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ABSTRACT 

Companies need to cooperate with reliable and high-performing 
suppliers of goods and services, and build mutual long-term 
relationships in order to sustain their existence and increase their 
market share. An engineering manager can determine the most 
effective strategy in supplier selection by the proposed model, which 
allows an integration of objective values and the uncertainty of human 
judgements. A two-stage integrated fuzzy analytic network process 
(FANP) and super-efficiency data envelopment analysis (DEA) model is 
proposed and applied to a wind turbine project of a company operating 
in the renewable energy sector. At the first stage of the methodology, 
the weights of the qualitative criteria were determined by using FANP. 
At the second stage, the qualitative supplier selection criteria that 
were converted into quantitative criteria with FANP were used as 
outputs; and cost (which was already a quantitative criterion) was used 
as an input in the DEA, by way of which the performances of the 
suppliers were assessed. This study, which includes decision-making, 
performance management, and supply chain management issues, 
introduces a new approach, both in terms of the sector referred to and 
the methodology that enables companies to select the best suppliers 
by assessing both qualitative and quantitative factors. 

OPSOMMING 

Maatskappye moet met betroubare en presterende verskaffers van 
dienste en goedere saamwerk en langtermyn verhoudings bou om 
hulle voortbestaan volhoubaar te maak en om hulle markaandeel te 
vergroot. ŉ Ingenieursbestuurder kan die mees effektiewe strategie 
in verskafferkeuring bepaal met behulp van die voorgestelde model. 
Dit bied ruimte vir die integrasie van objektiewe waardes en die 
onsekerheid van menslike beoordeling. ŉ Tweeledige geïntegreerde 
wasige analitiese netwerk proses (FANP) en super-effektiwiteit data 
omhulsel ontleding (DEA) model is voorgetel en toegepas op ŉ 
windturbine projek van ŉ maatskappy in die hernubare 
energiesektor. Die eerste gedeelte van die metodologie bepaal die 
gewigte van die kwalitatiewe kriteria met die gebruik van FANP. Die 
tweede gedeelte gebruik die kwantitatiewe uitsette van die FANP 
saam met die koste as inset vir die DEA. Sodoende word die 
verskaffers assesseer. Die studie, wat besluitneming, 
prestasiebestuur, en voorsieningskettingbestuur insluit, stel ŉ nuwe 
benadering voor, beide in terme van die sektor waarna daar verwys 
word en die metodologie wat maatskappye in staat stel om die 
verskaffers te identifiseer (op grond van beide kwalitatiewe en 
kwantitatiewe faktore). 

 

1 INTRODUCTION 

Companies should determine the best and most effective strategy in choosing reliable and high-
performing suppliers with whom to establish long-term relations, since this relationship ensures that 
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they have a competitive advantage. An effective supplier selection not only reduces the operational 
costs of a company, but also improves its operational quality. In addition, product development 
times and lead times can be decreased, thereby contributing to the competitiveness of the company 
[1]. Therefore, supplier selection is no longer a matter of making a ‘simple’ decision based on price 
alone: it now requires the assessment of several additional and more complicated qualitative and 
quantitative factors [2]. Companies should have an effective performance evaluation system in order 
to create efficient supplier networks. While establishing this system, it should be ensured that the 
performance of existing and potential suppliers is continuously evaluated by combining the human 
factors and the basic management functions with engineering, and modelling the random and 
variable structure of the system.  
 
Recent studies confirm that more comprehensive supplier selection multi-criteria decision-making 
and performance assessment techniques, in which several qualitative and quantitative factors are 
integrated, are more commonly used. This paper proposes a two-stage integrated method for 
effective supplier selection, which is a highly complicated process. A fuzzy analytic network process 
(FANP) was used at the first stage of this method, while a data envelopment analysis (DEA) model 
was applied at the second stage. The relevant supplier selection criteria were identified initially. 
With FANP, qualitative supplier selection criteria were converted into quantitative criteria, and 
these constituted the data used as the outputs of the DEA method. On the other hand, cost, which 
is an intrinsically quantitative item, constituted the input of the DEA, through which efficient and 
inefficient suppliers were identified. Finally, super-efficiency scores were calculated and the 
efficient suppliers were ranked. 
 
FANP was used at the first stage, when the weights of the criteria were determined; thus the network 
structure that was created could reflect the interaction both between and within the criteria and 
their feedbacks in the model. In this model, where fuzzy logic was applied, the ambiguous and risky 
structure of the criteria-setting process relying on human judgement was defined and determined 
more accurately. At the second stage of the method, the performances of the suppliers were 
assessed using a super-efficiency DEA model; hence, those criteria with different measurement units 
could be used in combination. The super-efficiency model also enabled the ranking of suppliers 
according to efficiency, and the most efficient supplier was presented to the company.  
 
The proposed method was applied to the supplier selection problem for a wind turbine project of a 
company operating in the renewable energy sector. Studies on supplier selection reveal that the 
focal point is mainly mass production. Nevertheless, it is equally important for project-oriented 
companies to identify the most efficient suppliers. This paper not only offers a new approach — in 
both the model it proposes and the sector to which it is applied — but it also enables project-
oriented companies to evaluate qualitative and quantitative factors together. As such, this paper 
provides valuable insights for engineering managers that would help them to improve their supply 
chain management performance by evaluating the performance of suppliers.  
 
The rest of the paper is organised as follows. In the second part, a review of the relevant literature 
is presented. It is followed by the methodology section, in which the procedure of the proposed 
FANP-DEA model and the steps of the process are described first. Then the FANP and DEA models 
are introduced. In the fourth section the steps of the proposed model are applied to the energy 
company. The paper ends with the fifth section, where the conclusions and suggestions for future 
studies are presented. 

2 LITERATURE REVIEW 

Supplier selection is a very commonly studied theme in the literature. To solve the supplier selection 
problem, some studies have preferred a one-stage method, while others have preferred two-stage 
integrated methods. Some of the studies that employed one-stage methods for supplier selection 
are as follows: the analytic hierarchy process (AHP) and fuzzy analytic hierarchy process (FAHP) 
[3,4,5,6,7,8,9,10]; the analytic network process (ANP) and FANP [11,12,13,14]; DEA [15,16,17,18]; 
fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) [19,20,21]; multi-
objective 0-1 programming (MOP) [22,23]; linear programming (LP) and goal programming (GP) 
[24,25,26,27]; genetic algorithm (GA) [24,28]; fuzzy mixed integer goal programming (f-MIGP); and 
fuzzy mixed integer linear programming (f-MILP) [29,30]. 
 



148 

The review of the relevant literature shows that the one-stage methods have gradually been 
abandoned and that two-stage integrated methods, in which both qualitative and quantitative 
factors are assessed, have become more common. Authors such as De Boer, Eva and Morlacchi [31], 
Ho, Xu and Dey [2], Jain, Wadhwa and Deshmukh [32], and Chai, Liu and Ngai [33] conducted detailed 
studies on supplier selection. Between 2000 and 2008, 17.95 per cent of the papers published were 
about supplier selection using the integrated model [2], while this rate rose to 39.84 per cent 
between 2008 and 2012 [33]. In subsequent years there were hardly any studies that used a single 
decision-making (DM) model. 
 
In this study, the supplier selection was carried out with FANP at the first stage and then DEA 
methods at the second stage. Ho et al. [2] analysed the papers published between 2000 and 2008 
that were conducted on supplier selection, and found that 14 papers out of 78 used DEA, while three 
papers used ANP. Chai et al. [33] also analysed papers on the application of DM in the selection of 
suppliers between 2008 and 2012, and found that 15 papers out of 123 used ANP, whereas 13 papers 
used DEA. Although there are not as many studies in which ANP and DEA are integrated for supplier 
selection, the number of such studies has increased in recent years. Some of these are as follows: 
ANP and DEA methods were integrated for the selection of supply chain partners at small and 
medium-sized companies [34], for supplier selection at a manufacturing firm [35], and for green 
supplier selection [36]. In Abdollahi, Arvan and Razmi’s [37] study, the authors categorised the 
suppliers as ‘lean’ and ‘agile’, and proposed some suggestions for supplier relationship management 
(SRM). They used the fuzzy decision-making trial and evaluation laboratory (fuzzy DEMATEL) to 
define the interdependence between the criteria, ANP to find the weights of sub-criteria, and DEA 
to rank the suppliers. Che and Chang [38] developed a supplier selection method that they named 
‘hyADMOPSO’, in which ANP, DEA, and multiple objective particle swarm optimisation methods were 
integrated.  
 
This study proposes a model in which FANP and DEA methods were integrated for supplier selection 
in a wind turbine project. To the best of our knowledge, no other studies have integrated FANP and 
DEA to model supplier selection; nor are there any studies that have applied supplier selection 
methods in the renewable energy sector. However, various DM methods have been used for different 
purposes in the energy sector. For instance, Kaya and Kahraman [39] selected the best renewable 
energy source for an Istanbul production site by integrating the ‘vise kriterijumska optimizacija i 
kompromisno resenje’ (VIKOR) and AHP methods. Cristobal [40] determined the best renewable 
energy project for Spain through the VIKOR method. Biomass was found to be the best source of 
energy, which was followed by wind and solar thermo-electric power. Chen, Kang and Lee [41] found 
the best solar-wind power generation project by applying FAHP. Lee, Chen and Kang [42] proposed 
a novel AHP-based approach to find the optimum wind farm project. Büyüközkan and Güleryüz [43] 
integrated DEMATEL and ANP models to determine the optimal renewable energy source; while 
Yazdani-Chamzini, Fouladgar, Zavadskas and Moini [44] found the optimal source of renewable 
energy through an integrated COPRAS-AHP model. Pan, Zhang and Zhang [45] measured the 
industrial energy efficiency of China through a two-stage method: they assessed regional energy 
efficiency by applying DEA at the first stage; while at the second stage they analysed the energy 
efficiency variables through panel data analysis. Akbari, Irawan, Jones and Menachof [46] integrated 
AHP and FANP methods and determined the most appropriate location for off-shore wind farms. 
Ghosh et al., [2016] [47] found the most suitable location to generate energy from ocean waves by 
integrating AHP and artificial neural networks (ANN) methods.  

3 METHODOLOGY 

3.1 Proposed procedure for supplier selection and evaluation 

This article suggests a two-stage method using qualitative and quantitative criteria simultaneously 
in the determination, selection, and evaluation of suppliers. In the first stage of this method, FANP 
is used to determine the relative weights of qualitative supplier selection criteria. In the second 
stage, these qualitative factors are converted into quantitative ones, which are then used as the 
output in the DEA model. By taking these qualitative factors as outputs and a quantitative factor as 
an input, the super-efficiency scores of suppliers are obtained by DEA, which allows efficient and 
inefficient suppliers to be ranked. Figure 1 illustrates the proposed method for supplier performance 
evaluation.  
 

http://www.sciencedirect.com/science/article/pii/S0957417414004953
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Qualitative and quantitative data collection

Qualitative data evaluation by FANP for  

calculating the weights and obtaining output 

data for DEA

Quantitative data used as input in DEA

DEA analysis for final performance evaluation

Ranking

 

Figure 1: An integrated FANP-DEA procedure for supplier evaluation 

The evaluation process is described as follows:  
 
Step 1: Decision-maker’s wind turbine supplier selection criteria are identified. After determining 
both the quantitative and the qualitative supplier criteria with the help of the decision committee, 
the process is continued with the steps that follow.  
 
Step 2: The FANP model is structured according to its goal, factors, and sub-factors determined in 
the previous step.  
 
Step 3: Pair-wise comparison matrices are formed by the decision committee using a linguistic scale 
for importance (given in Table I, as defined by Kahraman, Ertay and Buyukozkan [48]).  

Table 1: Linguistic scale for importance 

Linguistic scale for importance Triangular 
fuzzy scale 

Triangular reciprocal fuzzy scale 

Just equal (JE)  (1, 1, 1) (1, 1, 1) 

Equally important (EI) (1/2, 1, 3/2) (2/3, 1, 2) 

Weakly more important (WMI) (1, 3/2, 2) (1/2, 2/3, 1) 

Strongly more important (SMI) (3/2, 2, 5/2) (2/5, 1/2, 2/3) 

Very strongly more important (VSMI) (2, 5/2, 3) (1/3, 2/5, 1/2) 

Absolutely more important (AMI) (5/2, 3, 7/2) (2/7, 1/3, 2/5) 

 
Step 4: The local weights of factors and sub-factors are calculated by Chang’s extent analysis 
method [49,50]. 
 
Step 5: The inner dependence matrices and relative importance weights of the criteria are 
determined. The impact of each criterion on each of the others is assessed with paired comparison 
matrices, by way of which the interdependence of the criteria is described.  
 
Step 6: The relative importance weights of the criteria derived from the inner-dependency matrices 
and the local weights are multiplied together, and interdependent weights are obtained.  
 
Step 7: The normalised interdependent weights are multiplied by the local weights of the sub-
criteria to calculate their global weights. 
 
Step 8: The criteria weights of the suppliers are determined for the sub-criteria of each criterion 
by comparing the suppliers. While creating the pair-wise comparison matrices of the suppliers, the 
linguistic scale given in Table 1 is also used to determine their relative priorities.  
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The paired comparison values of the suppliers are normalised and their relative weights are 
calculated [51]. Then a consistency ration (CR) that measures the consistency of the comparisons 
made by the decision-maker is calculated. If CR is smaller than 0.10, it means that it is an indication 
of consistency. The consistency index (CI) and consistency ratio (CR) are defined as [52]: 

 𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
   (1) 

 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
              (2)

 
where λmax is the greatest eigenvalue of the matrix, n is the number of items compared in the 
matrix, and RI is the random index. The values of RI [52] are given in Table 2.  

Table 2: Values of the random index (RI) [52] 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.51 

 
Step 9: The final weights are calculated by multiplying the criterion weights of the suppliers by the 
global weights of the sub-criteria. The criteria obtained are used as outputs in the DEA analysis.  
 
Step 10: The quality, risk, and service criteria obtained from FANP are used as outputs; and the cost 
criterion is used as an input for DEA analysis. The performances of the suppliers achieving super-
efficiency scores are assessed and ranked.  
 
The next two sub-sections present the FANP method that was used at the first stage of the study, 
and the DEA method that was applied at the second stage.  

3.2 Fuzzy analytic network process (FANP) 

The analytic network process (ANP) method that was developed by Saaty [53] is the generalised 
version of the analytic hierarchy process (AHP), which was also developed by Saaty [52]. Both 
methods are multi-criteria decision-making methods that allow the assessment of several 
alternatives by taking account of many criteria. However, AHP establishes a one-dimensional 
hierarchy between the criteria, sub-criteria, and alternatives, whereas ANP describes a multi-
dimensional dynamic relationship. Just like many other decision-making problems, supplier selection 
also requires a model in which different needs and desires are assessed in an integrated manner and 
there is a mutual interaction between the criteria. ANP provides the possibility to reflect the 
outcome of the dependence and feedback within and between clusters of elements. 
 
Since human perception and decisions always contain uncertainty and vagueness, FANP is more 
appropriate instead of conventional ANP. Fuzzy logic was first used by Zadeh [54] to define and 
measure uncertainty. Fuzzy set theory is suitable for transforming uncertainty and knowledge-in-
pieces that relies on personal judgements obtained from decision-makers to several parameters [55]. 
In cases where it is difficult to define the perceptions using crisp numbers, as in the case of supplier 
selection, fuzzy numbers and linguistic variables allow more reliable results to be obtained [56, 57]. 
In this study, fuzzy pair-wise comparisons are calculated using Chang’s extent analysis method [49, 
50]. 
 

The criteria set is x = {x1, x2, … . , xn} and the goal set is G = {g1, g2, … . gn}. The extent analysis is 
applied to each criterion for each goal and gi values are created. Thus, m extent analysis values for 
each object can be obtained with the following symbols: 
 

 Mgi
1 , Mgi

2 , … . , Mgi
m , i = 1,2, … , n  (3)

 

 

where all the Mgi
1 (j = 1,2, … m) are triangular fuzzy numbers (TFNs). The steps of Chang’s extent 

analysis [49,50] can be given as below [12,48,58,59]: 
 
 
Step 1: The value of fuzzy synthetic extent with respect to the i.th object is defined as: 
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 𝑆𝑖 = ∑ 𝑀𝑔𝑖
𝑗𝑚

𝑗=1  [∑ ∑ 𝑀𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ]

−1
 (4) 

 

To obtain ∑ Mgi
jm

j=1 , perform the fuzzy adition operation of m extent analysis values for a particular 

matrix, such that:  
 

 ∑ 𝑀𝑔𝑖
𝑗

= (∑ 𝑙𝑗 , ∑ 𝑚𝑗,𝑚
𝑗=1 ∑ 𝑢𝑗) 𝑚

𝑗=1
𝑚
𝑗=1

𝑚
𝑗=1  (5) 

 

To obtain [∑ ∑ Mgi
jm

j=1
n
i=1 ]

−1

, perform the fuzzy additional operation of   Mgi
j

(j = 1,2, … , m) values, 

such that: 
 

 [∑ ∑ 𝑀𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ]=(∑ li, ∑ mi, ∑ ui)

n
i=1

n
i=1

n
i=1                                       (6) 

 
After that, compute the inverse of the vector in Equation 6 as  
 

 [∑ ∑ 𝑀𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ]

−1
= (

1

∑ 𝑢𝑖
𝑛
𝑖=1

,
1

∑ 𝑚𝑖
𝑛
𝑖=1

,
1

∑ 𝑙𝑖
𝑛
𝑖=1

)    (7) 

 

Step 2: The degree of possibility of M2 = (l2, m2, u2) ≥ M1 = (l1, m1, u1) is defined as: 
 

 𝑉(𝑀2 ≥ 𝑀1) = ℎ𝑔𝑡(𝑀1 ∩ 𝑀2) = 𝜇𝑀2
(𝑑) = 𝑓(𝑥) = {

1, 𝑖𝑓 𝑚2 ≥ 𝑚1

0, 𝑖𝑓 𝑙1 ≥ 𝑙2
𝑙1−𝑢2

(𝑚2−𝑢2)−(𝑚1−𝑢1)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

 

where d is the ordinate of the highest intersection point D between μ
M1

 and μ
M2

, and   hgt(M1 ∩

M2) is a separation index for two fuzzy numbers. To compare M1 and M2, both V(M1 ≥ M2) and 

V(M2 ≥ M1) values are needed. The intersection between M1 and M2  is seen in Figure 2. 
 

 

Figure 2: The intersection between 𝐌𝟏and 𝐌𝟐 

Step 3: The degree of possibility for a convex fuzzy number to be greater than 𝑘 convex fuzzy 
numbers, Mi (i = 1,2, . . , k) can be defined as 

 V = (M ≥ M1, M2, … , Mk) = v[(M ≥ M1) ∧ (M ≥ M2) ∧ … .∧ (M ≥ Mk)] = minV(M ≥ Mi)  (9) 

i = (1,2, … , k) 
 
Assume that 

 d′(Ai) = min V(Si ≥ Sk)                    (10) 
 

𝑉 

1 

  

𝜇𝑀෩  

𝑑 

 𝑙2         𝑚2  𝑙1         𝑢2   𝑚1         𝑢1 
𝑀 



152 

for k = 1,2, ⋯ , n; k ≠ i. Then, the weight vector is given by 
 

 W′ = (d′(A1), d′(A2), , , d′(An))T (11) 
 
where Ai (i = 1,2, … , k) are 𝑛 elements.  
 
Step 4: Using normalisation, the normalised weight vectors are 
 

 W′ = ((d(A1), d(A2), , , d(An))T (12) 
 
where W is a non-fuzzy number. 

3.3 Data envelopment analysis (DEA) and super-efficiency model 

Data envelopment analysis (DEA) is a mathematical programming method that measures the relative 
efficiency of decision-making units (DMUs) using multiple inputs and outputs that have different 
measurement units. DEA was first introduced by Farrell [60]. Charnes, Cooper and Rhodes [61] 
developed the CCR-DEA model based on the constant returns to scale (CRS) assumption, and Banker, 
Charnes and Cooper [62] developed the BCC-DEA model based on the variable returns to scale (VRS) 
assumption. In DEA, which is not a parametrical method, those DMUs that are on the efficiency 
frontier are considered to be relatively efficient, and are assigned a ‘1’. The CCR-DEA model is based 
on the CRS assumption, and assumes that all DMUs operate at the optimal scale. The input-oriented 
CCR-DEA model used in this study is formulated by equation (13).  
 

It is considered that a set of 𝑛 DMUs, with each DMU 𝑗, 𝑗 = (1,2, … , 𝑛) generating 𝑠 outputs 𝑦𝑟𝑗(𝑟 =

1,2, . . , 𝑠) by using 𝑚 inputs 𝑥𝑖𝑗 (𝑖 = 1,2, . . , 𝑚) [63]. 

 

 eo = max ∑ μ
r
yror  (13) 

s. t.           ∑ vixio

i

= 1 

∑ μ
r
yrj − ∑ vi

ir

xij ≤ 0 ,    ∀j 

μ
r
, vi  ≥  ε,     all r, i 

 
The dual of the linear programming model in the equation (13) is as follows [64]: 
 

 min θo − ε(∑ sr
+

r + ∑ si
−

i )  (14) 

 s. t.  ∑ λjj xij +  si
− =  θoxio ,      i = 1, … , m 

  ∑ λjyrjj − sr
+ =  yro ,          r = 1, … , s    

 λj, si
−, sr

+  ≥ 0,   ∀i, j, r 

 θo        unconstrainted 
 
The super-efficiency (SE) DEA model used in this paper was proposed by Andersen and Petersen [65], 
and aims at ranking the DMUs that are found to be efficient with a value of ‘1’, using the CCR-DEA, 
BCC-DEA, or other DEA models [66]. In the super-efficiency model, every efficient DMU is removed 
from the efficient production frontier, and the distance of the removed DMUs to the efficiency 
frontier that is redetermined is measured.  
 
These scores are the super-efficiency scores of the efficient DMUs, and have a value greater than 
100 per cent [67]. This allows the ranking of the efficient DMUs among themselves. The values 
assigned to the inefficient DMUs in the standard model remain unchanged. The DEA model is 
equivalent to the dual CCR-DEA model, except for the fact that DMUs are excluded from the 
reference set. The super-efficiency model is presented below [65]: 
 

 min θo 
 𝑠. 𝑡.  ∑ 𝜆𝑗𝑗 𝑥𝑖𝑗 + 𝑠𝑖

− =  𝜃𝑜𝑥𝑖𝑜 ,      𝑖 = 1, … , 𝑚 (15) 

 ∑ 𝜆𝑗𝑦𝑟𝑗𝑗 − 𝑠𝑟
+ =  𝑦𝑟𝑜 ,          𝑟 = 1, … , 𝑠 

 𝜆𝑗 , 𝑠𝑖
−, 𝑠𝑟

+  ≥ 0,   ∀𝑖, 𝑗, 𝑟 
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4 RESULTS 

The case study for the application of this two-stage model was conducted in an engineering company 
in Ankara, Turkey that specialises in renewable energy projects, such as wind power plants, 
geothermal energy, and solar power. In this study, supplier selection through the evaluation of their 
performances was carried out for wind power plant projects. In wind power plant projects, turbine 
suppliers are liable not only for the procurement of turbines, but also their transportation, 
installation, and operation. There are nine main firms that supply wind turbines in Turkish market. 
In the study, these nine suppliers’ performances were evaluated by FANP and DEA. All of this process 
was carried out with the decision committee of the wind power plant department of the company, 
consisting of three individuals.  
 
Step 1: An extensive list of supplier selection criteria was submitted to the decision-making team 
in the wind power plant department to determine the criteria for selecting the best suppliers. The 
team agreed on four main criteria as quantitative and qualitative variables, with their sub-criteria, 
which can be seen in Table 3. 
 
Step 2: At this stage, the FANP model was created by using the factors that were defined in the 
previous steps. The FANP model that was devised to weight the selection criteria of suppliers is seen 
in Figure 3. The model comprised three steps. The purpose was described in the first step, while the 
criteria and sub-criteria were identified in the second and third steps respectively. The curves in 
the second step show the inner-dependence between quality, service, and risk. In this way, the 
model allowed for the analysis of the impact of the factors on each another. 

Table 3: Quantitative and qualitative variables 

Criteria Sub-criteria Definition 

Quantitative variable 

Cost Final price of the turbines, including installation and warranty. 

Qualitative variables 

Quality (C1) Quality standards that the company expects from the supplier.   

 Quality assurance 
(C11) 

Quality issues committed to, followed, and supervised and controlled by the supplier 

Problem-solving 
capability (C12) 

Suppliers’ ability to solve quality problems  
 

Product quality (C13) Turbine production efficiency, material type, and design 

Rejection rate (C14) Percentage of damaged or non-functional components of the turbines 

Service (C2) Quality of the service provided by the supplier during installation and operation  

 On-time delivery (C21) Delivery of the components on due dates 

Technical support 
(C22) 

Technical support provided by the supplier on time and effectively in case of a failure  

Response to changes 
(C23) 

Capability of the supplier to respond to change based on firm’s demand, price 
structure, order frequency, and current business scenario 

Warranties (C24) Length of warranty period and its scope 

Risk (C3) Risk factors that may arise for various reasons throughout the whole process. 
Companies expect suppliers to minimise the risks and maximise the total utility 

 Concept conflict (C31) Possible disagreements with the supplier 

Geographical location 
(C32) 

Location of the wind plant and the possibility of natural calamities affecting the 
supply of the components 

Political stability (C33) Political stability of the supplier’s country and its economic policies 

Financial stability 
(C34) 

Financial status of the supplier based on its history 
 

Foreign exchange rate 
(C35) 

Currency fluctuations during the payment period that may affect the customer 
 

Step 3: The pair-wise comparison matrices (see Table 4) were obtained from the opinion of the 
decision-making committee. The matrices were obtained by using a linguistic scale for importance 
(given in Table 1), as defined by Kahraman et al. [48]. 

http://tureng.com/search/renewable
http://tureng.com/search/individual
http://tureng.com/search/matrices
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Figure 3: FANP model of supplier selection criteria 

Step 4: The local weights of the main criteria and their sub-criteria, which were calculated using 
Chang’s extent analysis method [49,50], are given in Table 4.  

Table 4: Local weights and pair-wise comparison matrices of criteria and sub-criteria 

Local weights and pair-wise comparison matrix of main criteria 

Criteria C1 C2 C3 Weights 

C1  VSMI WMI 0.60 
C2   EI 0.12 
C3    0.27 

 
                Local weights and pair-wise comparison of C1 sub-criteria  

Criteria C11 C12 C13 C14 Weights 

C11 JE SMI  SMI 0.39 
C12  JE  WMI 0.14 
C13 WMI SMI JE SMI 0.45 
C14    JE 0.02 

 
                    
Local weights and pair-wise comparison of C2 sub-criteria 

 

Criteria C21 C22 C23 C24 Weights 

C21 JE SMI SMI WMI 0.45 
C22  JE SMI  0.23 
C23   JE  0.02 
C24  WMI WMI JE 0.30 

 
                             Local weights and pair-wise comparison of C3 sub-criteria   

Criteria C31 C32 C33 C34 C35 Weights 

C31 JE    EI 0.04 
C32 WMI JE WMI   0.16 
C33 SMI  JE  EI 0.17 
C34 SMI VSMI SMI JE SMI 0.42 
C35  WMI   JE 0.21 
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Step 5: In this step, pair-wise comparison matrices were obtained, based on the dependencies 
represented in the second part of Figure 3. The inner dependence matrices and the computed 
relative importance weights of the criteria are given in Table 5. 

Table 5: Inner-dependence matrices and relative importance weights of the criteria 

Inner-dependence matrix of the criteria with respect to ‘Quality’ 

C1 C2 C3 Weights 

C2  EI 0.50 
C3   0.50 

 
Inner-dependence matrix of the criteria with respect to ‘Service’ 

C2 C1 C3 Weights 

C1  WMI 0.68 
C3   0.32 

 
Inner-dependence matrix of the criteria with respect to ‘Risk’ 

C3 C1 C2 Weights 

C1  WMI 0.68 
C2   0.32 

 
Step 6: The interdependent weights were calculated by multiplying the relative importance weights 
of the criteria by the local weights, and then interdependent weights were normalised. The values 
obtained were 0.44 for quality, 0.26 for service, and 0.31 for risk.  
 
Step 7: The global weights of the sub-criteria were obtained by multiplying the weights of the 
criteria by the local weights of the sub-criteria (Table 6).   

Table 6: Global weights of criteria and sub-criteria 

Criteria Weights Sub-criteria Weights 

Quality (C1) 0.44 Quality assurance (c11) 0.17 
  Problem-solving capability (c12) 0.06 
  Product quality (c13) 0.20 
  Rejection rate (c14) 0.01 

Service (C2) 0.26 On-time delivery (c21) 0.11 
  Technical support (c22) 0.06 
  Response to changes (C23) 0.01 
  Warranties (C24) 0.08 

Risk (C3) 0.31 Concept conflict (c31) 0.02 
  Geographical location (c32) 0.05 
  Political stability (c33) 0.05 
  Financial stability (c34) 0.13 
  Foreign exchange rate (c35) 0.06 

 
The results revealed that ‘quality’ was the most important criterion in the selection of wind turbine 
suppliers, followed by ‘risk’. The ‘service’ criterion, on the other hand, had the lowest weight. The 
most important sub-criteria of quality were ‘product quality’ and ‘quality assurance’. ‘Financial 
stability’ was the sub-criterion of risk with the highest weight, and ‘on-time delivery’ was the sub-
criterion of service with the highest weight.  
 
Step 8: Pair-wise comparisons between the suppliers were performed for each sub-criterion, using 
the linguistic scale (Table 1). The criterion weights and CR are presented in Table 7. The consistency 
rates were lower than 0.10, and the comparisons made by the decision-maker were consistent.  
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Table 7: Weights of criteria 

Quality S1 S2 S3 S4 S5 S6 S7 S8 S9 CR 

C11 0.08 0.14 0.14 0.13 0.06 0.13 0.12 0.09 0.12 0.04 
C12 0.07 0.13 0.14 0.14 0.10 0.06 0.18 0.11 0.08 0.04 
C13 0.09 0.14 0.14 0.12 0.17 0.11 0.11 0.07 0.03 0.03 
C14 0.10 0.13 0.15 0.18 0.00 0.07 0.22 0.15 0.00 0.02 

 
Service S1 S2 S3 S4 S5 S6 S7 S8 S9 CR 

C21 0.08 0.03 0.14 0.17 0.10 0.17 0.00 0.20 0.11 0.02 
C22 0.13 0.08 0.06 0.01 0.06 0.21 0.17 0.17 0.10 0.03 
C23 0.03 0.06 0.16 0.00 0.15 0.23 0.11 0.07 0.20 0.02 
C24 0.17 0.13 0.13 0.25 0.07 0.21 0.02 0.00 0.02 0.02 

 
Risk S1 S2 S3 S4 S5 S6 S7 S8 S9 CR 

C31 0.04 0.02 0.10 0.09 0.07 0.18 0.03 0.25 0.21 0.02 
C32 0.18 0.04 0.21 0.08 0.11 0.06 0.00 0.14 0.18 0.02 
C33 0.07 0.05 0.11 0.07 0.00 0.22 0.15 0.15 0.19 0.02 
C34 0.05 0.03 0.12 0.05 0.01 0.23 0.15 0.15 0.19 0.02 
C35 0.15 0.08 0.14 0.09 0.13 0.09 0.05 0.13 0.15 0.03 

CRij<0.10           

S: Supplier 
 
Step 9: The final weights were calculated by multiplying the suppliers’ criterion weights by the 
normalised values of the global weights of the sub-criteria. The final weights are presented in Table 
8. In this way, the qualitative data to be used as output in DEA were converted into quantitative 
data. 

Table 8: Final weights of criteria for suppliers 

Suppliers 
Final weights 

Quality Service Risk 

S1 0.09 0.12 0.09 
S2 0.14 0.07 0.05 
S3 0.14 0.12 0.13 
S4 0.12 0.15 0.07 
S5 0.12 0.08 0.05 
S6 0.11 0.19 0.17 
S7 0.12 0.05 0.10 
S8 0.09 0.13 0.15 
S9 0.07 0.08 0.18 

 
Step 10: The quality, risk, and service factors obtained in FANP were used as outputs, and cost was 
used as input in DEA analysis. The risk factor was subtracted from "1" and converted into the 
risklessness variable. The data of the DEA model are presented in Table 9.  

Table 9: Input and outputs of DEA model 

Suppliers 
Input Outputs 

Cost (€) Quality Service 1-Risk 

S1 3.100.000 0.09 0.12 0.91 

S2 2.800.000 0.14 0.07 0.95 

S3 3.250.000 0.14 0.12 0.87 

S4 2.750.000 0.12 0.15 0.93 

S5 2.500.000 0.12 0.08 0.95 

S6 3.000.000 0.11 0.19 0.83 

S7 2.500.000 0.12 0.05 0.90 

S8 2.250.000 0.09 0.13 0.85 

S9 2.850.000 0.07 0.08 0.82 

 
In the study, the performances of the suppliers were assessed with the input-oriented CCR-DEA 
analysis. The EMS Version 1.3 computer program developed by Holger Scheel was used to solve the 
model and calculate the super-efficiency scores. 
 
Table 10 shows the super-efficiency scores obtained from DEA. In this study nine suppliers were 
assessed; S2, S4, S5, S6, and S8 were the efficient suppliers. These suppliers were chosen by the 
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company because they produced the maximum amount of output at the lowest cost. It was possible 
to rank the efficient suppliers using the super-efficiency scores. S8 had the highest performance with 
110.38 per cent, followed by S6 with 109.62 per cent and S4 with 104.55 per cent. Suppliers that had 
an efficiency score greater than ‘1’ could continue to be efficient if they increased their inputs. 
Therefore, even if S8 increased the cost by 10.385 per cent, it would still be an efficient supplier.  
 
The other suppliers did not operate efficiently. The least-efficient supplier, S9, had an efficiency 
score of 75.80 per cent. This meant that this supplier could obtain the same output even if its cost 
were reduced by 24.2 per cent.   

Table 10: Super-efficiency scores of suppliers 

Supplier Super-efficiency Score 

S8 110.38% 
S6 109.62% 
S4 104.55% 
S5 104.50% 
S2 104.17% 
S7 98.53% 
S3 92.14% 
S1 77.56% 
S9 75.80% 

5 CONCLUSION 

In today’s fiercely competitive markets, companies can achieve a substantial competitive advantage 
if they work with reliable and high-performing suppliers that offer high-quality products and 
services. A decision-maker should establish a performance evaluation system for the selection of 
efficient suppliers, and should determine the most effective strategy in choosing suppliers through 
the proposed model, which allows for the integration of objective values and the uncertainty of 
human judgements. This study has proposed a model that engineering managers can use to select 
suppliers efficiently using qualitative and quantitative criteria simultaneously. Additionally, the 
study offers engineering managers an opportunity to improve the performance of supply chain in 
respect of supplier selection by interpreting the results of the model.  
 
In this study, a two-stage integrated FANP-super-efficiency DEA was proposed for the effective 
selection of suppliers. Qualitative and quantitative factors were assessed in an integrated way in 
this method, which was used to select the most appropriate supplier for a wind turbine project of a 
company that operates in the renewable energy sector. First, the decision-makers of the company 
identified the main criteria and sub-criteria for the selection of suppliers for its wind turbine project. 
At the first stage of the model, the non-linear network structure of the qualitative criteria was 
created in combination with the sub-criteria, and their weights were calculated through FANP. Due 
to this network structure, the interactions and feedbacks both between and within the criteria were 
represented to the model. The uncertainties associated with these qualitative factors, which were 
derived solely from human judgement, were modelled with fuzzy logic; in this way they were 
weighted more accurately. By modelling the uncertainty, risk, and variability with the help of FANP 
in the proposed model, it is possible effectively to convert qualitative factors to quantitative factors. 
A manager can combine these acquired factors by the quantitative values to choose the best 
supplier. Thus it is possible to establish an efficient performance system that includes a set of 
variables instead of only the cost factor. 
 
At the second stage of the model, the efficient and inefficient suppliers were identified through DEA 
analysis. Service, quality, and absence of risk — the qualitative supplier selection criteria that were 
transformed into quantitative data using FANP — constituted the outputs of DEA. Cost was taken as 
the input of DEA as a quantitative datum. In this study, in which nine suppliers were assessed, S2, 
S4, S5, S6, and S8 were found to be efficient. These suppliers were chosen by the company because 
they produced the maximum amount of output at the lowest cost. The performances of these 
suppliers were ranked using their super-efficiency scores. S8 had the highest performance with 
110.38 per cent, followed by S6 with 109.62 per cent and S4 with 104.55 per cent.  
 
It is thought that decision-makers who implement this two-stage integrated model in the supplier 
selection process will choose more efficient suppliers, and the model will allow suppliers to enhance 
their performances. Engineering managers who are aware of the importance of managing the supply 
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chain effectively should evaluate the performance of their current suppliers, and incorporate the 
most appropriate ones into their processes. Thus this study presents decision-makers with a road 
map. 
 
The paper provides valuable insights for decision-makers in that the performance of a supply chain 
depends on the selection of the most appropriate supplier for the company. This study, which 
includes decision-making, performance management, and supply chain management issues within 
the scope of engineering management, introduces a new approach both in terms of the sector 
referred to and the methodology, and enables companies to select the best suppliers by assessing 
both qualitative and quantitative factors. It presents a significant contribution to the literature for 
managers to implement the proposed model effectively.  
 
The model is applied to a wind turbine project of a company operating in the renewable energy 
sector. It would be useful also to examine different companies in order to make a generalisation 
about the sector. It is suggested that supplier selection efforts should be undertaken at project-
oriented companies in future studies. Moreover, new models and practices that integrate qualitative 
and quantitative data in supplier selection in all sectors will also have great importance. In addition, 
this study can be extended by including other sectors as well. To the best of our knowledge, this is 
the first study that applies the integrated FANP-super-efficiency DEA model to the supplier selection 
problem. 
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