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ABSTRACT 

Computational intelligence paradigms can be used for advanced 
manufacturing system optimisation. A static simulation model of an 
advanced manufacturing system was developed in order to simulate 
a manufacturing system. The purpose of this advanced 
manufacturing system was to mass-produce a customisable product 
range at a competitive cost. The aim of this study was to determine 
whether this new algorithm could produce a better performance 
than traditional optimisation methods. The algorithm produced a 
lower cost plan than that for a simulated annealing algorithm, and 
had a lower impact on the workforce. 

OPSOMMING 

Rekenaarverwerkingintelligensie paradigmas kan gebruik word vir 
gevorderde vervaardigingstelsel optimering. ŉ Statiese simulasie 
model van ŉ gevorderde vervaardigingstelsel is onwikkel.  Die doel 
van die vervaardigingstelsel is om ŉ aanpasbare produk op groot 
skaal te vervaardig teen ŉ kompeterende koste. Die doel van hierdie 
studie is om te bepaal of dié nuwe algoritme ŉ beter vertoning as 
tradisionele optimeringsmetodes lewer. Die algoritme het ŉ laer 
onkoste as die van ŉ gesimuleerde uitgloei-algoritme en het ŉ laer 
impak op die werksmag gehad. 

 

1 INTRODUCTION 

Research in advanced manufacturing systems (AMSs) is striving to achieve mass customisation 
manufacturing (MCM) [1]. This is driven by the demand from the markets for unique customised 
products at affordable prices and within reasonable lead times [1]. However, producing customised 
products at the same cost as high volume, low variety manufacturing has conflicting objectives. 
Manufacturing researchers have devoted their attention to this problem from different perspectives. 
Two main research areas — production planning and production scheduling — have been identified 
as being both fundamental and sufficiently different to focus on separately, in an attempt to improve 
manufacturing system performance in order to approach full MCM. Computational intelligence (CI) 
has emerged as a popular instrument to apply in the pursuit of optimising manufacturing systems, 
both for maximising profitability and for achieving MCM for maximum market share [1][2]. 
 
A distinct advantage of the CI paradigm is the techniques involved in producing sets of optimal and 
near-optimal solutions from which the most acceptable solution can be selected. Decision-makers 
can still make the final decision. The nature of most CI algorithms makes them robust and adaptable 
to variations in system parameters and characteristics. For this reason they are well suited to 
applications in environments based on paradigms that make use of computer-integrated 
manufacturing (CIM) infrastructure. They are also designed to be flexible. The application of CI 
optimisation techniques can assist modern manufacturing systems to be more responsive and 
adaptable to variations in product design due to changing customer demands. This is an important 
consideration for existing manufacturing enterprises pursuing MCM, and for the purpose of this 
research study [3][5]. 
 



 

87 

The research methods used in this study relied on the use of simulation modelling for testing and 
experimentation. A static simulation model of an AMS was created, based on a hypothetical product 
— a family-based product range designed for MCM. This model was developed using a classical 
simulation model development process that included verification and validation of the model 
behaviour. Simulation modelling was used because no real-world system was available for this study. 
 
The aim of this study was to determine whether an algorithm based on a previously unexplored 
principle could produce a better performance than traditional optimisation methods. Analysis of the 
results achieved by the implementation of this newly developed optimisation method for the 
production planning problem was carried out by comparing the two algorithms. An additional 
optimisation algorithm was written, based on an established artificial intelligence (AI) paradigm 
found in the literature, in order to measure the performance of the newly developed planning 
optimisation algorithm. 

2 MASS CUSTOMISATION FOR ADVANCED MANUFACTURING SYSTEMS 

Mass customisation (MC) was first defined by Joseph Pine in 1993 [2] as the production of individually 
customised goods through the use of flexible and highly responsive advanced manufacturing systems, 
at a cost near that of mass-produced goods. This is a broad definition that can take many forms at 
a practical level. In the pursuit of MC, the most popular approaches have been based on delayed 
product differentiation (DPD), also known as process postponement [3]. Many different 
implementations of DPD exist. Each is characterised by the point in production at which 
differentiation occurs; from engineer-to-order, where each instance of the product is designed to 
the customer’s requirements, to package-to-order, where differentiation only occurs at the 
packaging stage. 
 
In the context of this study, MC was viewed as the differentiation of the product during production; 
in other words, differentiation is restricted to variants in the product family, and is achieved while 
the product is in the manufacturing system. This is analogous to the mode of MC described as fixed 
resource design-to-order MC, according to MacCarthy, Brabazon and Bramham [4]. This selection 
was made because it is believed that this is the best avenue for modern AMSs to achieve MCM 
effectively. 

2.1 Computational intelligence for mass customisation manufacturing 

In the context of this study, the concept of CI was viewed as a development and extension of the 
concept of artificial intelligence (AI). This may include topics that are regarded as traditional AI, 
such as artificial neural networks, evolutionary computation, and swarm intelligence [5]. However, 
in order to avoid limiting the scope of the research to the more established CI/AI paradigms, the 
definition used here also includes algorithms and methods based on fields such as biology, physics, 
and chemistry [6]. 
 
A literature search analysis carried out in March 2014 showed that ‘artificial intelligence’ and other 
keywords relating to this study, such as ‘flexible manufacturing systems’, started receiving attention 
in the 1980s, with 10 per cent of all search results coming from that decade. The prevalence climbed 
steeply from there, with 28 per cent in the 1990s, 35 per cent in the 2000s, and 27 per cent in the 
2010s to date. This analysis also produced, on average, eight times more results when using the 
keywords ‘artificial intelligence’ rather than ‘computational intelligence’. From this it was clear 
that much more attention has been given to AI in manufacturing systems research than to CI, which 
is an indication that CI is not quite mature as a field of research in manufacturing systems. 
 
The optimisation of manufacturing systems has been an active field of research, with as many focus 
areas as there are subsystems. Renzi et al. [7] and Ferreira [8] present exhaustive lists of the 
literature of CI methods used in optimising AMSs. From the literature it was clear that some of these 
focus areas have received much attention in research through the application of different methods 
that can be described as CI, among other methods. The different areas of application have been 
classified in two broad categories; manufacturing planning and manufacturing operations. These two 
categories have been used as the basis for this study, with the emphasis on aggregate production 
planning (APP). 
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3 PRODUCTION SYSTEM MODEL 

The production system was configured in such a way that, once an in-house fabricated part has been 
completed, it is transported directly to the workstation where it is required for assembly, instead 
of using batch transportation. This makes the scheduling of operations more complex, because there 
are more parts moving around in the system throughout the production run. However, this should 
be outweighed by the saving in the holding of the finished parts waiting for assembly at separate 
locations, such as in an automated storage and retrieval system (ASRS). This also forces each part 
to be fabricated on demand from orders placed by customers, in line with the pull methodology [9]. 
The process flow of fabricated parts from raw material to final assembly can be seen in Figure 1. 
 

 

Figure 1: Process flow diagram of in-house fabricated parts 

The machine type identifiers in Figure 1 refer to the machine types required to perform the 
necessary machining operations for the production of men’s wrist watches. Similarly, the assembly 
station identifiers in Figure 1 refer to the assembly workstations required to complete the process 
of assembling the wrist watches. All raw materials enter the system on the left of the figure, either 
at M3 or M5 (depending on the part being manufactured), move through the system in a general left-
to-right direction, and exit the system as part of a final assembly after assembly station A5. Figure 
1 also shows the flow of the major components of the wrist watch through the system. 

4 PRODUCTION PLANNING OPTIMISATION 

Production planning to meet demand forecasts allows a manufacturer to anticipate and plan for 
variations, which is critical to the success of a manufacturing enterprise. This section presents the 
development of a novel algorithm to determine an optimal aggregate production plan for a wrist 
watch product range based on a common product platform. The performance of the new algorithm 
is compared with traditional planning strategies and with an optimisation algorithm based on a well-
established AI principle. 
 

4.1 Biogeography-based optimisation 

Biogeography-based optimisation (BBO) is founded on the principle of biogeography, which is the 
study of species, their migration between habitats, and their extinction [10]. Habitats, also referred 
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to as ‘islands’, are rated for their fitness to support life, using a term known as the habitat suitability 
index (HSI). A high HSI is associated with a habitat that is fit to support a large number of species, 
whereas a habitat with a low HSI is only fit to support a small number of species. 
 
Migration is driven by the number of species within the habitats of the system. This determines the 
immigration and emigration rates of the species in each habitat, based on a graph similar to that 
shown in Figure 2 [10]. In other words, a habitat with a high HSI will contain a large number of 
species, and therefore will have a high emigration rate, μ. In contrast, a habitat with a low HSI will 
contain a small number of species, and so will have a high immigration rate, λ. 
 
As migration occurs, the increasing species diversity of the low HSI habitats will cause their HSIs to 
increase, and the reduction in species diversity in the high HSI habitats will cause their HSIs to 
reduce. This will continue until the number of species reaches an equilibrium, S0. In reality, only a 
small group of individuals migrate between habitats, leaving a population behind in their original 
habitat. However, with BBO, entire populations are assumed to migrate. This is necessary because, 
with BBO, the species represent independent variables of the objective function, which replace each 
other between the set of candidate solutions, or habitats. 
 

 

Figure 2: Single habitat species model — adapted from [2] 

With BBO, λi represents the probability that an independent variable, or species, in the i-th habitat 
will be replaced [10]. And the probability, P, of a given species in habitat xj, emigrating from xj to 
replace the emigrating species in habitat xi, is calculated using Equation 1. 
 

 𝑃(𝑥𝑗) =
𝜇𝑗

∑ 𝜇𝑘
𝑁
1

 (1) 

 
where k = 1, 2, 3, . . . N, and N is the number of habitats in the system. This is based on the principle 
of fitness proportionate selection, in which selection pressure is proportional to the fitness of the 
candidates [11]. 
 
BBO can also incorporate mutation, which represents the introduction of random disturbances to 
the HSIs of habitats [10]. The method of deciding whether a given species, or independent variable, 
in a certain habitat should be mutated is to compare a user-defined mutation probability parameter 
with a randomly generated number in the same range, and then to mutate the variable by randomly 
adjusting its value within its range. 

4.2 Implementation 

The algorithm was based on the work of Simon [10]. The outer loop repeated for a user-defined 
number of iterations, and the inner loop stepped through the user-defined number of habitats, or 
candidate solutions. The population of possible solutions — i.e., the aggregate production plans — 
was generated at the initialisation of the algorithm, based on the production plan parameters. The 
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parameters were calculated based on randomly generated variables: an inventory-to-production 
ratio, and a workforce level parameter. 
 
The inventory-to-production ratio and workforce level variables were used to vary the inventory-to-
production ratio and workforce level from month to month respectively. Equations 2 and 3 show the 
expressions used for these two variables. The expression for inventory-to-production ratio increased 
or decreased the ratio of inventory-to-production for each month by up to 17 per cent, while the 
workforce level variables parameter added up to two workers to, or subtracted up to two workers 
from, the workforce from one month to the next. These expressions were developed by trial and 
error, and therefore the numerical constants are specific to the system under investigation. 
 
 Inventory-to-production ratio = ((float)(rand() % 50 - 25)) / 150 (2) 

 Workforce variable = round(((rand() % 2) * 2 - 1)*((float)(rand() % 2))) (3) 

All the plan parameters were calculated from these two variables. The plan parameters included 
production levels, workforce levels, and inventory levels for each month in the planning period. In 
the context of the BBO principle, each plan represented a habitat, and each plan parameter 
represented a species. The algorithm calculated the cost of each plan, then ranked and sorted them 
according to their cost. Immigration and emigration rates for each plan were calculated based on 
the rank of the plan — i.e., the plan with the lowest cost had the highest emigration rate, and the 
plan with the highest cost had the lowest emigration rate. The immigration rates were calculated 
by subtracting the emigration rates from 1, as shown in Equation 4. 
 

 𝜇 = 1 − 𝜆 (4) 

Iterations began by placing the two lowest cost plans into an elitist matrix for replacing the two 
highest cost plans in the next iteration. The inner loop then stepped through the habitats, or plans. 
For each iteration, production plan parameters of each plan were migrated (based on a probability 
calculated from the HSI), and mutated (based on a predefined probability). The production plan cost 
was used as the HSI here. The newly migrated and mutated plans were then sorted from lowest cost 
to highest. 
 
The validity of the lowest cost plan was checked, and if the plan was not valid, that iteration was 
discarded and repeated with new migrations and mutations. If the lowest cost plan was valid, the 
algorithm proceeded to store the lowest cost plan of that iteration in a matrix of low cost plans. 
The validity requirement set, in this instance, was that the ending inventory level in the final month 
of the planning period be greater than zero. 
 
The algorithm then replaced the two highest cost plans with the two elite plans stored in the 
previous iteration, and placed the lowest cost plan for that iteration into the low cost plans matrix. 
The low cost plans matrix held the lowest cost valid plans from each iteration. Once the maximum 
number of iterations had been completed, the absolute lowest cost valid plan was extracted from 
the low cost plan matrix for outputting. 
 
Before the BBO algorithm was initialised, all plan parameters were initialised. Table 1, Table 2, and 
Table 3 show the plan parameters and the values for which the optimal aggregate production plan 
was developed. 

Table 1: Monthly aggregate production plan parameter values 

Monthly production parameter Value 

Jan Feb Mar Apr May Jun 

Working days 22 19 21 21 22 20 
Demand forecast [units] 1400 1150 1260 1240 1380 1280 
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Table 2: One-off aggregate production planning parameter values 

One-off production parameter Value 

Production time 122 minutes/unit 
Planning horizon 6 months 
Safety stock 25 % of monthly demand 
Starting inventory 100 units 
Initial workforce 16 workers 

Table 3: Aggregate production planning cost parameter values 

Cost input parameter Value 

Cost of holding inventory $15.00/unit 
Stock-out cost $20.00/unit 
Worker hiring cost $500.00/worker 
Worker lay-off cost $750.00/worker 
Manufacturing cost (regular time) $20.00/hr/worker 
Overtime cost $30.00/hr/worker 
Downtime cost $10.00/hr 

 
Table 4 gives the descriptions and values used for the BBO algorithm input parameters. 

Table 4: Biogeography-based optimisation algorithm input parameters 

Input Description Value 

iterationsmax Maximum number of iterations to complete 150 
habitatsmax Number of aggregate production plans to create 100 
elitesmax Number of elite aggregate production plans to keep after each iteration 2 
mutationProb Probability to use for mutating aggregate production plan parameters 0.05 

 
The values of the parameters shown in Table 4 were found through trial and error by comparing the 
results of the BBO algorithm from subsequent runs of the algorithm. The given values were found to 
produce the best results within a reasonable search space and time frame. However, because they 
were found by trial and error, it cannot be categorically stated that this combination of parameters 
produces the optimal plan. 

4.3 Initialisation 

Before initialisation of the BBO algorithm, three plans were developed, based on traditional standard 
planning strategies. These main strategies, according to Chase et al. [3], are: 
1. Chase strategy, in which the production rates are matched exactly to the order arrival rate by 
the hiring and laying off of workers as the order arrival rates vary. 
2. Stable workforce — variable work hours, in which production is varied by varying the number of 
production hours worked, by implementing flexible shifts or overtime. 
3. Level strategy, in which the workforce is kept stable, with constant output rates allowing for 
inventory build-up or shortages. 
 
The lowest cost plan from these was used as the starting point for the BBO algorithm, to compare 
its results. For the problem at hand, the lowest cost plan based on a standard planning strategy was 
found to be one based on the level workforce / varied production strategy — that is, a stable 
workforce with varying levels of inventory. Table 5 shows the calculated plan parameters for this 
plan, including the total cost of production. 
 
The BBO algorithm programme was written in C++, using Microsoft Visual Studio Express 2013 as a 
Win32 console application. The solution time for the BBO algorithm was approximately 10 seconds. 
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Table 5: Best production plan based on standard planning strategy 

 Jan Feb Mar Apr May Jun 

Starting inventory [units] 100 85 131 193 275 280 

Demand forecast [units] 1400 1150 1260 1240 1380 1280 

Safety stock [units] 350 288 315 310 345 320 

Production req.’s [units] 1650 1088 1287 1235 1415 1255 

Actual production [units] 1350 1196 1322 1322 1385 1259 

Ending inventory [units] 85 131 193 275 280 259 

Workforce [workers] 16 16 16 16 16 16 

Monthly cost [$] 56 320 48 640 53 760 53 760 56 320 51 200 

Total cost [$] 320 000      

5 BENCHMARKING USING SIMULATED ANNEALING ALGORITHM 

To set a benchmark in order to assess the performance of the new BBO algorithm, a simulated 
annealing (SA) algorithm was developed and applied to the same case study production system. 
Simulated annealing was used as a benchmark because it is a well-established AI method, and has 
been widely used in manufacturing systems optimisation research [7], [12]. The SA algorithm is based 
on the principle of annealing in metallurgy, where a metal is heated to a high temperature, and 
then cooled in a slow and controlled manner in order to produce a particular molecular structure in 
the material [5]. Simulated annealing is a search scheme that incorporates an exploration 
component and an exploitation component. 
 
The initial state of the system consists of an initial candidate solution that is randomly generated, 
the system temperature variable T, and the temperature schedule parameter. From the initial state, 
the neighbourhood of the candidate solution is explored by generating new candidate solutions 
through varying the solution parameters, based on the current system temperature. This is 
performed for a certain number of iterations before lowering the system temperature, based on the 
temperature schedule. At each iteration, the new candidate solution is compared with the best 
solution found so far, and if the new solution is better, it is stored as the new best solution. 
 
The temperature schedule is a fraction multiplied by the current temperature. The best candidate 
solution at the current temperature is kept as the starting point for the next round of iterations at 
the next system temperature. As the system temperature decreases, the search area around the 
current best candidate solution decreases, which enhances the exploitation component of the 
search. However, to avoid the search becoming trapped at a local optimum, an acceptance 
probability is calculated and compared with a randomly generated fraction. Equation 5 shows the 
expression for calculating the acceptance probability, P. 
 

 𝑃 = 𝑒
(𝑆𝑐−𝑆𝑛)

𝑇   (5) 

where Sc is the current best solution objective function value, Sn is the newly calculated solution 
objective function value, and T is the current system temperature [13]. If the acceptance probability 
is greater than the randomly generated fraction, the new candidate solution replaces the current 
best candidate solution. This step only takes place if the new candidate solution is not better than 
the current best candidate solution. In other words, the acceptance probability represents the 
probability of a worse solution being accepted as a possible optimal solution. However, it can be 
seen from Equation 5 that the probability tends to zero as the temperature decreases, since the 
numerator of the exponent will always be negative. 
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6 RESULTS 

The results from the new BBO and SA algorithms were compared to measure the performance of the 
BBO algorithm. This was done from a cost convergence perspective and from the final aggregate 
production plans produced. All programming was carried out and run on the same computer for 
consistency. 
 
Figure 3 shows the convergence of the overall best plan cost by the SA algorithm, within the first 
five per cent of the temperature schedule to near-optimal plan, and a final drop to the output value 
at approximately 50 per cent through the temperature schedule. 

 

 

Figure 3: Best plan cost convergence using the SA algorithm 

Figure 4 shows the convergence of the lowest plan cost for the BBO algorithm. From this figure it 
can be seen that the algorithm converged to the final value within the first ten iterations, or 
approximately seven per cent of the total run length. 
 

 

Figure 4: Best plan cost convergence using the BBO algorithm. 
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The SA algorithm produced the production plan shown in Table 4.7. This production plan showed an 
improvement of 2.37 per cent of the total cost compared with the best standard strategy plan. This 
translated to an average saving of $ 1 263.33 per month, or $ 15 160.00 annually. The SA algorithm 
produced a plan with lower inventory levels and a relatively small workforce turnover, while tracking 
the demand forecasts well compared with the best standard strategy plan. 

Table 6: Optimal production plan generated by the SA algorithm 

 Jan Feb Mar Apr May Jun 

Starting inventory [units] 100 85 131 28 27 32 

Demand forecast [units] 1400 1150 1260 1240 1380 1280 

Safety stock [units] 350 288 315 310 345 320 

Production req.’s [units] 1650 1353 1444 1522 1698 1568 

Actual production [units] 1385 1196 1157 1239 1385 1259 

Ending inventory [units] 85 131 28 27 32 11 

Workforce [workers] 16 16 14 15 16 16 

Monthly cost [$] 56 320 48 640 48 540 50 900 56 820 51 200 

Total cost [$] 312 420      

 
The BBO algorithm produced the production plan shown in Table 7. This production plan showed an 
improvement of 2.92 per cent over the best standard strategy-based plan. This translated to an 
average saving of $ 1 555.00 per month, or $ 18 660.00 annually. The BBO algorithm was able to 
produce a plan with less disruption to the workforce, with only a single change from one month to 
the next over the entire planning period. It was also able to produce a plan that tracked the 
production requirements more closely than the SA algorithm. 

Table 7: Optimal production plan generated by the BBO algorithm 

 Jan Feb Mar Apr May Jun 

Starting inventory [units] 100 85 131 193 192 110 

Demand forecast [units] 1400 1150 1260 1240 1380 1280 

Safety stock [units] 350 288 315 310 345 320 

Production req.’s [units] 1650 1353 1444 1357 1533 1490 

Actual production [units] 1385 1196 1322 1239 1298 1180 

Ending inventory [units] 85 131 193 192 110 10 

Workforce [workers] 16 16 16 15 15 15 

Monthly cost [$] 56 320 48 640 53 760 51 150 52 800 48 000 

Total cost [$] 310 670      

 
In comparing the total costs of the production plans produced by the BBO and SA algorithms, it was 
found that the BBO algorithm was able to produce a lower cost plan at $ 310 670.00 than the plan 
produced by the SA algorithm at $ 312 420.00. The total saving in production cost incurred by the 
BBO algorithm over the SA algorithm was 0.5 per cent. 

7 DISCUSSION 

Both the BBO and the SA algorithms were able to produce production plans that were superior to 
the best standard strategy, which was the stable workforce / varying production strategy defined 
by Chase et al. [3]. When comparing the plans produced by the two optimisation algorithms, the 
BBO-generated plan had a lower overall cost than the SA-generated plan. The differences in cost 
savings between the stable workforce / varying production plan, the SA-produced plan, and the BBO-
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produced plan fell well within the results of Baykasoglu [14] in their comparison of goal programming 
and heuristic-based methods. 
 
Both the BBO algorithm and the SA algorithm produced plans that turned out to be mixed plans — 
i.e., a combination of two or more of the standard strategies defined by Chase et al. [3]. This was 
expected, as the probability of stochastic algorithms such as these producing standard strategies is 
very low. This also aligned with the prediction of Chase et al. [3] that mixed strategies are usually 
better than standard strategies. 
 
The best standard strategy plan was based on a constant workforce, whereas the SA generated plan 
had a non-constant workforce. The algorithm was designed to alternate between constant and non-
constant workforce plans, based on parameters built into the algorithm that varied as the algorithm 
progressed, and thus converged to the optimal selection between constant and non-constant. The 
lower cost plan calculated by the SA algorithm showed that there was room for improvement over 
the standard planning strategies, however small this may have been. 
 
When comparing the workforce levels of the plans produced by the BBO algorithm and by the SA 
algorithm, it was found that the BBO algorithm also produced a production plan that involved a non-
constant workforce. However, the BBO algorithm was able to produce a plan with less disruption to 
the workforce, with only a single change from one month to the next over the entire planning period. 
This was a good result from a human resources perspective, as disruptions to the workforce are not 
taken lightly by employees. However, it is sometimes the only way for a manufacturer to be 
economically competitive. 
 
The stable workforce / varying production strategy produced a plan with a fairly high ending 
inventory, whereas both the BBO and the SA algorithms produced plans with very low ending 
inventories. One of the main differences between the optimised plans was that the monthly ending 
inventories of the SA algorithm plan dropped drastically in the third month. This seems to indicate 
that the cost of holding inventory played a significant role. However, the BBO-generated plan held 
the monthly ending inventories high until the very last month. The result of the more stable monthly 
ending inventories of the BBO-produced plan was more stable production requirements, which led 
to more stable actual production. 
 
From a programming perspective, the BBO algorithm contained more steps than the SA algorithm. 
However, the BBO algorithm was less computationally intensive than the SA algorithm. The SA 
algorithm performed 5 000 iterations at each step in the temperature schedule, which required 
about 1 000 loops per iteration. In contrast, the BBO algorithm only performed 150 iterations, which 
involved stepping through 100 habitats at each iteration. Furthermore, even though the BBO 
algorithm was less computationally intensive, it converged to its final output more quickly than the 
SA algorithm. 

8 CONCLUSION 

In conclusion, the contribution of this research study was twofold. The first was the development of 
a static simulation mode of an advanced manufacturing system designed to investigate mass 
customisation manufacturing through single unit order handling. In this study, this model was used 
as the basis for developing a new production planning optimisation algorithm. The second 
contribution of this study was the development of this new optimisation algorithm for aggregate 
production planning. This algorithm was based on the principles of biogeography-based optimisation, 
which has never been used for this specific application before. This algorithm was able to produce 
lower cost aggregate production plans than traditional planning methods or an established artificial 
intelligence algorithm. 
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