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ABSTRACT 

Simultaneous Localisation And Mapping (SLAM) In Dynamic Environments 
(IDE) may be improved by detecting and removing moving objects that may 
otherwise lead to localisation errors. This work combines convolutional 
neural networks and feature clustering to serve as A Moving Object 
detection and REmoval method (AMORE) that removes moving objects from 
the SLAM process and improves the performance of SLAMIDE. Experiments 
show that a visual SLAM algorithm and AMORE combined are more robust 
with high-dynamic objects than the SLAM algorithm alone, and 
performance is comparable to state-of-the-art visual SLAMIDE approaches. 
AMORE has the advantage of simplicity, requiring minimal implementation 
effort.  

OPSOMMING 

Gelyktydige lokalisering en kartering in dinamiese omgewings kan verbeter 
word deur voorwerpe te bespeur en te verwyder wat andersins mag bydra 
tot lokaliseringsfoute. Hierdie artikel kombineer konvolusie neurale 
netwerke en kenmerk groepering as ŉ voorwerp bespeuring en 
verwyderings metode wat bewegende voorwerpe van die lokalisering en 
kartering proses verwyder. Eksperimente toon dat ŉ visuele gelyktydige 
lokalisering en kartering algoritme beter resultate lewer in hoogs-
dinamiese omgewings wanneer dit met hierdie verwyderingsmetode 
gekombineer word. Die vertoning is soortgelyk aan bestaande benaderings, 
maar dit is eenvoudig en benodig minimale inspanning om te 
implementeer. 

 

1 INTRODUCTION  

Simultaneous Localisation And Mapping (SLAM) enables a mobile robot to construct a map of an unknown 
static environment and localise itself simultaneously [20]. The SLAM problem in static environments has 
been researched extensively. Applications have evolved for different environments such as indoor-to-
outdoor, aerial, underwater, and mining robotics [21]. Most of these applications are undertaken in static 
environments. 
 
However, real-world environments are dynamic and contain moving objects, such as people, pets, cars, 
and robots, which may lead to localisation errors and so reduce the map quality of SLAM. The performance 
of SLAM In Dynamic Environments (SLAMIDE) may be improved by detecting moving objects and removing 
or tracking them [22]. 
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There are several works on SLAMIDE [24-26], each with its own assumptions, advantages, and disadvantages. 
However, there is no prevailing solution, and questions remain about sensor types, methods for 
differentiating stationary and moving objects [27], and how best to remove or track moving objects. 
  
The advent of affordable Red Green Blue — Depth (RGB-D) cameras makes both colour and depth data 
available from a single sensor [15]. Convolutional Neural Networks (CNN) have achieved superior results for 
object detection in images [1-3], and recently for SLAM and moving object detection and removal [6, 10, 
11]. 
 
In this work, CNN and 3D feature clustering are combined to serve as A Moving Object detection and 
REmoval method (AMORE), which removes moving objects from the SLAM process. AMORE is integrated with 
an RGB-D SLAM algorithm to improve performance in dynamic environments, using only sparse feature 
information. 
 
For the experiments in this study, AMORE combines the CNN object detector, You Only Look Once Version 
3 (YOLOv3) [1], mean shift clustering [7], and the visual SLAM (vSLAM) algorithm ORB-SLAM [9]. ORB-SLAM 
AMORE refers to the combination of these methods. The SLAM method used here is ORB-SLAM, but AMORE 
may be coupled to any vSLAM algorithm. ORB-SLAM is a state-of-the-art SLAM algorithm that has shown 
good performance in static and low-dynamic environments [8]. YOLOv3 is a state-of-the-art object detector 
with outstanding results [1]. Mean shift showed best overall performance for clustering features from RGB-
D images in a recent study [14]. 
 
The performance of ORB-SLAM AMORE is validated in experiments with the TUM RGB-D dataset [15], which 
is widely used as the benchmark to evaluate vSLAM algorithms. Results show that it is more robust with 
high-dynamic objects than ORB-SLAM alone. The accuracy of ORB-SLAM AMORE is comparable to state-of-
the-art, low-cost RGB-D SLAMIDE algorithms in these experiments, and it has the advantage of simplicity, 
requiring minimal implementation effort. 
 
The rest of the paper is organised as follows: Section 2 discusses related work, Section 3 provides technical 
background to the algorithms used in AMORE in this study, Section 4 describes AMORE, Section 5 presents 
the experimental methods, Section 6 contains the experimental results, Section 7 provides a thorough 
discussion of the proposed approach, highlighting its strengths and shortcomings, and Section 8 concludes 
and projects future work. 

2 RELATED WORK 

Detailed reviews [24, 28] on existing SLAMIDE approaches describe their novelty and highlight their 
advantages and disadvantages. 
 
ORB-SLAM [8, 9] is the first open-source SLAM algorithm that can be applied to monocular, stereo, and RGB-
D cameras. It is explained in detail in the research of Mur-Artal, Montiel and Tardos [8]. It builds on parallel 
tracking and mapping [29] and other algorithms. ORB features are used, as they are computationally 
efficient and rotation invariant [30]. ORB-SLAM consists of three parallel threads: tracking, local mapping, 
and loop closing. The tracking thread performs camera localisation and new keyframe decisions. Keyframes 
contain camera and feature information, and are selected based on specific criteria [8]. The local mapping 
thread carries out new keyframe processing, local bundle adjustment, and redundant keyframe removal. 
The loop closing thread performs loop detection and closure [8]. Extensive evaluations of ORB-SLAM have 
demonstrated its excellent accuracy. It is robust with low-dynamic changes [8], is not affected by brightness 
variations, and offers computational efficiency. However, it is unsuitable for environments without 
features; similar features may cause incorrect loop closures; and drift arises without loop closures [31]. 
 
Sun, Liu and Meng’s [5] Motion Removal (SMR) approach serves as a front end to RGB-D SLAM, and filters 
out dynamic object data. It uses ego-motion compensated image differencing, a particle filter, and a 
maximum a posteriori estimator. However, it can only detect a single foreground moving object; therefore, 
if there are many moving objects at different depths, motion removal might be difficult.  
 
StaticFusion (SF) [4] jointly estimates camera pose and scene segmentation, and filters foreground dynamic 
objects. The segmentation is used for weighted dense RGB-D fusion to build a 3D surfel model only of 
stationary objects. SF has a quick runtime, although, for initialisation, at least 70 per cent of the 
environment needs to be static. 
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Detect-SLAM (DS) [6] is the first work to combine CNN and RGB-D SLAM for mutual benefit. It uses Single 
Shot multibox object Detector (SSD) [3] as the object detector and ORB-SLAM [8, 9] as the RGB-D SLAM 
method. SSD is not fast enough to be applied to each frame of the tracking process, and therefore is only 
applied to ORB-SLAM keyframes. This allows DS to operate in real time. Moving objects are regarded as 
objects that have a tendency to move — e.g., a person, dog, cat, or car — regardless of their action, such 
as walking or standing. DS has two versions: DS1 removes moving features from the bounding boxes that 
SSD detects; and DS2 uses moving feature probability propagation to remove moving features. The method 
is integrated into ORB-SLAM, and requires modifications to both the tracking and the local mapping threads 
of ORB-SLAM. DS requires SSD to be fine-tuned to improve object detection under partial observation, 
motion blur, and occlusion. DS constructs an instance-level, dense, semantic map of static objects, which 
is used as prior knowledge for better detection in demanding environments. 
 
DS-SLAM (DSS) [10] builds on ORB-SLAM [9]. It consists of five parallel threads: tracking, semantic 
segmentation, local mapping, loop closing, and dense semantic mapping. The semantic segmentation 
network SegNet [13] and a moving consistency check method are combined to remove moving objects. It is 
assumed that features that belong to people are likely to be outliers or moving. DSS operates in real time, 
although the object recognition in the semantic segmentation network is constrained to certain classes, 
which limits its application. The moving consistency check method is integrated into the tracking thread of 
ORB-SLAM [10]. 
 
DynaSLAM (DyS) [11] augments ORB-SLAM [9] with front-end moving object detection and background 
inpainting. Mask R-CNN [12] and multi-view geometry models are combined to detect moving objects. For 
the TUM dynamic objects dataset [15], DyS performs better than the other methods compared. DyS has the 
advantage that it can detect any object’s movement, although it has yet to be optimised for real-time 
performance. 

3 TECHNICAL BACKGROUND 

In addition to ORB-SLAM, which is described in Section 2, the algorithms below are used in this study. 

3.1 Mean shift clustering 

The mean shift algorithm [35] iteratively moves or shifts each data point to the mean of the data points in 
the kernel. Mean shift is non-parametric, the number of clusters is not required, and it can find arbitrarily 
shaped clusters [36, 37]. The mean shift algorithm is explained in detail in Comaniciu and Meer [37] and 

Derpanis [38]. For the set of 𝑛 independent identically distributed data points 𝑋 = {𝑥𝑖,, 𝑖 = 1, … , 𝑛}, in the 

𝑑-dimensional space 𝑅𝑑, the multivariate kernel density estimator for the point 𝑥 is given by 
 

𝑓(𝑥) =
1
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The bandwidth ℎ >  0, and 𝐾(𝑥) is the kernel for radially symmetric kernels. The modes are found at the 
zeros of the gradient ∇𝑓(𝑥)  =  0. The gradient of the kernel density estimator is given by 
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where the function 𝑔(𝑥) =  −𝑘′(𝑥). The function 𝑘(𝑥) is the kernel profile for 𝑥 ≥ 0. The normalisation 

constant 𝑐𝑘,𝑑 >  0, ensures that ∫ 𝐾(𝑥)𝑑𝑥
𝑅𝑑  =  1. The first term reflects the density estimate at 𝑥 and the 

second term is the mean shift vector 𝑚, which indicates the direction of increasing density. The main steps 
of mean shift are: 
 

1. Calculate the mean shift vector 𝑚ℎ,𝐺(𝑥). 

2. Translate the kernel 𝐺(𝑥) by 𝑚ℎ,𝐺(𝑥). 

3. Repeat steps 1 and 2 until ∇𝑓(𝑥)  =  0. 
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3.2 YOLOv3 

YOLOv3 [1] is a real-time object detection algorithm. It uses dimension clusters as anchor boxes to predict 
bounding boxes. Logistic regression is used to predict an objectness score for each bounding box. Multilabel 
classification is used to predict the classes that the bounding box may have. In experiments with the COCO 
dataset [33], YOLOv3 can predict 80 classes (including people, vehicles, animals, and inanimate objects). 
Boxes are predicted at three different scales, from which features are extracted. YOLOv3 uses Darknet-53, 
a 53-layer convolutional network for feature extraction, which combines the Darknet-19 network from 
YOLOv2 and residual network concepts. At 320×320, YOLOv3 executes in 22 𝑚𝑠 with 28.2 𝑚𝐴𝑃 [1]. 

4 MOVING OBJECT DETECTION AND REMOVAL WITH AMORE 

In real-world environments people have the potential to move, and their motion will tend to decrease the 
performance of SLAM. AMORE only regards people as moving objects, but it can be modified to include 
other moving objects to increase its versatility. A person is classified as moving, regardless of whether they 
are stationary (e.g., standing) or moving (e.g., walking). DS [6] and DSS [10] also regard people as moving 
objects, and the former method also does not differentiate between stationary and moving people. The 
AMORE process combined with vSLAM is shown in Figure 1.  
 

 

Figure 1: Processes are shown in rounded blocks, and data inputs and outputs are shown in sharp 
cornered blocks. AMORE extracts 3D features from the RGB and depth image. These features are 

clustered. The RGB image is used for CNN object detection. The CNN objects and feature clusters are 
processed in the detection step, where moving and static objects are classified. Static features are 

provided to the vSLAM algorithm, and moving objects are removed. 

The RGB-D camera produces an image sequence of RGB images and depth images. AMORE is applied to each 
RGB-D image pair in the sequence. The CNN object detector detects a set of 𝜑 CNN objects 𝐽 =
{𝑗𝜏, 𝜏 = 1, ⋯ , 𝜑} in the RGB image 𝐿𝑅𝐺𝐵. Each CNN object has a corresponding 2D bounding box 𝑏𝜏 defined 
by 𝑢𝑣 image pixels. A set of 𝛽 image features 𝐸 = {𝑒𝛼 , 𝛼 = 1, ⋯ , 𝛽} is extracted and converted to 3D spatial 
coordinates 𝑒𝛼 = (𝑋𝛼 , 𝑌𝛼 ,  𝑍𝛼), with the corresponding depth image 𝐿𝐷 [18]. The clustering algorithm clusters 
the 3D features into a set of ℶ clusters 𝑊 = {𝑤𝜀 , 𝜀 = 1, ⋯ , ℶ}. The clusters help to manage features that 
occur on the bounding box edges.  
 
The CNN objects and the clusters are processed in the detection step. Clusters are classified as potentially 
moving if at least one point in the cluster is within the bounding box of a CNN person object. If a potentially 

moving cluster 𝑙𝜔 has more than 50 per cent of its points in the person bounding box, 𝑙𝜔  ∩   𝑏𝜏 ≥ 50%, it is 
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classified as a moving object 𝑜𝜌, or else the cluster is classified as a static object. This threshold was chosen 

empirically.  
 
Features are classified according to the object they belong to. If a feature belongs to a static object, it is 

classified as a static feature 𝑎𝛾, or else it is classified as a moving feature. A set of 𝛿 static features 𝐴 =

{𝑎𝛾 , 𝛾 = 1, ⋯ , 𝛿} is provided to the vSLAM algorithm, and a set of 𝜎 moving objects 𝑂 = {𝑜𝜌, 𝜌 = 1, ⋯ , 𝜎} is 
removed.  

5 EXPERIMENTAL METHODOLOGY 

5.1 RGB-D data 

The performance of ORB-SLAM AMORE is evaluated with the benchmark TUM RGB-D dataset [15, 18]. Ground 
truth, including the true camera trajectory, measured from an accurate motion capture system, is provided 
with this dataset. To evaluate ORB-SLAM AMORE fully, static, low-dynamic, and high-dynamic sequences 
are selected for the experiments. The sequences are abbreviated as Freiburg-fr, halfsphere-half, walking-
w, sitting-s, validation-v, and desk-d in the names of the sequences [6]. In the dynamic object sequences, 
at certain times a large part of the scene is dynamic, making SLAM challenging [6, 18]. 

5.2 Evaluation measures 

5.2.1 Standard deviation 

The sample Standard Deviation (SD) [34] with the mean 𝑥̅ is given by 
 

𝑆𝐷 =  √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 (3)  

5.2.2 Euclidean distance 

The Euclidean Distance (ED) [23] between the Cartesian points 𝒑 =  (𝑝1,  𝑝2, ⋯ ,  𝑝𝑠) and 𝒒 =  (𝑞1,  𝑞2, ⋯ ,  𝑞𝑠) 
in Euclidean 𝑠-space is given by 
 

𝑆𝐸𝐷 =  √∑(𝑝𝑖 − 𝑞𝑖)2

𝑠

𝑖=1

 (4)  

5.2.3 Absolute trajectory error 

The global consistency of the camera pose estimates is evaluated using Absolute Trajectory Error (ATE), 
which is the benchmark evaluation measure for vSLAM algorithms [15]. For a sequence of camera pose 

estimates 𝑃1, ⋯ , 𝑃𝑁 𝜖(𝑆𝐸)3 and the corresponding ground truth 𝑄1, ⋯ , 𝑄𝑁 𝜖(𝑆𝐸)3, the Root Mean Square Error 
(RMSE) of the translational components of ATE over the number 𝑁 of time indices 𝐼 is given by 
 

𝑅𝑀𝑆𝐸(𝐴𝑇𝐸1:𝑁) = √
1

𝑁
∑‖𝑄𝐼

−1𝑇𝑃𝐼‖2

𝑁

𝐼=1

 (5)  

 
The camera pose estimates are transformed to the ground truth frame with a rigid-body transformation 𝑇 
[15]. 
 

5.3 ORB-SLAM AMORE implementation 

For the experiments in this study, AMORE combines the CNN object detector, YOLOv3 [1], mean shift 
clustering [7], and the vSLAM algorithm, ORB-SLAM [9]. ORB-SLAM AMORE refers to the combination of these 
methods. 
 
The ROS Kinetic implementation of YOLOv3 [16] is used with default parameters and with no re-training. 
The mean shift clustering implementation uses the squared ED measure and a bandwidth of 0.3 [14]. 
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The open-source release of ORB-SLAM [19] in C++ is modified to accommodate AMORE. The core 
functionality of ORB-SLAM is not changed. It merely calls functions for AMORE, allowing simple interfacing. 
The number of features detected per frame in ORB-SLAM is increased from 1 000 to 3 000 empirically. This 
ensures that there are enough static features for ORB-SLAM to initialise, because AMORE removes moving 
features and only static features are given to ORB-SLAM.  

6 RESULTS 

The experiments were conducted on a computer with an Intel Core i7 — 3970X CPU at 3.5 GHz, with 32 GB 
of RAM and a GeForce RTX 2080 GPU, using ROS Kinetic on Ubuntu 16.04. The GPU was only used for 
YOLOv3. 
 
Two sets of experiments were performed. In the first, ORB-SLAM AMORE was compared with the open-
source implementation of ORB-SLAM [19]. In the second, ORB-SLAM AMORE was compared with several 
state-of-the-art, low-cost RGB-D SLAMIDE approaches. 
 
In the first set of experiments, ORB-SLAM and ORB-SLAM AMORE were executed five times on each selected 
video in the benchmark TUM RGB-D dataset. The video file was played at a full rate for ORB-SLAM and at a 
slow rate for ORB-SLAM AMORE. This allowed processing time, as AMORE does not presently operate in real 
time. 
 
Table 1 compares the median of the ATE RMSE, mean, and SD, from the five runs for ORB-SLAM AMORE and 
ORB-SLAM. In the static and high-dynamic scenes, ORB-SLAM AMORE performed better than ORB-SLAM. ORB-
SLAM AMORE had lower ATE than ORB-SLAM, because the moving objects were removed from the SLAM 
process and performance was improved for the tested datasets. In the low-dynamic scenes ORB-SLAM 
performed best, although the errors for both were low. 
 
Figures 2—4 show the camera trajectories for one execution of ORB-SLAM, ORB-SLAM AMORE, and the 
corresponding ground truth for some of the static, low, and high-dynamic sequences respectively. ORB-
SLAM AMORE’s trajectories were much closer to the ground truth than those of ORB-SLAM, for the static 
(Figure 2) and high dynamic environments (Figure 4). However, for the low-dynamic environments (Figure 
3), ORB-SLAM was closer. 
 
In the second set of experiments, the performance of ORB-SLAM AMORE was compared with the state-of-
the-art approaches: DS [6], SMR [5], DyS(N+G) variant [11], DSS [10], and ORB-SLAM [9]. DS and DSS operate 
in real-time, unlike ORB-SLAM AMORE, SMR, and DyS. SMR and DyS can detect movement of any object, 
whereas DS, DSS, and ORB-SLAM AMORE detect people as moving objects. 
 
Table 2 compares the median of the ATE RMSE of ORB-SLAM AMORE with the state-of-the-art approaches. 
The results for DS, SMR, DyS(N+G), and DSS are given in [6], [5], [11], and [10] respectively, where available. 
The results for ORB-SLAM and ORB-SLAM AMORE in Table 2 are taken directly from Table 1 for comparison 
purposes. 
 
In the static scenes and the high-dynamic scenes, ORB-SLAM AMORE performed well. In the high-dynamic 
scenes DyS(N+G) performed best. In the low-dynamic scenes, ORB-SLAM, DyS(N+G), and SMR outperformed 
the other methods in terms of localisation accuracy in certain scenes. For the sequences tested, DyS(N+G) 
had the lowest average error, followed by ORB-SLAM AMORE.  
 
Table 3 shows the average time and SD to run ORB-SLAM AMORE over all images in the fr3/w/xyz sequence 
for one run. The AMORE time included YOLOv3, mean shift clustering, static and moving object 
classification, and removal of moving objects. The code for AMORE has not been optimised for real-time 
performance. Execution speed is mainly limited by the time for mean shift clustering, but may be improved 
with a GPU implementation [32].  
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Table 1: Comparison of ORB-SLAM (OS) and ORB-SLAM AMORE (OA). The video file was executed five 
times, and the median results are shown. 

ATE (m) 

TUM RGB-D dataset  RMSE Mean SD 

OS OA OS OA OS OA 

High-dynamic 

fr3/w/xyz  0.6185 0.0209 0.4982 0.0180 0.3664 0.0106 

fr3/w/xyz/v 1.5703 0.0153 1.5310 0.0135  0.3491 0.0074 

fr3/w/half 0.4410 0.0291 0.3459 0.0250 0.2735 0.0149 

fr3/w/half/v 0.3516 0.0294 0.3031 0.0258 0.1781 0.0141 

fr3/w/rpy 0.8874 0.0831 0.7884 0.0631 0.4073 0.0541 

fr3/w/rpy/v 0.5647 0.1180 0.4543 0.0770 0.3355 0.0895 

fr3/w/static 0.2487 0.0236 0.2105 0.0121 0.1325 0.0203 

Low-dynamic 

fr3/s/xyz 0.0122 0.0234 0.0108 0.0193 0.0058 0.0132 

fr3/s/half 0.0295 0.1129 0.0246 0.0786 0.0162 0.0811 

fr2/d/person 0.0646 0.0708 0.0615 0.0681 0.0196 0.0195 

Static 

fr2/flowerbouquet 0.5529 0.0324 0.4642 0.0322 0.3004 0.0037 

Average 0.4856 0.0508  0.4266 0.0393   0.2168  0.0299 

Table 2: Comparison of ORB-SLAM AMORE (OA) with ORB-SLAM (OS) and other state-of-the art RGB-D 
SLAMIDE approaches. A dash (—) indicates cases where results were not available. 

ATE RMSE (m) 

TUM RGB-D dataset  Method 

SMR [5] OS  
 

DS1 [6] DS2 [6] OA DyS(N+G) [11] DSS [10] 

fr3/w/xyz 0.0932 0.6185 0.0254 0.0241 0.0209 0.015 0.0247 

fr3/w/xyz/v 0.0655 1.5703 0.0268 0.0218 0.0153 — — 

fr3/w/half 0.1252 0.4410 0.2021 0.0514 0.0291 0.025 0.0303 

fr3/w/half/v 0.0811 0.3516 0.0697 0.0522 0.0294 — — 

fr3/w/rpy 0.1333 0.8874 0.4559 0.2959 0.0831 0.035 0.4442 

fr3/w/rpy/v 0.2333 0.5647 0.1050 0.0767 0.1180 — — 

fr3/w/static 0.0656 0.2487 — — 0.0236 0.006 0.0081 

fr3/s/xyz 0.0470 0.0122 0.0210 0.0201 0.0234 0.015 — 

fr3/s/half 0.0482 0.0295 0.0273 0.0231 0.1129 0.017 — 

fr2/d/person 0.0596 0.0646 0.0825 0.0813 0.0708 — — 

fr2/flowerbouquet - 0.5529 0.1489 0.0569 0.0324 — — 

Average 0.0952 0.4856 0.1165 0.0703 0.0508 0.0188 0.1268 

Table 3: Average time and SD to run each process in ORB-SLAM AMORE. *The times for YOLOv3 and 
ORB-SLAM were not measured explicitly. 

Process 

AMORE 

ORB-SLAM  [8] 
Total 

 
YOLOv3 

[16] 
Mean shift clustering Object classification and removal 

Time (ms) 25.00 1146.13 0.74 33.33 1.24 

SD * 0.5113 0.0005 * * 
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Figure 2: Static environment — fr2/flowerbouquet  

 

(a) fr3/s/half                                        (b) fr3/s/xyz 

 

(c) fr2/d/person 

Figure 3: Low-dynamic environments 



 

54 

 

(a) fr3/w/xyz                                            (b) fr3/w/half 

 

(c) fr3/w/rpy                                            (d) fr3/w/static 

Figure 4: High-dynamic environments 

7 DISCUSSION 

The accuracy of ORB-SLAM AMORE was comparable with state-of-the-art, low-cost RGB-D SLAMIDE 
approaches in these experiments, as shown in Table 1 and Table 2. In Table 1, the RMSE, mean, and SD of 
ORB-SLAM AMORE is high in some scenes owing to the rapid movement and complex trajectory of the 
camera, although the error was lower than that of ORB-SLAM in most scenes. Overall, ORB-SLAM AMORE 
performed well in static and high-dynamic scenes, and not as well in low-dynamic scenes. In the low-
dynamic scenes, person/s occupied most of the space in the frames of the sequence, and there were fewer 
true static features for SLAM, making localisation difficult. This is shown by ORB-SLAM AMORE’s incomplete 
trajectory for the fr3/s/half and fr3/s/xyz sequences in Figures 3(a) and 3(b). Figure 3(c) shows that, for 
the fr2/d/person sequence, ORB-SLAM AMORE’s trajectory was close to that of ORB-SLAM and the ground 
truth. ORB-SLAM performed well in the low-dynamic sequences; therefore there is little room for 
improvement [5], as seen in the similar errors shown in Table 1 and Table 2 for some of the low-dynamic 
sequences. 
 
In the fr2/d/person sequence, a person sat at a desk and moved objects on the desk. AMORE was 
programmed only to recognise persons as moving; and because the other objects moved were not 
programmed as moving, the performance diminished. Performance might improve if these objects were 
recognised by AMORE as moving objects. 
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AMORE depends on the CNN to perform object detection. Where the CNN object detector fails to detect a 
moving object in the image, possibly owing to an unusual camera angle, motion blur, or poor illumination, 
then features on the moving object will be passed through to the vSLAM algorithm as static features. This 
can reduce localisation accuracy. 
 
AMORE improved the map quality of ORB-SLAM by removing spurious measurements from moving objects, 
as shown in Figure 5. AMORE reduced the high-dynamic object motions to low-dynamic changes that ORB-
SLAM was able to handle. Without AMORE, more spurious measurements from moving objects would have 
been included in the map. A better map allows for better localisation. 
 
AMORE occasionally misclassified the edges of moving objects as static, as shown in Figure 6(a). However, 
ORB-SLAM’s robustness with moderate dynamic changes allowed it to exclude some of the 
misclassifications, as shown in Figure 6(b). This means that AMORE may work better with ORB-SLAM, and 
may perform less well if coupled with another SLAM method that lacks this capability.  
 
At present AMORE only detects people as moving objects, which limits its application to environments 
where people are the moving objects, such as shopping malls, airports, and laboratories. AMORE’s moving 
object class set could be expanded (by CNN retraining, if needed) to include other moving object classes 
that may be in a given robot’s environment — for example, electric or manual carts, wheeled luggage, in-
mall trains, and guide dogs. This would increase AMORE’s robustness and versatility in a wider range of 
applications. 
 

 

(a) Image from fr3/w/xyz sequence [15] 

 

(b) Map from ORB-SLAM showing spurious 
measurements from moving objects indicated 

by box.

 

(c) Map from ORB-SLAM AMORE with fewer spurious measurements from moving objects. 

Figure 5: Maps from ORB-SLAM and ORB-SLAM AMORE showing map quality for fr3/w/xyz sequence 
[15]. In (b) and (c), red points indicate features in the map, blue polygons indicate keyframes, and 

the green line indicates the camera trajectory. 
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(a) Image from fr3/w/xyz [15] sequence 
showing moving (green) and static (red) 

features that are detected by AMORE. Some 
features on the head and hand of the person 

on the left are misclassified as static, as 
indicated by white boxes. 

 

(b) ORB-SLAM’s current frame window 
showing features that are included in the 

map. The features on the hand of the person 
on the left are included in the map while the 

features on the head are not.

 

Figure 6: ORB-SLAM AMORE outputs, with AMORE’S feature classification and ORB-SLAM’s current 
frame, showing how ORB-SLAM’s robustness with low dynamic changes does not include all of the 

moving features. 

8 CONCLUSION 

AMORE combines a CNN object detector and a clustering algorithm to create a method to remove moving 
objects from the SLAM process to improve SLAMIDE. ORB-SLAM AMORE is an implementation of AMORE using 
ORB-SLAM, YOLOv3, and mean shift clustering. 
 
ORB-SLAM AMORE’s performance was validated in experiments with the benchmark TUM RGB-D datasets 
[15]. The results showed that ORB-SLAM AMORE is more robust with high-dynamic objects than ORB-SLAM 
alone. For the sequences tested, DyS(N+G) had the lowest average error, followed by ORB-SLAM AMORE. 
The accuracy of ORB-SLAM AMORE in these experiments was comparable with state-of-the-art, low-cost 
RGB-D SLAMIDE approaches, and it had the advantage of simplicity, requiring minimal implementation 
effort. 
 
Additional work can be done to improve the performance of AMORE, extend AMORE’s moving object class 
set to allow more applications, and achieve real-time performance — for example, using a GPU for 
clustering. 
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