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ABSTRACT 

South Africa has committed itself to reducing its greenhouse gas 
emissions. A key strategy to minimise the greenhouse gas intensity 
involves using incentivised energy efficiency initiatives. In South 
Africa, one of these energy efficiency incentives is Section 12L of 
the Income Tax Act, which rewards claimants with 95c/kWh for 
verified energy efficiency savings linked to the reduction of 
greenhouse gas emissions. This verification is done using the SANS 
50010 standard, which requires the management and quantification 
of the uncertainty associated with reported savings. The accurate 
quantification of energy efficiency savings is therefore critical, and 
highlights the need for uncertainty management to ensure accurate 
and fair results. Although uncertainty quantification and 
management methods are already available, the correct and 
consistent application of relevant methods for specific uncertainty 
contributors is important. In this study, a solution in the form of an 
uncertainty quantification and management flowchart was 
developed to quantify and manage energy efficiency savings 
uncertainties. This tool incorporates a five-step approach towards 
energy efficiency savings quantification, and was applied to three 
industrial energy efficiency case studies. It was found that 
uncertainty levels can range between two and 18 per cent, due to 
varying uncertainty contributors. This highlighted the need for a 
structured approach pro-actively to identify, quantify, and manage 
uncertainty contributors. 

OPSOMMING 

Suid-Afrika is daartoe verbind om kweekhuisgasvrystellings te 
verminder. Energie effektiwiteit word dus aangemoedig om 
kweekhuisgasvrystellings te verminder. In Suid-Afrika, is artikel 12L 
van die inkomstebelastingwet een van hierdie aansporings vir 
energiedoeltreffendheid. Dit beloon eisers met 95c/kWh vir 
geverifieerde energiebesparings. Die verifikasie word gedoen aan 
die hand van die SANS 50010-standaard. Dit vereis die bestuur en 
kwantifisering van die onsekerheid verbonde aan gerapporteerde 
besparings. Die akkurate kwantifisering van energiebesparings is dus 
van kritieke belang en dit beklemtoon die behoefte aan 
onsekerheidsbestuur om akkurate en billike resultate te verseker. 
Alhoewel metodes oor onsekerheidskwantifisering en -bestuur reeds 
beskikbaar is, is die korrekte en konsekwente toepassing van 
veskillende metodes ook belangrik. In hierdie studie is ŉ oplossing 
in die vorm van 'n vloeidiagram ontwikkel om onsekerhede rakende 
energiebesparings te kwantifiseer en te bestuur. Dit behels 'n vyf-
stap benadering en is toegepas op drie industriële gevallestudies. 
Daar is gevind dat onsekerheidsvlakke tussen twee en 18 persent 
kan wissel weens verskillende onsekerhede. Dit het die behoefte 
aan 'n gestruktureerde benadering beklemtoon om onsekerheids-
bydraers te identifiseer, te kwantifiseer en te bestuur. 
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1 INTRODUCTION 

South Africa is considered to be a carbon dioxide (CO2) intensive country and, as part of the global 
movement towards reduced carbon intensity, has committed to a 32 per cent reduction in 
greenhouse gas (GHG) emissions by 2020 and 42 per cent by 2025 [1], [2]. A significant part of the 
strategy implemented to achieve this is the use of incentivised energy efficiency initiatives (EEIs) 
[3]. On a national scale, the industrial and mining sectors make a large contribution to CO2 emissions, 
and EEIs can thus be used to reduce these emissions. 
 
The National Treasury and the South African Revenue Services (SARS), in collaboration with the 
Department of Energy (DoE), offer a tax allowance to businesses that achieve energy efficiency 
savings [4]. The tax allowance, contained in Section 12L of the Income Tax Act (Act no 58 of 1962) 
[5], rewards claimants 95c/kWh for verified energy efficiency savings (EES) linked to the reduction 
of GHG emissions. This incentive was initiated on the 1st of November 2013, and is claimable until 
the 1st of January 2020 [6]. In the recent national budget speech, this horizon was extended to 2022 
to coincide with the implementation timetable for carbon tax [7]. 
 
Accurate quantification of the EES is a critical component of the 12L claim, since the savings cannot 
be measured directly [8]. The reported 12L savings must therefore be quantified in accordance with 
the SANS 50010 standard — i.e., the South African National Standard (SANS) for Measurement and 
Verification of Energy Savings. Due to the complexity of the measurement and verification (M&V) 
process, the reported EES always include a degree of uncertainty [9]–[11]. The SANS 50010 standard 
previously only required the management of uncertainty (SANS50010:2011) [12]; however, it now 
also requires the quantification of that uncertainty (SANS50010:2018) [13]. This ensures that savings 
are reported conservatively. 
 
Uncertainty quantification and management can be a broad topic that is applied with different levels 
of rigour. Reasonable effort should thus be made to identify and attempt to minimise every potential 
source of uncertainty [14]. The quality and utility of the uncertainty reported for a result depends 
on the understanding, critical analysis, and integrity of the factors that contributed to the 
assignment of its value [11], [15]. However, there is some ambivalence about how uncertainty should 
be approached and reported in practice [16].  
 
Overall, the strict regulatory requirements and technical complexity associated with 12L make it 
less attractive for industry than desired [5], [6], [11], [13], [17]–[19]. Uncertainty management 
further adds to this challenge. This paper therefore focuses on reviewing uncertainty quantification 
and management practices in order to identify challenges and potential solutions. 

1.1 Application of SANAS statistical tests 

The South African National Accreditation System (SANAS) issued a guideline that could be used by 
stakeholders for uncertainty management [11]. The methods in the SANAS guideline were applied to 
existing M&V reports from EEI case studies in a preliminary investigation to ascertain their 
effectiveness and applicability. Case studies 1 to 3 dealt with EEIs on the following respective 
operations: furnace operations, an industrial gas engine and boiler system, and a mine compressor 
network [20]. Savings uncertainty tests using expanded uncertainty, model validation tests (i.e., R2 
correlation, P-value regression significance, Durbin-Watson auto-correlation test), and model 
prediction tests (i.e., F-test, net determination bias (NDB), and coefficient of variation on the root 
mean square error (CV[RMSE])) were carried out on these case studies. The results can be seen in 
Table 1 below.  

Table 1: Results for SANAS guideline statistics real-world application 

STATISTICAL TEST CASE STUDY 1 CASE STUDY 2 CASE STUDY 3 

Savings uncertainty (80/20) test Fail Fail Pass 

Model validation tests Pass 2 out of 3 Pass 2 out of 3 Pass 3 out of 3 

Model prediction tests Pass 4 out of 4 Pass 4 out of 4 Pass 4 out of 4 

 
The savings uncertainty was calculated using an 80/20 confidence limit, which is a common heuristic 
for expanded uncertainty tests [11]. The failure of this test by two of the case studies is critical, as 
it indicates that the uncertainty level is too high. Depending on the uncertainty level, the reported 
saving would either need to be adjusted (monetary impact) or, if too high, could even invalidate the 
claim. 
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Both case studies 1 and 2 failed one of the three model validation tests. The implications of these 
failed tests are not apparent on the final reported savings; hence more investigation is needed to 
establish this. It can be noted, however, that all the models passed the model prediction validation 
tests. This suggests that all the models are good predictors of the baseline conditions. 
 
Through this preliminary investigation, it can be noted that there are inconsistent results across the 
case studies, and that the relevance or importance of each of the tests is not apparent. The 
implications of the failed statistical tests, or the reasons for the failed uncertainty tests, are also 
not evident. Furthermore, the sources of these uncertainties are not well-established, and 
statements based on this purely statistical evaluation would be inconclusive. Ultimately, it is 
difficult to find ways to foresee these failed tests and pro-actively to compensate for the associated 
uncertainties.  
 
More investigation is therefore necessary into how best to quantify and successfully manage the 
uncertainties, as well as how to understand and interpret the statistical results of the tests and their 
implications. This study thus focuses on addressing this need with the following problem statement: 
A need exists for practical methods to quantify and manage the uncertainties associated with 
a calculated energy efficiency saving. 

1.2 Research objectives and scope 

The main objective of this study is to provide a practical and structured strategy to quantify and 
manage uncertainty effectively for professionals claiming EES. However, additional objectives are 
needed to assist in the study and to provide a functional solution. The objectives of this study are 
thus to: 
 
1. Identify the largest contributors to EES uncertainty, 
2. Develop a strategy to manage and quantify uncertainty when calculating an EES, 
3. Provide a support tool that assists stakeholders with navigating the decisions associated with 

the calculation of an EES, 
4. Report a final EES with an uncertainty value, and 
5. Provide a generic solution that can be applied to industrial EES initiatives. 
 
The fields of interest for this study include energy efficiency, statistics, and uncertainty 
management. The study reviews the energy efficiency of industrial facilities, with specific reference 
to EEIs carried out to reduce energy intensity and the subsequent calculation of the reported savings. 
The key focus of this study is the management and quantification of uncertainty — specifically, the 
uncertainty associated with the EES reported for a 12L tax deduction. 

2 REVIEW OF M&V UNCERTAINTY QUANTIFICATION AND MANAGEMENT TECHNIQUES 

2.1 Sources of uncertainty 

This section describes the four sources of uncertainty that arise in the calculation of EES, as well as 
uncertainty quantification and management techniques that are available from the literature. The 
uncertainty sources discussed are: measurement, database, modelling, and assessment decision 
uncertainty.  

2.1.1 Measurement uncertainty 

Measurement uncertainty is recognised in the M&V literature; however, strict guidance on how to 
manage it is seldom provided [21]. Measurement uncertainty is an important consideration for EES 
quantification, since the accuracy of the measurand influences the reported savings. 
 
‘Measurement uncertainty’ refers to the range within which the true value of the measurand occurs. 
The standard allows two main sources of measured data: invoices of measured quantities, and 
measurement equipment with appropriate calibration records [22]. The use of accredited calibration 
laboratories provides assurance that certain minimum requirements are met, which minimises 
measurement uncertainty.  
 
Measurement uncertainty management is often reduced to outlier detection, added to overall 
uncertainty propagation calculations, or is considered negligible [8], [23]. Measurement uncertainty 
can only be considered negligible when using high-calibre metering devices. Power meters commonly 
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have measurement errors of less than one per cent [10]. Equation (1) below, found in the ASHRAE 
guideline [24], represents an equation that can be applied to multiple meters to determine the 
relative measurement error percentage. 

𝑅𝐸𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 =
√∑ (𝑅𝐸𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑥 𝑟𝑟𝑎𝑡𝑖𝑛𝑔,𝑖)2𝑐

𝑛=1

∑ 𝑟𝑡̅̅ ̅𝑐
𝑖=1

 (1) 

 
A M&V plan is required to identify which measurements will be used for the characterisation of a 
specific energy system [25]. Measurement boundaries may include a whole facility or the isolation 
of a facility. It is therefore necessary to evaluate multiple data sources applicable to the energy 
system. In the M&V literature, measurement accuracy is emphasised; however, data handling from 
measurement to point-of-use can also significantly affect overall data uncertainty.  
 
Measurement and database uncertainty can often be linked, since both factors contribute to data 
quality and the accuracy of the reported savings. Thus the next source of uncertainty that will be 
discussed is database uncertainty. 

2.1.2 Database uncertainty 

Data quality is a noteworthy contributor to uncertainty, since it can bias the outcome and 
compromise the accuracy of the reported saving [26]. Energy savings calculations are reliant on 
data; however, the data collected from measurements are never 100 per cent error-free [26]. Errors 
arise from the inaccuracy of sensors, imprecise measurements, data integration, sampling rate, 
sensor drift, data capture and handling errors. 
 
Data are available in different resolutions, compliance rates, and accuracy. Database evaluation is 
thus important to determine whether the dataset is satisfactory or not by identifying any 
abnormalities and establishing the dataset quality. There are four parameters within which the 
datasets can be investigated: accuracy, traceability, relevance, and compliance.  
 
Evaluation techniques such as plotting redundant datasets, using universal dataset checklists, and 
interrogating the datasets for specific phenomena (spikes, meter malfunction, data loss, and 
abnormal operation) are reported in the M&V literature as effective methods for managing and 
quantifying uncertainty [17], [26], [27]. Once full datasets are collected, baseline models can be 
constructed to represent the energy system under evaluation. 

2.1.3 Modelling uncertainty 

EESs cannot be directly measured, since they represent the absence of energy. Energy-savings 
models are thus necessary for EES determination [8], [9]. Modelling error is, however, the biggest 
contributor to EES uncertainty. Developing an accurate and representative baseline model is 
therefore a critical aspect in determining the quantity of 12L energy savings. A baseline model 
predicts what the energy use would have been in the absence of energy saving measure (ESM) 
implementation [6], [26].  
 
The model is developed by forecasting the baseline energy consumption into the performance 
assessment period — see Figure 1 below. ‘Modelling uncertainty’ refers to how well the 
mathematical model represents the variability in the measured data. Modelling error can be due to 
using the wrong model, assuming inappropriate functional forms, including irrelevant information, 
or excluding relevant information. In Figure 1, two different baseline models are depicted, each 
showing a different energy savings impact. The key challenge, therefore, is to determine which 
baseline provides an appropriate reflection of baseline conditions to determine the achieved energy 
savings impact. 
 
Uncertainty created by model accuracy can cause doubt about the credibility of the calculated 
energy savings. Hence it is necessary to stipulate the precision range and confidence level of 
modelled results. ‘Confidence’ refers to the probability that the true value will fall within the 
calculated precision range — e.g., the true value falls within ±20 per cent of the modelled result at 
80 per cent confidence. 
 
The uncertainty of a model can be mitigated by including model validation statistics and presenting 
multiple models as an assurance technique. Various techniques can be employed to manage and 
quantify measurement, database, and modelling uncertainty. However, no resource is available to 
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help one decide where and when to apply certain techniques. The next section will discuss 
assessment decision uncertainty. 
 

 

Figure 1: Impact of baseline model development on calculated energy efficiency saving [9] 

2.1.4 Assessment decision uncertainty 

Multiple decisions need to be made when constructing the baseline model. These decisions can have 
a significant effect on the reported EES, and when made incorrectly can lead to inaccurate reported 
savings. The uncertainty associated with the assessment decisions cannot be quantified, but 
assurance techniques can be used to minimise the uncertainty. Assurance techniques are methods 
of uncertainty management that provide certainty and creditability to the reported value. Common 
examples include using supporting documents, or the compilation of multiple models as a 
supplementary validation technique. 
 
Three common decisions that need to be made when developing a model are: measurement 
boundary selection, baseline and assessment period selection, and model selection. However, 
although uncertainty management and quantification techniques are well-established in the 
literature, no guidance is readily available about which techniques of uncertainty management to 
use under which circumstances. Decision support tools will therefore be discussed in the section to 
follow. 

2.2 Decision support tools in M&V 

There is a need for a method for making consistent, communicable, and reliable decisions while 
navigating uncertainty. Two support tools found in M&V that can be used to assist in making such 
decisions include decision flowchart construction and multiple criteria decision-making. 

2.2.1 Decision flowchart construction 

Decision flowcharts can be used to navigate the decision-making process in a simple way by 
associating a criterion with a decision. A flowchart is a visual representation of information that 
depicts the steps a process must follow to be completed [29], [30]. Flowcharts are constructed using 
a combination of arrows and shapes [31], as can be seen in Table 2. 
 
A decision-making flowchart is a simple tool that can be used to make decisions in a uniform way. 
Decision-making flowcharts are often encountered in the M&V field [24]. However, no flowchart 
exists for the full EES quantification process that also considers measurement, database, modelling, 
and assessment decision quantification with the management of uncertainty. 
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Table 2: ANSI/ISO common symbols used for flowchart construction 

 

2.2.2 Multiple criteria decision-making 

The standard allows for multiple modelling techniques, since different measurement boundaries, 
data sources, and quantification methods can be employed to calculate the EES. Thus various EES 
models are constructed, and there is a need for a method to select the most feasible model. 
 
Multiple criteria decision-making (MCDM) provides a tool that can be used to do this in a uniform 
way. MCDM refers to a choice that must be made while considering numerous objectives. The result 
is a solution that considers all of the criteria and is acceptable to all stakeholders [32]. Decision-
making is a process that involves the trade-off between various intangibles. In order to evaluate 
these intangibles, they must be measured alongside tangibles whose measurements must also be 
evaluated for how well they fit the objectives of the decision-maker [33] . 
 
Botes [34] carried out a study that verified the use of a MCDM technique for model selection. The 
analytic hierarchy process (AHP) is a simple and commonly used MCDM tool [33] that can be used to 
compare different EES models. EES model comparison is done using the priority scales that represent 
how much more one element dominates another, relative to a specific attribute. However, AHP is 
subject to the judgement of the evaluator, and the judgements may be inconsistent — which is of 
concern when using this tool [33]. 
 
Multiple techniques are available to quantify and manage the four identified sources of EES 
uncertainty. There is thus a need for an easily implemented, understandable, and widely accepted 
procedure for evaluating and expressing uncertainty when quantifying an EES. The next section will 
detail the use of the uncertainty Q&M techniques mentioned in Section 2, as well as the decision 
support tools for the construction of a methodology.  

3 A STRUCTURED APPROACH TO QUANTIFY AND MANAGE M&V UNCERTAINTY 

At present there is no standardised approach that can be used to navigate EES quantification while 
considering the identified uncertainty sources. The aim of this section is to use the uncertainty Q&M 
techniques and decision support tools to construct a solution that is: 
 
1. Generic: The solution is reproducible for multiple industrial EES initiatives. 
2. Simple: The techniques are non-complex and easy to interpret, so that they can be used and 

interpreted by end users and various stakeholders. 
3. Useable: The solution should aid an end user to navigate the EES quantification process while 

considering uncertainty. 

Flowline (Arrowhead): 
indicates the order of 

operation in the 
process. 

Process: 
indicates any processing 

function – e.g.,  an 
operation that results in 

the change in value, 
form or location of 

information.

Data:
this symbol represents 

data.

Terminal:
indicates the start/end 

of a process/ sub-
process.

Decision:
represents a decision 
function, with more 

than one outcome path 
– e.g., yes/no or true/

false

Document:
indicates human 

readable data – e.g., 
printed output, data 

entry forms.
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4. Outcome-based: The uncertainties associated with the calculation of the EES should be clearly 
identified, managed, and quantified. 

The main tool used in the development of the solution is a decision flowchart. The decision flowchart 
provides a Q&M framework to assist the navigation of the EES computation while addressing the 
various uncertainties encountered in a typical M&V process for 12L applications. The decision 
flowchart is referred to as the uncertainty Q&M flowchart, and uses a five-step approach to EES 
quantification, as shown in Figure 2. 
 

 

Figure 2: High-level overview of uncertainty Q&M flowchart 

Typically a model selection step is not included in a standard M&V approach. However, it has been 
included as the use of multiple models increases the credibility of the claimed value. Each step 
includes a high-level conceptual requirement of the standard M&V process, but also includes several 
outcomes that are required to quantify and manage uncertainty. This paper provides only an 
overview of the basic requirements of each of the five key steps (Section 3.1 to Section 3.5). The 
uncertainty Q&M flowchart is then consolidated and reviewed in Section 3.6. 

3.1 Step 1: Energy saving measure (ESM) isolation 

‘ESM’ refers to the specific activities or efforts that were implemented to improve energy efficiency. 
The details of the ESM provide the basis for several decisions that will affect the M&V process. It is 
therefore important to isolate the ESM in a structured way. This step involves the isolation of the 
ESM by investigating two parameters: the baseline and performance assessment period selection, 
and the measurement boundary selection. Once these two parameters are determined, the ESM 
should be isolated to the extent that the required information for uncertainty quantification and 
management will be made available. This step is used to identify the data sources and measurements 
available for the selected baseline (BL) and performance assessment (PA) periods. This step thus 
incorporates uncertainty management techniques for measurement and assessment decision 
uncertainty. 

3.2 Step 2: Database management 

‘Database management’ refers to the evaluation of the available data sources. This step 
incorporates three key evaluation analyses: redundant data analysis, dataset interrogation, and the 
construction of universal dataset checklists. The focus of the redundant dataset analysis is to verify 
the data, and as a means of considering any interactive effects. The dataset interrogation is used 
to identify and manage any abnormalities in the data. Lastly, the universal checklist is used to 
summarise the key information of the datasets evaluated. This step thus incorporates uncertainty 
management techniques for database uncertainty. 

3.3 Step 3: Model development 

‘Model development’ refers to the generation of a baseline model for calculating the EES. Multiple 
options are available when generating a baseline model. The flowchart provides guidance about 
which modelling option should be used in relation to the data availability, data resolution, and 
independent variables. For the purposes of this study, it helps an end user to decide between simple 
modelling options — i.e., between linear regression, energy intensity, unadjusted energy reduction, 
sampling, and calibration models. This step thus focuses on providing guidance for modelling and 
assessment decision uncertainty. 

3.4 Step 4: Uncertainty assessment 

The uncertainty assessment incorporates the use of statistical techniques for the quantification of 
the error associated with the reported EES and the validation of the constructed energy model. The 
aim is to report a final uncertainty value associated with the EES. This is important for proving the 
credibility of the reported saving and abiding by the current requirements for a 12L application. The 
uncertainty assessment step incorporates three key analyses: model validation, savings uncertainty 
level determination, and combined uncertainty calculation. 
 

ESM isolation
Database 

management 
Model 

development
Uncertainty 
assessment

Model selection
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‘Model validation’ refers to the verification that the assumptions of the model hold true. The 
calculation of an uncertainty level associated with the reported EES is included in the assessment. 
‘Combined uncertainty calculation’ refers to a calculation that incorporates more than one 
uncertainty source to produce a single uncertainty value. This step thus incorporates considerations 
for modelling uncertainty, and delivers an EES value that has an associated quantified uncertainty 
value. 

3.5 Step 5: Model selection 

Multiple modelling options are available. M&V practitioners may thus choose to develop various 
models to represent an activity’s baseline conditions. ‘Model selection’ refers to the process of 
picking the model that represents the baseline most accurately. The use of multiple models 
increases the credibility of the claimed value [35]. The selection process integrates the use of the 
AHP decision-making tool to rank the models. The model ranked with the highest score is proposed 
as the feasible claim model, and the next two models with slightly lower scores are suggested as 
validation models. This step thus incorporates considerations for assessment decision uncertainty. 

3.6 Consolidation of uncertainty Q&M flowchart development 

Figure 3 below indicates the consolidated uncertainty Q&M flowchart. Each of the five steps — ESM 
isolation, database management, model development, uncertainty assessment, and model selection 
— is indicated in the figure using red dashed lines. The starting point for the flowchart is a terminal 
block labelled ‘Select baseline and assessment period’. From the starting point, when a question is 
posed, there is more than one answer to a question. Depending on the answer, an operation can be 
carried out as indicated by the process block, or the evaluation could end. In the case where the 
process ends, an observation should be made and, if possible, a re-evaluation should occur. 
 
Specific operations within each step in the flowchart produce deliverables. The deliverables assist 
both to quantify and to manage the four sources of uncertainty as they progress from step to step. 
The deliverables are as follows: step 1 — a data availability table, point of measurement diagram, 
and data points ranked by status. Step 2 — redundancy checks, dataset interrogation, and universal 
dataset checklist construction. Step 3 — multiple models’ development. Step 4 — calculation of the 
significance of saving, measurement uncertainty, model validation with statistics, uncertainty level 
value for EES, and combined uncertainty value. Step 5 — ranked models using the analytical 
hierarchy process. By answering the relevant questions, the user is able to move through the 
flowchart and find the most feasible model and obtain validation models. 

4 RESULTS AND DISCUSSION 

The methodology was applied to the same three industrial case studies tested in the preliminary 
investigation. The case studies represent different South African production industries in which 
energy saving measures were implemented. The data for these case studies were collected from 
existing M&V reports, and correspond with the case studies that were originally investigated in 
Section 1. The result from Case study 1 is presented step-wise in this article in order to illustrate 
how the methodology was applied. Only the final results of Case studies 2 and 3 are reported here. 
A validation of the results is also provided.  

4.1 Case study 1  

This case study represents the 12L tax incentive investigation into the energy intensity reduction of 
a furnace smelting operation. The investigation was carried out through the implementation of the 
uncertainty Q&M flowchart. 
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Figure 3: Consolidated uncertainty Q&M flowchart (see online version for colour)  
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STEP 1: Energy saving measure (ESM) isolation 
The simplified operational layout of the furnace smelting operations is indicated in Figure 4. 

 

Figure 4: Case study 1 — Simplified operational layout 

The ESM focused on the improved use of energy carriers to reduce the quantity of energy required 
to deliver production values. A point of measurement diagram was constructed and the data sources 
summarised in a data availability table, as shown in Table 3. This information is required in order to 
isolate the specific ESM that is being evaluated. 

Table 3: Case study 1 — Complete data availability table 

 Variable Measurement Measurement device Compliance Status of data 

C
o
a
l 

Coal quantities Weigh bins Calibrated Available, verified, 
and compliant 

Coal analysis  Lab analysis Certified  Available, verified, 
and compliant 

E
le

c
tr

ic
it

y
 

Electrical energy Power metering Invoice Available, verified, 
and compliant 

Calibrated Available, verified, 
and compliant 

F
u
e
l 
 

G
a
s 

Fuel gas energy 
quantity 

Gas flow metering and 
heating value analysis 

Invoice Available, verified, 
and compliant 

Isolated gas flow metering No supporting 
documentation  

Available and not 
compliant 

F
in

a
l 
 

p
ro

d

u
c
t Production 

quantities 
Weighbridge Calibrated Available, verified, 

and compliant 

STEP 2: Database management  
This step includes data redundancy checks, dataset interrogation, and the construction of universal 
dataset checklists. An example of the application of a redundancy check for electricity 
measurements is indicated in Figure 5 below, where ‘FY’ refers to financial year and ‘M’ refers to 
month. The electricity supply invoices are compared with the site check metering. Little variance 
was observed between the two datasets, with the overall difference calculated as 0.057 per cent. 
This produces confidence in the accuracy of the check metering available on site.  
 

 

Figure 5: Case study 1 — Redundant data comparison for electricity (see online version for 
colour) 
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This step is repeated for each dataset in order to ensure that the included datasets are accurate, 
representative, and error-free. 

STEP 3: Model development 
All the data sources (electricity, coal, and fuel gas) have at least monthly data available, and linear 
regression models can therefore be constructed. Since it is useful to incorporate multiple models, 
three models were developed to quantify the EES achieved on the furnace smelting operation, with 
the final results shown in Table 4. 
 
These models were developed using the M&V reports gathered for this case study. An all-parameter 
energy intensity model, a total energy regression model, and a combined energy intensity model 
were developed. 
 
It is observed that all the models indicate savings within a similar range (±10 per cent variance) 
despite the different approaches used for the three models. This indicates that the observed EES is 
not strongly influenced by the calculation method. 

Table 4: Case study 1 — Summary of models developed 

All parameter energy intensity -127 GWh 

All parameter energy regression -118 GWh 

Combined energy intensity -124 GWh 

STEP 4: Uncertainty assessment 
In the next step of the process, an uncertainty assessment was carried out on each of the three 
developed models. The specific tools used for model validation and model prediction validation can 
be found as add-ins in commonly available software (e.g., MS Excel). The savings uncertainty is 
calculated using the expanded uncertainty technique, and the combined uncertainty is calculated 
using an equation (both techniques are explained in the SANAS guideline [11]). The results for the 
uncertainty assessment can be seen in Table 5.  
 
From the table it can be seen that three types of tests were carried out: model validation, model 
prediction validation, and savings uncertainty tests. The values indicated in green represent the 
values that passed the test, and those indicated in red represent values where the test was failed. 
Dashes indicate where the test could not be carried out. 

Table 5: Case study 1 - Uncertainty assessment results 

Model options MODEL 1 MODEL 2 MODEL 3 

Model validation tests 

Correlation (R2)  - 0.90 - 

P-value - 1.1x10-26 - 

Auto-correlation (Durbin-Watson)  - 0.67 - 

Normal distribution (Anderson-Darling)  - N/A - 

Model prediction validation tests 

Model goodness of fit (CV[RMSE])  - 10.8% - 

Statistical significance (SANAS test)  - PASS - 

Statistical significance (F-test)  - PASS - 

Over/under prediction (NDB)  - PASS - 

Statistical uncertainty tests 

Measurement equipment uncertainty  1.4% 1.4% 1.4% 

Savings uncertainty (80/20)  17.3% 58.0% 17.6% 

Combined uncertainty (68/50)  - 18.4% - 

Models 1 and 3 passed all the tests that could be done, whereas model 2 failed two tests. Although 
model 2 failed the savings uncertainty test at an 80/20 confidence interval, the combined 
uncertainty value (which includes savings uncertainty and measurement uncertainty) passes the 
uncertainty test. 
 
The complexity of the model plays an important role in which uncertainty calculations are possible. 
From Table 5 it is observed that the regression type models can undergo more statistical analysis 
than energy intensity models. This means that regression models provide additional assurance of the 
credibility of the saving, since they include these statistical analyses. 
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STEP 5: Model selection 
This step consists of the overall comparison between the models using the AHP. Four criteria were 
used to evaluate the models against each other. These criteria are: 12L compliance, economic 
feasibility, model validation, and statistical uncertainty. Model 2 had the highest score, with model 
1 and 3 having similar scores. Model 2, the regression model, should therefore be used as the feasible 
claim model, with models 1 and 3 used as validation models. 

4.2 Result summary from additional case studies  

The developed flowchart was applied to two additional case studies similar to Case study 1. The 
additional case studies were for industrial applications: the improved energy efficiency of an 
industrial engine and boiler system (Case study 2); and a compressor network (Case study 3). 
Application of the uncertainty Q&M flowchart was applied to all three case studies, and uniform 
outcomes in terms of 12L deliverables and uncertainty Q&M were achieved. 
 
A two to 18 per cent uncertainty range was observed from the case studies’ results for the feasible 
model’s quantified EES. When this uncertainty range is extrapolated country-wide to the R11bn in 
12L claims already processed [9], it amounts to a R220m to R1.9bn value. This emphasises the need 
for reporting the associated uncertainty with the reported EES. It thus reaffirms the need for 
structured and consistent uncertainty quantification and management.  

4.3 Methodology validation 

The validation is conducted by comparing the outcomes from the case study applications with the 
requirements of the SANS 50010 standard. In Table 6, ‘FM’ refers to the feasible claim model and 
‘VM’ refers to the validation models. The ticks indicate where the case study has included the 
consideration, and a cross indicates where it has not. It can be noted from Table 6 that, where the 
feasible claim model did not meet all the requirements of the standard, validation models provided 
the additional necessary assurance so that all the criteria of the standard were met. 

Table 6: Validation of uncertainty Q&M flowchart results (see online version for colour) 

SANS 50010 Case study 1 Case study 2 Case study 3 

FM VM FM VM FM VM 

M&V method chosen ✓ ✓ ✓ ✓ ✓ ✓ 

Calculation method chosen ✓ ✓ ✓ ✓ ✓ ✓ 

M&V boundaries chosen ✓ ✓ ✓ ✓ ✓ ✓ 

Significant energy consumption in boundary ✓ ✓ ✓ ✓ ✓ ✓ 

Selection of energy governing factors ✓ ✓ ✓ ✓ ✓ ✓ 

Frequency of data collection  ✓ ✓ ✓ ✓ ✓ ✓ 

Data intervals ✓ ✓ ✓ ✓ ✓ ✓ 

Measurement methods used ✓ ✓ ✓ ✓ ✓ ✓ 

Competency of the M&V practitioner ✓ ✓ ✓ ✓ ✓ ✓ 

Sample size/ sample size is representative ✓ ✓ ✓ ✓ ✓ ✓ 

Measurement equipment uncertainty ✓ ✓ ✓ ✓ ✓ ✓ 

Baseline period energy consumption ✓ ✓ ✓ ✓ ✓ ✓ 

An estimation of interactive effects ✓ ✓ X ✓ X ✓ 

Model diagnostics and bias ✓ X X ✓ X ✓ 

 
The research objectives were addressed by the study as follows: The largest contributors to EES 
uncertainty were identified (measurement, database, modelling, and assessment decision 
uncertainty). The strategy developed was the Uncertainty Q&M flowchart.  
 
The flowchart was applied to three case studies and, hence, was proven to be generic. It is simple 
in that it makes use of a structured approach that links decisions to criteria, which makes the 
flowchart easy to navigate. In terms of usability, although time-consuming, it produces uniform 
results that are easily interpreted. The solution is also outcome-based in that it produces 
deliverables. The deliverables of the flowchart include information pertinent to a 12L application, 
and align with the four sources of uncertainty.  
 
The developed methodology was applied to previously completed M&V case studies in order to verify 
that the approach provides clarity about the pitfalls of studies carried out previously. The 
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implication of this is that errors and pitfalls in the results can only be reported to stakeholders but 
cannot be managed or corrected in hindsight. It is therefore suggested that the method be applied 
pro-actively during the implementation of energy efficiency initiatives, because it has been 
established as a structured methodology. 

5 CONCLUSION 

Accurate quantification of the EES saving is a critical component of the 12L claims process. However, 
the reported EESs will always include a degree of uncertainty that must be acknowledged and 
mitigated. There is, however, some ambivalence about how uncertainty should be approached and 
reported in practice.  
 
The study therefore introduces a new approach that can be used to quantify and manage the 
uncertainties associated with a reported EES in a structured manner. This takes the form of an 
uncertainty Q&M flowchart that assists in the navigation of the EES computation, while also 
addressing the various uncertainties encountered in a typical M&V process.  
 
The uncertainty Q&M flowchart was applied to three different EE projects in three different 
industries. The application of the uncertainty Q&M flowchart shows that the solution could be 
applied to each case study and deliver consistent results. The significance of the study is highlighted 
by the fact that uncertainty levels can range between two and 18 per cent of the reported results. 
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