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ABSTRACT 

The implementation of reconfigurable fixtures is a major facilitator 
of mass customisation. Traditional scheduling techniques do not 
consider reconfigurable fixtures comprehensively. This paper 
describes a multi-stage optimisation method that manages the 
recirculation of reconfigurable fixtures in a mass customisation 
production system. The method was based on an on-demand fixture 
manufacturing cell that served a part processing cell. The method 
consists of three stages: using established techniques such as k-
means clustering and hierarchical clustering; and a novel mixed 
integer linear programming (MILP) model to optimise operation 
sequences. Minimisation of total idle time (and thus makespan) was 
used as the measure of performance. 

OPSOMMING 

Die implementering van herkonfigureerbare hegstukke is ’n 
belangrike fasiliteerder van massaproduksie aanpassing. 
Tradisionele skeduleringstegnieke oorweeg nie herkonfigureerbare 
hegstukke omvattend nie. Hierdie artikel beskryf ’n multi-fase 
optimiseringsmetode wat hersirkulering van herkonfigureerbare 
hegstukke in ’n massa aanpassing produksie stelsel bestuur. Die 
metode is gegrond op ’n op-bestelling vervaardigingsel wat gedien 
het as ‘n komponentprosesseringsel . Die metode bestaan uit drie 
fases: die gebruik maak van gevestigde tegnieke soos k-gemiddeld 
groepering en hiërargiese groepering; en ’n nuwe gemengde 
heelgetal lineêre programmering model om operasionele volgordes  
te optimiseer. Minimering van die totale niksdoentyd (en dus totale 
maaktyd) is gebruik as die maatstaf van vertoning. 

 

1 INTRODUCTION  

The Industry 4.0 manufacturing paradigm has generated an increased research interest in mass 
customisation [1]. These production systems are expected to be facilitated by reconfigurable 
fixtures that can provide flexibility and responsiveness for customer-driven variations in product 
demand and type [2]. Thus these fixtures have to be treated as components of the manufacturing 
system that influence production performance. The use and recirculation of reconfigurable fixtures 
was not adequately considered by traditional scheduling techniques. 
 
This research presents a multi-stage optimisation method that simultaneously schedules fixture 
reconfiguration and part processing operations. An on-demand fixture manufacturing cell and a part 
processing cell were developed to demonstrate the application of the method. The results showed 
that reconfigurable fixtures can be recirculated in a production system with improvements in fixture 
utilisation and the minimisation of total idle time for a just-in-time workflow policy. 
 
The paper is structured as follows: Section 2 presents a review of the relevant literature; Section 3 
describes the fixture and production system on which the method was applied; Section 4 presents 
the assumptions and notation of the method before the respective stages of the method are 
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described; Section 5 presents the testing results of the method conducted on a sample problem; and 
the paper concludes with Section 6, with reference to future work. 

2 LITERATURE REVIEW 

2.1 Reconfigurable fixtures 

Mass customisation requires that fixtures be capable of rapidly and economically adapting to 
customer product demands [2]. Reconfigurable fixtures have emerged as a solution to dealing with 
a variety of geometries for different parts undergoing the same manufacturing process [3]. These 
include modular, adaptive, phase-change-based, sensor-based, and chuck-based designs [4]. 
Modular fixture designs are popular in industry. They can adapt to customised parts when modules 
are attached to a fixture base in an appropriate configuration for the customised part. An example 
of such a fixture is the Blüco-Technik® dowel fixture, on which the fixture concept in this study was 
based [5]. 

2.2 Group technology paradigm 

Group technology (GT) involves grouping similar parts into part families. This concept is exemplified 
in cellular manufacturing systems (CMS), where part families are processed in specialised cells [6]. 
Mass customisation aims to maximise the advantages of both high-volume and low-volume 
production, while minimising their respective disadvantages [7]. GT is a concept that partially 
achieves this by having separate cells (or groups of manufacturing resources) for variability, but 
containing similar parts (by characteristics such as size or type) in each cell to improve efficiency. 
CMS also provides a suitable platform on which modular fixtures can be used. The fixture base and 
its modules can be customised within the confines of the cell’s domain, producing fixtures of greater 
effectiveness for the given task [6]. 

2.3 Scheduling studies 

An investigation of scheduling techniques was conducted. Evolutionary algorithms have emerged as 
the state-of-the-art in scheduling studies, which comprise several job shop scheduling problems 
(JSSP) with modifications [8]. These include varied uses of genetic algorithms [9], ant colony 
optimisation [10], and particle swarm optimisation [11]. Meta-heuristics have proven to be suitable 
for multi-objective problems with minimal constraints [12]. 
 
The CMS paradigm state-of–the-art was reviewed. Raminfar, Zulkifli, Vasili and Hong [13] developed 
a dynamic deterministic integrated mathematical model to solve production planning and cell 
formation in CMS simultaneously. Sakhaii, Tavakkoli-Moghaddam, Bagheri and Vatani [14] developed 
an integrated MILP model to solve a dynamic CMS, with uncertainty for part processing times and 
simultaneous minimisation of multiple cost functions. Liu, Wang, Leung and Li [15] solved a cell 
formation and task scheduling problem in CMS with a discrete bacteria foraging optimisation 
algorithm. 
 
Studies considering fixtures were investigated. Thörnblad, Strömberg, Patriksson and Almgren [16] 
used a time-indexed formulation for a flexible JSSP, where the availability of each type of fixture 
was limited. Wong, Chan and Chan [17] solved a resource constrained assembly JSSP with lot 
streaming using a genetic algorithm, where fixtures were recyclable and limited. Yu, Doh, Kim, Lee 
and Nam [18] conducted a study on a reconfigurable manufacturing system using priority rules, 
where an idle time penalty was enforced for unavailable recyclable fixtures. 
 
In 2008, Bi et al. [3] mentioned that using modular fixture components efficiently in production 
planning was yet to be addressed. The literature review revealed that fixture management in 
scheduling studies was limited to standard fixtures only, with only the availability of these fixtures 
considered. The research undertaken here aimed to address this discrepancy by providing an exact 
solution approach to the problem with which future developments can be compared. 
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3 PROBLEM DESCRIPTION 

3.1 The fixture design 

The reconfigurable fixture employed in this study was of the modular type. It consisted of a modular 
base on which pin configurations were constructed, as shown in Figure 1. This was done by inserting 
the dowel pins (modules) into the base array in an arrangement that was appropriate for securing 
the part. The part considered was a two-dimensional plaque of customisable shape with a 
customisable design engraved on it. Figure 1 displays the pin configuration for a square-shaped part. 
 

 

Figure 1: Modular fixture design considered 

The specifications of the fixture and its configurations for this study are as follows: 
 

 Array pattern: 8x8 holes (64 holes total) per fixture; 

 Pin range: 8-16 pins per configuration. 
 
The array pattern and pin range were constrained to these parameters for the purpose of the 
research demonstration. The parameters can be scaled up or down while retaining the same 
scheduling techniques presented in the paper. 

3.2 The production system 

The method presented in this paper was demonstrated on a production system consisting of two 
cells, as shown in Figure 2. 
 
Figure 2 describes the workflow through the production system. The layout represented a microcosm 
of a mass customisation production system. The group technology paradigm was employed so that 
fixtures and parts were served by two dedicated cells. Cell 1 was responsible for fixture 
reconfigurations, and parts were processed in Cell 2. The finished part was then dispatched, while 
the fixture was recirculated through the system. 
 

 

Figure 2: Production system considered 

It can be observed from Figure 2 that the production system relies on a synchronous workflow from 
Cell 1 to Cell 2. Cell 1 has to be reconfiguring a fixture for the next part while the current part is 
being processed on the previously reconfigured fixture in Cell 2.  Bottlenecking results when one 
cell is busy while the other cell has already completed its operation. Buffering the fixtures before 
Cell 2 would prevent this problem, but doing so would create a high fixture inventory with minimal 



 

55 

fixture utilisation. A just-in-time workflow policy was evident in the system, where fixtures were 
moved directly from Cell 1 to Cell 2 without intermediate buffering. This promoted the lean 
manufacturing principles that modern manufacturing systems strive to implement [19]. 

3.3 Optimisation requirements 

The production system, and the fixtures implemented in it, exhibited complications that had to be 
solved to ensure optimal management of such a system in practice. These were as follows:  
 

 Optimally assigning parts to fixtures; 

 Optimally sequencing these parts on their respective fixtures; 

 Optimally scheduling the operations in Cell 1 and Cell 2 so that bottlenecking was minimised. 

4 THE SCHEDULING METHOD 

The optimisation method developed in this research consisted of three stages:  
 
1. Clustering stage: Groups similar parts (based on pin configurations) and assigns them to the 

same fixture (producing fixture-part mappings). Each part group is assigned to one fixture, 
where the number of groups depends on the number of fixtures available.  Having similar parts 
assigned to the same fixture minimises the extent of reconfiguration required on a single 
fixture, as parts vary.  

2. Intracluster sequencing stage: Sequences parts in the same group (i.e., defines the 
manufacturing order within the group) so that the dissimilarity between successive parts is 
minimised. This further reduces the extent of reconfiguration required on a single fixture.  

3. Final sequencing stage: Schedules pairs of fixture-part mappings in Cell 1 and Cell 2 with the 
objective of synchronising fixture reconfiguration and part processing times. This reduces idle 
time in both cells, thus improving total makespan. 

4.1 Assumptions 

The assumptions adopted for the development of the method were as follows:  
 

 Fixture reconfiguration times (ρîĵ) and part processing times (τij) are predetermined. 

 There are fewer fixtures than parts: |Q|<|P|. 

 The required number of fixtures are already manufactured and stored; only reconfigurations 
are required. 

 Fixture reconfiguration operations and part processing operations occur without interruption. 

 A job does not exit Cell 1 until Cell 2 is available, and Cell 1 does not start a new job until the 
previous job has exited the cell — i.e., just-in-time unit workflow policy. 

 The fixture reconfigured in Cell 1 in time period k is used to process the part assigned to it in 

Cell 2 in the next time period ǩ=k+1. 

4.2 Method notation 

The method notation is as follows [20]: 
 

p; pϵP, P= {1,…,n} P is the set of parts to be processed; p is an index of the ordered set P. 
 

q; qϵQ, Q = {1,…,m} Q is the set of fixtures available; q is an index of the ordered set Q. 
 

i; iϵI, I={1,…,m} I is the set of i, where I is a set of subsets that holds all p-q mappings 
between sets P and Q; i denotes a subset, and is also an index of the 
ordered set I. 
 

î; îϵI, I={1,…,m} î is an alternate index of the ordered set I. 
 

j; jϵi, i={1,…,|i|} i is the subset of I corresponding specifically to p-q mappings on fixture 
q; j is an index of the unordered subset i; j denotes a part p that is 
mapped to the fixture q. 
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ĵ; ĵ ϵi, i={1,…,|i|} ĵ is an alternate index of the unordered subset i. 
 

k; kϵK, K={1,…,n+1} K is the set of time periods in which parts or fixtures are processed or 
reconfigured, respectively; k is an index of the ordered set K. 
 

ǩ; ǩϵK, K={1,…,n+1} ǩ is an alternate index of the ordered set K. 
 

ρîĵ Fixture reconfiguration time; time for fixture î to be reconfigured to 
pin configuration corresponding to ĵ∈î from pin configuration 
corresponding to (ĵ-1)∈î (implicitly) — i.e., subsequent reconfiguration 
for fixture î; ρîĵ is a parameter. 
 

τij Part processing time; time for part p corresponding to fixture-part 
mapping j∈i to be processed; τij is a parameter. 
 

Xijk A binary decision variable; Xijk = 1 if fixture i is reconfigured for the 
fixture-part mapping j∈i in time period k; otherwise Xijk = 0. 
 

Yiîjĵkǩ A slack variable; Yiîjĵkǩ = 1 if fixture-part mapping j∈i that was 

reconfigured in time period k is processed in time period ǩ=k+1 while 
fixture-part mapping ĵ∈î is synchronously being reconfigured in time 

period ǩ; otherwise Yiîjĵkǩ = 0. 
 

Ziîjĵkǩ A slack variable; Ziîjĵkǩ is equal to the absolute time difference between 
part processing time τij for fixture-part mapping j∈i reconfigured in 
time period k, and fixture reconfiguration time ρîĵ for fixture-part 

mapping ĵ∈î that is being reconfigured in time period ǩ=k+1 — i.e., the 
idle time for every time period where two operations are synchronous. 

4.3 Clustering stage (Stage 1) 

The clustering stage used a binary dissimilarity measure to quantify the comparisons between pin 
configurations. The fixture base array was represented as an 8x8 binary matrix, corresponding to 
the fixture specifications listed in Section 3.1. The binary dissimilarity measure compared the matrix 
of one pin configuration with another on an element-wise basis. A ‘1’ represented the presence of 
a pin module in that hole, and a ‘0’ represented its absence. The binary dissimilarity measure used 
is shown in Equation 1: 

Equation 1 

𝐷 = 1 −
𝑎 + 𝑑

𝑎 + 𝑏2 + 𝑐2 + 𝑑
 

where: 
a = number of positive matches (1 to 1) 
b = number of positive-to-negative mismatches (1 to 0) 
c = number of negative-to-positive mismatches (0 to 1) 
d = number of negative matches (0 to 0) 
 
Lloyd’s algorithm was used for k-means clustering [21]. It minimised the distances (dissimilarities) 
of data points in a cluster from the cluster centroid. The measure was a modification of the Sokal 
and Michener binary similarity measure [22], but with exponential weightings used on the 
mismatches (b and c). Subtracting the value from 1 converted what would otherwise be a similarity 
measure into a dissimilarity measure. The exponents on b and c imposed a harsh penalty on any pin 
that had to be removed and/or replaced, which is how fixture reconfiguration times are inflated. 
 
Dissimilarity values were calculated by comparing each pin configuration with every other one in 
the job list. These dissimilarity values were amalgamated into a non-metric distance matrix, since 
the dissimilarity values were non-Euclidean. This was undesirable, because Lloyd’s algorithm relies 
on grouping data points that are close to each other in real space [21]. Thus non-metric multi-
dimensional scaling (MDS) was used to scale the data into two dimensions. This was done by 
minimising Kruskal’s normalised stress criterion for the ‘Stress’ equation, shown in Equation 2 [23]: 
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Equation 2 

𝑆𝑡𝑟𝑒𝑠𝑠 = √
∑ (𝑑𝑖𝑗 − 𝑑̃𝑖𝑗)

2
𝑖,𝑗

∑ 𝑑𝑖𝑗
2

𝑖,𝑗

 

where: 

𝑑𝑖𝑗 = raw dissimilarity values for each pair of objects 

𝑑̃𝑖𝑗 = scaled distances in the required number of dimensions for each pair of objects 

 
The results of the MDS procedure yielded a two-dimensional map of n data points, representative of 
the non-metric distance matrix. Lloyd’s algorithm was used on this map to group the data points 
into m number of clusters, based on their closeness. This procedure produced the final result, 
indicating which parts were to be assigned to which fixture. 

4.4 Intracluster sequencing stage (Stage 2) 

The intracluster sequencing stage used agglomerative hierarchical clustering with single linkage, 
together with optimal leaf ordering, to sequence the part groups on their respective fixtures. 
 
Within the paradigm of hierarchical clustering, the objects are referred to as ‘leaves’, sub-clusters 
as ‘subtrees’, and the final dendrogram as the ‘tree’ [24]. The single linkage option is for the 
shortest distance (or lowest dissimilarity in this case), so that subtrees were clustered to leaves or 
other subtrees based on the nearest individual leaves within the subtree/s [25]. This ensured that 
the tree was constructed on a basis of closest individual leaves, as opposed to closest subtrees. 
 
The default order produced from the agglomerative hierarchical clustering algorithm does not 
necessarily represent the optimal order. For n number of leaves, there are 2n-1 possible linear 
orderings of the tree leaves that are consistent with the structure of the tree [24]. The optimal leaf 
order was then obtained by using the algorithm designed by Bar-Joseph, Gifford and Jaakkola [24]. 
The algorithm minimised the cumulative pairwise dissimilarity of the linear ordering. This resulted 
in a leaf order that was representative of the sequence in which pin configurations were to be 
reconfigured on the fixture assigned to the corresponding group of parts. This minimised the 
reconfiguration effort by minimising the number of pin removals/insertions per circulation of the 
fixture through the manufacturing system. 

4.5 Final sequencing stage (Stage 3) 

The final sequencing stage was a MILP model, solved by a branch and bound algorithm, which 
minimised the total idle time in the system. The model is as follows [20]: 

Min ∑ ∑ ∑ ∑ ∑ 𝑍𝑖î𝑗ĵ𝑘ǩ

𝑛−1

𝑘

|î|

ĵ

|𝑖|

𝑗

𝑚

î≠𝑖

𝑚

𝑖

 (∀ǩ = 𝑘 + 1) 
Objective 
function 

𝑍𝑖î𝑗ĵ𝑘ǩ = |(𝜏𝑖𝑗 − 𝜌îĵ) ∗ 𝑌𝑖î𝑗ĵ𝑘ǩ| (∀ǩ = 𝑘 + 1) (1) 

−𝑍𝑖î𝑗ĵ𝑘ǩ + (𝜏𝑖𝑗 − 𝜌îĵ) ∗ 𝑌𝑖î𝑗ĵ𝑘ǩ ≤ 0  (1a) 

−𝑍𝑖î𝑗ĵ𝑘ǩ − (𝜏𝑖𝑗 − 𝜌îĵ) ∗ 𝑌𝑖î𝑗ĵ𝑘ǩ ≤ 0  (1b) 

𝑌𝑖î𝑗ĵ𝑘ǩ = 𝑋𝑖𝑗𝑘 ∗ 𝑋îĵǩ (
∀𝑖, ∀î ≠ 𝑖, ∀𝑗 ∈ 𝑖, ∀ĵ ∈ î, ∀𝑘 < 𝑛,

∀ǩ = 𝑘 + 1
) (2) 

−𝑌𝑖î𝑗ĵ𝑘ǩ + 𝑋𝑖𝑗𝑘 + 𝑋îĵǩ ≤ 1  (2a) 

𝑌𝑖î𝑗ĵ𝑘ǩ − 𝑋𝑖𝑗𝑘 ≤ 0  (2b) 

𝑌𝑖î𝑗ĵ𝑘ǩ − 𝑋îĵǩ ≤ 0  (2c) 
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∑ ∑ ∑ ∑ ∑ 𝑌𝑖î𝑗ĵ𝑘ǩ

𝑛

𝑘

|î|

ĵ

|𝑖|

𝑗

𝑚

î≠𝑖

𝑚

𝑖

= 𝑛 − 1 (∀ǩ = 𝑘 + 1) (3) 

𝑋𝑖𝑗𝑘 + 𝑋𝑖ĵǩ ≤ 1 (∀𝑖, ∀𝑗 ∈ 𝑖 , ∀ĵ ∈ 𝑖 < 𝑗 ∈ 𝑖, ∀𝑘, ∀ǩ > 𝑘) (4) 

∑ ∑ 𝑋𝑖𝑗𝑘 = 1

|𝑖|

𝑗

𝑚

𝑖

 (∀𝑘) (5) 

∑ 𝑋𝑖𝑗𝑘 = 1

𝑛

𝑘

 (∀𝑖, 𝑗 ∈ 𝑖) (6) 

𝑋𝑖𝑗𝑘 ∈ {0,1} (∀𝑖, ∀𝑗 ∈ 𝑖, ∀𝑘 < 𝑛) (7) 

𝑌𝑖î𝑗ĵ𝑘ǩ ≥ 0 (
∀𝑖, ∀î ≠ 𝑖, ∀𝑗 ∈ 𝑖, ∀ĵ ∈ î, ∀𝑘 < 𝑛,

∀ǩ = 𝑘 + 1
) (8) 

𝑍𝑖î𝑗ĵ𝑘ǩ ≥ 0 (
∀𝑖, ∀î ≠ 𝑖, ∀𝑗 ∈ 𝑖, ∀ĵ ∈ î, ∀𝑘 < 𝑛,

∀ǩ = 𝑘 + 1
) (9) 

The objective function synchronises part processing and fixture reconfiguration operations by 
minimising total idle time. Idle time is reduced by minimising the summation of absolute time 
differences between the part processing time and the fixture reconfiguration time of sequential 
jobs. Mathematically, this is the time difference between the part processing of fixture-part 
mapping j∈i, reconfigured in time period k, and the fixture reconfiguration of fixture-part mapping 

ĵ∈î in time period ǩ=k+1. 
 
Constraint (1) calculates the idle time for each time period. This constraint is non-linear due to the 
absolute value of the time difference that is calculated. Constraints (1a) and (1b) are used instead 
of (1) to linearise this constraint. 
 
Constraint (2) allows idle time to be calculated for successive reconfiguration operations (i.e., when 

Xijk and Xîĵǩ equal 1). Constraints (2a) to (2c) are used instead of (2) to linearise this constraint. 
 
Constraint (3) ensures that the number of sequential reconfiguration operations corresponds with 
the number of sequential time periods. 
 
Constraint (4) imposes the intracluster manufacturing order, previously established in Stage 2, for 
each fixture i. 
 
Constraint (5) ensures that there is only one reconfiguration operation, corresponding with fixture-
part mapping j∈i, assigned to each time period k.  
 
Constraint (6) ensures that each reconfiguration operation, corresponding with fixture-part mapping 
j∈i, is assigned to a time period k only once. 
 
Constraint (7) is a bound enforcing a binary condition on the decision variable Xijk. 
 

Constraints (8) and (9) are bounds enforcing non-negativity for slack variables Yiîjĵkǩ and Ziîjĵkǩ 
respectively. 

5 RESULTS 

Testing revealed that the model presented in Stage 3 was computationally expensive, and that 
solution times increased significantly with an increase in problem size. This was the consequence of 
the exact solution approach deemed necessary for the problem. A sample problem of reasonable 
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size was created, with 12 predetermined part shapes. Figure 3 shows the pin configurations that 
would be required to secure the variety of part shapes. 
 
The first eight configurations are for: 1) a large square; 2) a medium square; 3) a large equilateral 
triangle; 4) a medium equilateral triangle; 5) a large circle; 6) a medium circle; 7) a rectangle; and 
8) an oval. The last four configurations are for arbitrarily shaped parts. 
 
The fixture reconfiguration times (ρîĵ) and part processing times (τij) for the parts that correspond 
to these pin configurations were each randomised within a range of 30-90 seconds to demonstrate 
the ability of the model to cope with data exhibiting a high variance. These parameters are 
summarised in Table 1. The number of fixtures available was increased from two to four for 
subsequent tests. 
 

 

Figure 3: List of predetermined pin configurations 

Table 1: Operation times used 

Part number 1 2 3 4 5 6 7 8 9 10 11 12 

Fixture reconfiguration time 
(ρîĵ) in seconds 

73 55 55 51 38 54 71 30 48 35 41 62 

Part processing time (τij) in 
seconds 

83 49 42 42 55 78 72 31 70 64 38 89 

 
The tests were conducted using the functionalities of MATLAB® 2016a. These tests were executed 
on an Intel® Xeon® CPU E3-1270 v3 at 3.50GHz with 16 GB RAM on a 64-bit operating system. 

5.1 Multi-dimensional scaling 

The twelve-dimensional non-metric distance matrix for the sample problem was scaled to two 
dimensions. This was done with the non-metric MDS algorithm in MATLAB® 2016a [23], iterated 100 
times. The map produced is shown on the left of Figure 4 in Section 5.2. Part numbers are shown 
next to their respective data points. 
 
The goodness of scaling can be represented by the value of the final minimised stress from Equation 
2. Sturrock and Rocha [23] produced an evaluation table that provides threshold values to gauge the 
usability of scaled data. The threshold value quoted for scaling from twelve dimensions to two 
dimensions was 0.183. The stress value from this test was 0.158. This was below the threshold, 
which implied that there was a >99 per cent chance that the results adequately represented the 
original data. This is summarised in Table 2. The results confirmed that the similarity of parts could 
be correlated to the closeness of the data points displayed in Figure 4, rendering it feasible for k-
means clustering. 
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Table 2: Stress value for scaling results 

1% left-hand-tail cut-off value Tested stress value 

0.183 0.158 

5.2 K-means clustering 

The k-means clustering algorithm in MATLAB® 2016a [21] was used to cluster the data points to m 
number of clusters. The algorithm was run for 100 iterations. The k-means++ algorithm [26] was 
used for initialisation. The clustering results for m=4 fixtures are shown on the right of Figure 4 
below. The corresponding silhouette plot is shown in Figure 5. 
 

 

Figure 4: Multidimensional scaling output (left), clustered to four fixtures (right) 

 

Figure 5: Silhouette plot for clustering to four fixtures 

Silhouette values measure the goodness of the clusters formed. Silhouette values closer to 1 signify 
a definite, unambiguous cluster [25]. The results showed that good clusters were formed, implying 
minimal reconfiguration effort on fixtures as successive parts within a group are processed. Figure 
5 displays lower silhouette values for the second cluster due to grouping of parts that were less 
similar to each other. This was the best of the clusters available for those parts, but slightly greater 
effort would be required between reconfigurations. 

5.3 Intracluster order 

The k-means clustering results were used, together with the non-metric distance matrix, to yield 
the intracluster manufacturing order for each cluster. The default order was created from the 
agglomerative hierarchical clustering algorithm with single linkage in MATLAB® 2016a [25]. The 
resultant sequence was then optimally reordered to produce the final intracluster order for 
implementation. The results for m=4 fixtures are summarised in Table 3. 
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Optimal re-ordering was useful for every case except Fixture 4 in Table 3, where there was no scope 
for improvement. It should be noted that the optimal order is true for both the forward and the 
reverse directions, as the cumulative pairwise dissimilarity traversed in either case is the same. 
Improvements ranged from 3.1203 per cent (for the two-fixture problem) to 14.202 per cent. 

Table 3: Optimal re-ordering for four-fixture problem 

Default order Optimal order Improvement (%) 

Fixture 1 

7-8-2 2-7-8 12.925 

Fixture 2 

4-6-12-11 11-4-6-12 5.2295 

Fixture 3 

5-9-10 9-5-10 14.202 

Fixture 4 

1-3 1-3 0 

 

5.4 MILP model 

The results from k-means clustering and optimal leaf ordering were used as the input for the MILP 
model. The solver used the branch and bound algorithm to solve for the exact solution. The 
performance is summarised in Table 4. The graph of convergence for m=4 fixtures is shown in Figure 
6. 

Table 4: MILP results 

Number of 
fixtures 

Number of 
parts 

Number of 
variables 

Convergence Nodes 
explored 

Solution time 
(s) 

2 12 1728 Yes 2744 49.7223 

3 12 2124 Yes 14258 250.482 

4 12 2476 Yes 60012 711.885 

 

 

Figure 6: Convergence for four-fixture problem 

The solution time increased logistically for an increasing number of fixtures with a constant number 
of parts. This correlated with the logistically increasing number of nodes that were explored to 
reach convergence in each test. It was expected that the solution method would be computationally 
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expensive, due to the NP-hardness of the problem and the algorithm used [27]. The parameters used 
to configure the MATLAB® 2016a MILP solver are summarised in Table 5. 

Table 5: MILP options selected 

Option name Option selected 

Branch rule Most fractional 

Cut generation None 

Heuristic RSS hybrid 

Integer pre-process None 

Node selection Minimum objective function 

Root LP algorithm Primal-simplex 

6 CONCLUSION 

This paper presented a multi-stage optimisation method for scheduling an on-demand fixture 
manufacturing cell in tandem with a part processing cell. This represented a microcosm of a mass 
customisation production system. 
 
The optimisation method comprised three stages. The first stage optimally assigned parts to fixtures. 
The second stage optimally sequenced those parts on their respective host fixtures. The third stage 
was a MILP model that optimally scheduled tasks in the aforementioned cells to minimise total idle 
time, and thus makespan. 
 
Scaling of the non-metric distance matrix to two dimensions produced a stress value that ensured 
the adequate accuracy of the two-dimensional map. The silhouette values revealed that the clusters 
formed in each case were suitable. The optimal re-ordering of the default single linkage dendrogram 
order successfully improved the intracluster sequence. The MILP model proved to converge for the 
data set tested, thus minimising total idle time. The branch and bound algorithm ensured that the 
increase in solution time occurred logarithmically for an increasing number of fixtures. Optional 
parameters were adjusted to improve this issue. 
 
It can be concluded that the optimisation method presented in this research addresses the 
scheduling of reconfigurable fixtures in circulation with part manufacturing operations at a level not 
previously undertaken. This would make it useful for mass customisation production systems, where 
the use of reconfigurable fixtures cannot be scheduled using current approaches. Operating costs 
can be reduced, and tardiness penalties can be avoided. However, fully optimal scheduling can only 
be achieved for small problems, as the algorithm execution time does not scale polynomially. 
 
The method could be readily edited to include batch workflow instead of unit workflow. More 
complicated fixture designs can also be implemented with the MILP model, as only the operation 
times are required. This would only require a new dissimilarity measure to be formulated and 
implemented. The MILP model could also be applied in other cellular manufacturing systems that 
use a just-in-time workflow policy, as the fundamental principle is to minimise total idle time 
between two cells with synchronous workflow. 
 
The optimisation method is limited by the assumptions presented in Section 4.1, and by the technical 
limitations of the exact solution technique used. The optimality of the final solution is affected by 
the hypothesis that similar part shapes should be assigned to the same fixture, where the only 
variable considered is pin removals/insertions. The method does not account for the effect of 
modules that specialise in clamping parts in three dimensions. The clusters were formed from a 
scaled data set, which affects the accuracy of the data even when within stress specifications. 
Although good (near-optimal) solutions were found here, there is still scope for improvement. The 
MILP model is also limited by its inability to handle dynamic schedules, as the inputs to the model 
must be predetermined and static. Dynamic scheduling must be taken into account for the method 
to be fully applicable in an industrial environment. 
 
Future work in this research area includes: 
 

 A heuristic to deal with larger-sized problems faster, producing good but sub-optimal solutions; 

 A more complex fixture design with a dissimilarity measure to quantify comparisons; 
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 The influence of manufacturing new fixtures and maintaining an optimal fixture inventory; 

 Exploration of the vehicle routing problem (VRP) as a potential approach to solving both Stage 1 
and Stage 2 in a single step. 
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