotation 
sequence were used in accordance with the Tait-Bryant angles. This suggests that the rotation first occurs 
about the x-axis (roll), then about the y-axis (pitch), and finally about the z-axis (yaw). 
 
The parasitic motion was not investigated in this study; therefore the rotation matrix is simplified as 
presented in Equation 1 for 𝛾 = 0. 
 

a. b. 

Mounting 
bracket 

2nd pair of 
legs 

3rd pair of 

legs 

Base 

Common 
joints on 
end effector 

1st pair of 
legs 
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𝑅(𝛽, 𝛼) = [
𝑐𝛽 𝑠𝛽 𝑠𝛼 𝑠𝛽 𝑐𝛼
0 𝑐𝛼 −𝑠𝛼

−𝑠𝛽 𝑐𝛽 𝑠𝛼 𝑐𝛽 𝑐𝛼
] 

(1) 

 
where 𝑐 and 𝑠 represent cosine and sine respectively. The outer and inner vector loop equations were 
developed and computed through MATLAB®. The results from the MATLAB® computations were verified with 
data from the SolidWorks® three-dimensional (3D) modelling package. 

4.2 Inverse kinematic relationships through the outer loop method 

The position and the orientation of the end effector are inputs for the inverse kinematic analysis, which 
solves the length of each leg of the platform. Generally, the vector loop method is simple and trivial to 
solve when the bottom of the actuator is directly connected to the base of the machine, and the top of the 
actuator is connected to the end effector. The vector method used in this research is a novel approach, 
and is a variation of the vector loop analysis commonly found in the literature. A novel approach was 
required owing to joint offsets and nested kinematic loops. These offsets make the inverse kinematic 
analysis complex owing to the relative motion between the links, and introduces additional variables [38, 
39]. 
 
Figure 3 shows the outer vector loop as green vectors. The outer loop is constructed from four vectors with 
respect to actuator 1 and 2. The outer vector loop envelopes the passive rotations that take place at points 
𝐴, 𝐵, 𝐶 and 𝐷. Point 𝑂 is a point of reference on the base, and the global coordinate system is placed at 
Point 𝑂. Point 𝐴 is a reference point on the base at the mid-point of the circular mounting. Point 𝑃 is a 
reference point on the end effector, which gives its position in space relative to Point 𝑂, and a local 
coordinate is placed at Point 𝑃. Point 𝐷 is a reference point on the end effector. 

 

The vector 𝑂𝐴⃗⃗⃗⃗  ⃗ is the position of Point 𝐴 with respect to Point 𝑂 in terms of x, y, and z displacements. 

Similarly, the vector 𝑃𝐷⃗⃗⃗⃗  ⃗ is the position of Point 𝐷 with respect to Point 𝑃. Vector 𝑂𝐴⃗⃗⃗⃗  ⃗ and 𝑃𝐷⃗⃗⃗⃗  ⃗ are machine 

design parameters. The vector 𝑂𝑃⃗⃗⃗⃗  ⃗ is the position of Point 𝑃 relative to Point 𝑂. Point 𝑃 is always known 

relative to Point 𝑂, because this is a requirement to solve the inverse kinematic equations. Vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ 
(Point 𝐷 relative to Point 𝐴) can then be solved as the only unknown. Two different paths were taken to 
reach point 𝐷 on the end effector from point 𝑂 (the reference point for the global coordinate system).  
 

The homogeneous transformation matrix is applied to vector 𝑃𝐷⃗⃗ ⃗⃗  ⃗ for two reasons. The first is because Point 
𝑃 is a dynamic point in space. Therefore the position of the moving reference frame (local coordinate 
system at Point 𝑃) needs to referenced to the fixed frame (global coordinate system at Point 𝑂) because 

Point 𝐷 is referenced within the local coordinate frame. The second reason for transforming vector 𝑃𝐷⃗⃗⃗⃗  ⃗ is 
associated with the rotation of the end effector. The plane along which the local coordinate system is 
located is rotated when the end effector rotates. This rotation does not affect the magnitude of the vector; 
however, it affects the x, y, and z values of the vector in space, which needs to be augmented, since all 
computations are carried out in terms of vector components.  

 
The outer vector loop equation is shown in Equation 2, which can be applied to all pairs of legs. The true 
length of an actuator is from point 𝐵 to point 𝐶, and is solved by the inner vector loop analysis.  
 
 𝑂𝐴⃗⃗ ⃗⃗  ⃗ +  𝐴𝐷⃗⃗ ⃗⃗  ⃗ = 𝑂𝑃⃗⃗⃗⃗  ⃗ + 𝑅(𝛾, 𝛽, 𝛼)𝑃𝐷⃗⃗ ⃗⃗  ⃗ (2) 
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Figure 3: Outer vector loop 

The outer vector loop equation for leg pair 1 and 2 is given by Equation 3, and is expanded: 

 𝑂𝐴1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑂𝑃⃗⃗⃗⃗  ⃗ + 𝑅(𝛽, 𝛼)𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (3) 

   
 
 

[
 
 
 
 (𝑂𝐴1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

(𝑂𝐴1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦

(𝑂𝐴1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧]
 
 
 
 

+

[
 
 
 
 (𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧]
 
 
 
 

=

[
 
 
 
 (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑥

(𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑦

(𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑧]
 
 
 
 

+ [
𝑐𝛽 𝑠𝛽 𝑠𝛼 𝑠𝛽 𝑐𝛼
0 𝑐𝛼 −𝑠𝛼

−𝑠𝛽 𝑐𝛽 𝑠𝛼 𝑐𝛽 𝑐𝛼
]

[
 
 
 
 (𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑥

(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑦

(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑧]
 
 
 
 

 (4) 

 
 

 

[
 
 
 
 (𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧]
 
 
 
 

=

[
 
 
 
 (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑥
+ 𝑐𝛽(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑥
+ 𝑠𝛽 𝑠𝛼(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑦

+ 𝑠𝛽 𝑐𝛼(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑧
− (𝑂𝐴1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

(𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑦

+ 𝑐𝛼(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑦
− 𝑠𝛼(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
− (𝑂𝐴1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑦

(𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑧
− 𝑠𝛽(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑥

+ 𝑐𝛽 𝑠𝛼(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑦
+ 𝑐𝛽 𝑐𝛼(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
− (𝑂𝐴1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧]
 
 
 
 

 
(5) 

 

Now let each equation be isolated as follows: 

 𝐿 = (𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑥

+ 𝑐𝛽(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑥
+ 𝑠𝛽 𝑠𝛼(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑦

+ 𝑠𝛽 𝑐𝛼(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑧
− (𝑂𝐴1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥
 (6) 

 𝑀 = (𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑦

+ 𝑐𝛼(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑦
− 𝑠𝛼(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
− (𝑂𝐴1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑦
 (7) 

 𝑁 = (𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑧
− 𝑠𝛽(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑥

+ 𝑐𝛽 𝑠𝛼(𝑃𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑦
+ 𝑐𝛽 𝑐𝛼(𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
− (𝑂𝐴1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧
 (8) 

The magnitude of vector 𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is found by the following: 

 

|𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| = ||

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧

|| = √(𝐿)2 + (𝑀)2 + (𝑁)2 (9) 

The magnitude of vector 𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ was used in the next step for the inner vector loop calculations. 

4.3 Inverse kinematic relationships through the inner loop method 

The inner vector loop diagrams for leg pair 1 and 2 can be seen in Figure 4(a). Vector loops are constructed 

by taking two paths from point 𝐴 to point 𝐷, shown in blue and orange respectively. The vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ is solved 
from the outer loop equation. The mechanical arrangement of legs and joints in the PKM constrains each 
pair of legs to move along the same plane. This allows the inner loop vector analysis to be treated as a two-

dimensional (2D) analysis. Vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ can be used to solve the length of the actuators, 𝐵1𝐶1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐵2𝐶2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ for 

legs 1 and 2 respectively. Vector 𝐴𝐵⃗⃗⃗⃗  ⃗ and vector 𝐶𝐷⃗⃗⃗⃗  ⃗ are machine design parameters, and the solution is 
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given by Equation 10. The same methodology is applied to solve the lengths of all the other leg pairs. Leg 
pair 5 and 6 is shown in Figure 4(b), with the inner vector loop shown in orange. The solution to leg lengths 
5 and 6 is given by Equations 12 and 13 respectively. 
 

        
 

Figure 4: (a) Inner vector loop for leg pair 1 and 2. (b) Inner vector loop for leg pair 5 and 6. 

The inner vector loop equations are given by Equations 10 to 13: 

 
  𝐵𝑖𝐶𝑖

⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴1,2𝐵𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (10) 

where 𝑖 = 1 or 2 
 𝐵𝑗𝐶𝑗

⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴3,4𝐷3,4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝐴3,4𝐵𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐶𝑗𝐷3,4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (11) 

where 𝑗 = 3 or 4 
 𝐵5𝐶5

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴5,6𝐷5
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴5,6𝐵5

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐶5𝐷5
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (12) 

  𝐵6𝐶6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴5,6𝐷6

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴5,6𝐵6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐶6𝐷6

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (13) 

The inner loop vector calculations were carried out along a 2D plane. The vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ had to be reduced 
from a 3D vector to a 2D vector for the analysis. As in Figure 4(a), a coordinate system was placed at point 

𝐴, which established an x-z plane. The y component of vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ could be omitted without losing vector 

integrity. The z value for vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ from the outer loop was kept for the inner loop analysis. Since the z 

value and the magnitude of vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ were known, the new x value for vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ was found through the 

theorem of Pythagoras. This method remained the same when computing vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ for the new x values 
for leg pair 3 and 4, since they were identical to leg pair 1 and 2. The analysis was similar when computing 

the values for vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗ for leg pair 5 and 6, except that the y magnitude was retained from the outer loop 
analysis and the x magnitude was omitted. A new z value was computed for leg pair 5 and 6. 
 
The calculation procedure using the inner vector loop method is shown in Equation 14 for actuator 1 and 
2. 
 

[
 
 
 
 (𝐵𝑖𝐶𝑖

⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

(𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦

(𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧]
 
 
 
 

=

[
 
 
 
 (𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧]
 
 
 
 

−

[
 
 
 
 (𝐴1,2𝐵𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

(𝐴1,2𝐵𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦

(𝐴1,2𝐵𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧]
 
 
 
 

−

[
 
 
 
 (𝐶𝑖𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

(𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦

(𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧]
 
 
 
 

 (14) 

 
Since Equation 14 relates to the x-z plane, all of the y elements were zero.  
 

a. b. 
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[

(𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥

0

(𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧

] =

[
 
 
 
 √|𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
2
− (𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧

2

0

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧 ]
 
 
 
 

− [

(𝐴1,2𝐵𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥

0

(𝐴1,2𝐵𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧

] − [

(𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥

0

(𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧

] (15) 

 

[

(𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥

0

(𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧

] =

[
 
 
 
 √|𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
2
− (𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧

2
− (𝐴1,2𝐵𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

− (𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥

0

(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧
− (𝐴1,2𝐵𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧
− (𝐶𝑖𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧 ]

 
 
 
 

 (16) 

Let: 
 

𝑄 = √|𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

2
− (𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧

2
− (𝐴1,2𝐵𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

− (𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥
 (17) 

 𝑅 = (𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧
− (𝐴1,2𝐵𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧
− (𝐶𝑖𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧
 (18) 

The magnitude of vector 𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is found by the following: 

 

|𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗| = |

(𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥

0

(𝐵𝑖𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧

| = √(𝑄)2 + (𝑅)2 (19) 

The vector 𝐵𝐶⃗⃗⃗⃗  ⃗ can be fully solved for the translation of the end effector. However, when rotation occurs, 

the vector 𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ needs to be altered to accommodate the rotation. Figure 5 shows that, when the mounting 

bracket is rotated, the x and z components of the 𝐶𝐷⃗⃗⃗⃗  ⃗ vector are altered. Geometrical methods were used 

to compute angle 𝜓1, where additional points of interest were placed above and below point 𝐷1,2 (points 

𝐸1,2 and 𝐹1,2 respectively). These are machine design parameters. The gradient of the line joining points 

𝐸1,2and 𝐹1,2 was calculated, and did not affect the integrity of any calculation because the rotation matrix 

was also applied to these vectors. The vector (𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧
 is parallel to the line joining points 𝐸1,2 and 𝐹1,2, and 

thus the angle between (𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧
 and the horizontal is equal to the gradient of the line joining points 𝐸1,2 

and 𝐹1,2. The angle between (𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑧
 and the hypotenuse is a design parameter. Once the angle 𝜓1 is 

solved, the length of (𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥
′ and (𝐶𝑖𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧

′
 can be obtained through trigonometric calculations. The same 

methodology is applied to all the legs, and the computation varies slightly depending on whether the 
mounting bracket leans forward or backward. 
 

 

Figure 5: An example of the x and z components of vector CD being altered 

The rotational analysis for vector 𝐶1𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is carried out as follows for leg length 1: 
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𝑚1 =

∆𝑧

∆𝑥
=

(𝑃𝐸1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑃𝐹1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧

(𝑃𝐸1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑃𝐹1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥

 (20) 

 𝜓1 + 47.07° = 𝑡𝑎𝑛−1(𝑚1) (21) 

 ∴ 𝜓1 = 𝑡𝑎𝑛−1(𝑚1) − 47.07° (22) 

 

The new 𝐶1𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   vector is given by the following trigonometric calculation: 

 (𝐶1𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑥
′ = |𝐶1𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | cos𝜓1 (23) 

 (𝐶1𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑧
′ = |𝐶1𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | 𝑠𝑖𝑛 𝜓1 (24) 

When rotation occurs, (𝐶𝑖𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥
 and (𝐶𝑖𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧
 are substituted by (𝐶𝑖𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑥
′ and (𝐶𝑖𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧
′  respectively in 

Equation 14. 
 
When the end effector rotates, the mounting brackets can rotate in different combinations. The inverse 
kinematic solution has 13 different cases, as presented in Table 2. Figure 2 depicts the additive 
manufactured prototype of the PKM; the mounting brackets can be identified.  

Table 2:  The different cases of inverse kinematic solutions 

PKM Gradients of brackets and joints 

 Mounting bracket for leg 
pair 1 and 2 

Mounting bracket for leg 
pair 3 and 4 

Joint from D5 
to D6 

Only translation  90° 90° 0° 

Only beta rotation and translation  Positive Positive 0° 

 Negative Negative 0° 

Only alpha rotation and translation 
(positive alpha) 

Negative Positive Positive 

 Positive Positive Positive 

 Negative Negative Positive 

 90° Positive Positive 

 Negative 90° Positive 

Only alpha rotation and translation 
(negative alpha) 

Positive Negative Negative 

 Positive Positive Negative 

 Negative Negative Negative 

 90° Negative Negative 

 Positive 90° Negative 

5 FORWARD KINEMATIC ANALYSIS 

The Newton Raphson (NR) method was employed in this research. This method has been employed by 
various researchers to solve the forward kinematics for PKMs [40, 41]. The forward kinematic analysis solves 
the position and orientation of the end effector for known leg lengths. Figure 6 indicates the location of 𝜃1 
and 𝜃5. The angle 𝜃3 has a similar location to 𝜃1 for leg pair 3 and 4. A virtual leg (blue line), shown in 
Figure 6, was used as a substitution for leg pair 5 and 6, and was located at the mid-point between both 
legs. This simplified the forward kinematic analysis for the translation and isolated beta rotation cases, 
while maintaining the integrity of the system of equations. 

 
The forward kinematic equations were derived from the inverse kinematic equations, and were adjusted 
for the NR method. Additional equations were developed for the forward kinematic analysis owing to the 
outer vector loop being common to a pair of legs.  
 
Only one outer vector loop and one inner vector loop equation were developed for each leg pair, and 
additional equations were found through a close analysis of the unique PKM. The constraint equations for 
the translation case are described by Equations 25 to 27 for leg 1. Similar equations were developed for 
the other leg pairs, and so six equations were developed. 
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Figure 6: The location of theta 1 and theta 5 

 𝑓1 ((𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑥
, (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑦
, (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑧
, 𝜃1, 𝜃3, 𝜃5 )

= ((𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑥
+ (𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑥

− (𝑂𝐴1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑥
)
2
+ ((𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑦
+ (𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑦

− (𝑂𝐴1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑦
)
2

+ ((𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑧
+ (𝑃𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
− (𝑂𝐴1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
𝑧
)
2
− (𝐴1,2𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
2
 

 

(25) 

 
(𝐴1,2𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

2
= ((𝐴1,2𝐵1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑥

+ 𝑙𝑒𝑛𝑔𝑡ℎ1 × 𝑐𝑜𝑠𝜃1 + (𝐶1𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑥
)
2

+ ((𝐴1,2𝐵1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑧
+ 𝑙𝑒𝑛𝑔𝑡ℎ1 × 𝑠𝑖𝑛𝜃1 + (𝐶1𝐷1,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
)
2
 

 

(26) 

 𝑓4  ((𝑂𝑃⃗⃗⃗⃗  ⃗)
𝑥
, (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑦
, (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑧
, 𝜃1, 𝜃3, 𝜃5 ) = 𝐴1,2𝐵1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑙𝑒𝑛𝑔𝑡ℎ1 × 𝑠𝑖𝑛𝜃1 + 𝐶1𝐷1,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑧
 (27) 

 
The alpha and beta rotational equations were formulated from the equations for the translational case, 
but were expanded. One additional equation was required for the alpha and beta rotation. The additional 
equation for the isolated alpha rotation is seen in Equation 28. A similar equation was formulated for the 
isolated beta rotation case. 
 
 𝑓7  ((𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑥
, (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑦
, (𝑂𝑃⃗⃗⃗⃗  ⃗)

𝑧
, 𝛼, 𝜃1 , 𝜃3, 𝜃5 ) = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 − tan (𝛼) (28) 

6 EXPERIMENTS AND RESULTS 

The validation of the inverse and forward kinematic analyses were accomplished through MATLAB® and 
SolidWorks®. The PKM was moved freely within the SolidWorks® model space, and reference points as well 
as local and global coordinate systems were created. This allowed each point of interest on the robotic 
platform to be located accurately. Virtual sensors were placed in SolidWorks® so that the leg lengths could 
be measured, and this became the control data against which the kinematic equations calculations were 
measured. MATLAB® was used to perform all forward and inverse kinematic calculations. 
 
The aim of the first investigation was to validate the inverse kinematic equations that were developed in 
MATLAB®. The method consisted of setting up the motion constraints in SolidWorks® to investigate 
translation, translation with alpha rotation, or translation with beta rotation. The SolidWorks® 3D model 
was then moved to a random point. The reference coordinate of the end effector was measured in 
SolidWorks®, and this provided an input to the inverse kinematic MATLAB® script. The leg length values 
calculated through MATLAB® were compared with the virtual sensor data from SolidWorks®. This procedure 
was repeated until 30 random points across the workspace had been analysed. The ranges of motion and 
error statistics are shown in Table 3. 
 
 
 
 
 

Leg 6 Leg 5 

Leg 1 

Leg 2 

𝜃5 

𝜃1 

Virtual leg 
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Table 3:  Inverse kinematic results 

Ranges Minimum Maximum 

X (mm) 102,98 193,09 

Y (mm) -115,43 112,8 

Z (mm) 273 357,62 

𝛼 (degrees) -25 25 

𝛽 (degrees) -24,08 22,01 

 

Error statistics (leg lengths) Value 

Maximum (mm) 0,02 

Minimum (mm) 0 

Mean (mm) 0,008 

Standard deviation (mm) 0,0048 

 
The errors seen in the inverse kinematic tests can be attributed to rounding off errors, thus validating the 
inverse kinematic equations. The inverse kinematic analysis exhibited high accuracy, irrespective of the 
position and angle of tilt of the end effector. The high accuracy was also maintained when random sample 
points were chosen across the PKM’s workspace.  

 
The aim of the second investigation was to validate the forward kinematic equations based on the NR 
method, and to validate the MATLAB® script for the forward kinematic analysis. The method involved 
selecting a random point in the PKM’s workspace. The leg lengths were obtained via virtual sensors from 
the SolidWorks® 3D model. The leg length values were provided as input to the NR MATLAB® script. A guess 
was then made for the input to the NR MATLAB® script, and the results were documented for cases of pure 
translation, translation with alpha rotation, and translation with beta rotation. The results are documented 
in Table 4.  
 
The forward kinematic results validated the equations. The results show that the method produces highly 
accurate solutions, and most errors can be attributed to rounding-off. The NR algorithm generally converges 
to the true value within five to 30 iterations, even when the guesses deviate considerably from the true 
value. Convergence occurred with an average of eight iterations.   

Table 4:  Forward kinematic results 

Ranges Minimum Maximum 

X (mm) 86.77 179.06 

Y (mm) -89.98 118.41 

Z (mm) 273.88 345.46 

𝜃1 (degrees) 42.89 70.37 

𝜃3 (degrees) 37.95 77.72 

𝜃5 (degrees) 59.42 115.71 

𝛼 (degrees) -20 25 

𝛽 (degrees) -19.04 21.61 

 

Error statistics (X, Y, Z) Value 

Maximum (mm) 0.05 

Minimum (mm) 0 

Mean (mm) 0.01 

Standard deviation (mm) 0.01 

  

Angular error statistics 

(𝜽𝟏, 𝜽𝟑, 𝜽𝟓, 𝜶, 𝜷)  
Value 

Maximum (degrees) 0.05 

Minimum (degrees) 0 

Mean (degrees) 0.01 

Standard deviation (degrees) 0.01 

7 CONCLUSION 

The design made exclusive use of revolute and prismatic joints. The exclusive use of revolute joints, which 
cause relative motion, as opposed to universal joints, was further complicated by nested kinematic loops. 
When the end effector moves in pure translation, the leg pairs forming the nested kinematic loops are 
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equal in length. Rotation occurs when the legs within the leg pair extend and/or contract to different leg 
lengths. The range of tilt achieved for alpha and beta is 71.46° and 63.97° respectively. Greater tilt is 
achieved than with most commercially available PKMs, such as the Hexabot, the OKUMA PM 600, and the 
Mikrolar P1500. 
 
The inverse kinematic analysis was solved by the vector method — which was novel — through the analysis 
of the inner and outer kinematic chains. The forward kinematic analysis was solved using the NR method. 
The results from the inverse kinematic analysis showed that the largest error among the six legs was 0.02 
mm. The forward kinematic simulations revealed that the largest position and angular errors were 0.05 mm 
and 0.05 degrees respectively. The results validated the forward and inverse kinematic equations.  Future 
work on this PKM includes stiffness analysis, path planning, machine calibration, open architecture control, 
parasitic motion investigation, and Simulink models. 
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