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ABSTRACT 
 
The principles of operational research (OR) and related mathematical methods have been 
applied to environmental issues for the past five decades. However, the increasing pressures 
experienced by industry over the last decade, pertaining to sustainable development 
performances, have renewed interests and intensified the potential application of OR 
techniques in environmental planning and management. The subsequent number of published 
mathematical models is vast. This paper aims to provide an overview of the modelling 
approaches to address the environmental impacts associated with industrial activities. In 
particular, the methods that are used to model the cross-boundary effects of industrial 
resource use and releases are summarised. 
 

OPSOMMING 
 
Die afgelope vyf dekades is verskeie wiskundige en operasionele navorsingmetodes (ON) 
aangewend om omgewingsprobleme te modelleer.  Die toenemende druk wat die konsep van 
volhoubare ontwikkeling op die industrie plaas, het tot gevolg gehad dat die belangstelling in 
die moontlike toepassing van ON-tegnieke vir omgewingsbeplanning en bestuur drasties 
toegeneem het.  Die doel van die artikel is om ‘n oorsig te gee oor die modelleringstegnieke 
wat aangewend kan word om omgewingsimpakte aan te spreek.  Daar word spesifiek gefokus 
op metodes om die omgewingsimpakte van hulpbrongebruik en vrystellings wat 
industriegrense oorsteek, te modelleer. 
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1.  INTRODUCTION 
 
In 1987 the World Commission on Environment and Development (WCED) formally defined 
the concept of sustainable development as: 
 

“development that meets the needs of the present without compromising the ability of 
future generations to meet their own needs” [1]. 

 
In response, government laws and policies are increasingly introducing the principles of 
sustainable development on a global scale, which in turn affect international trade agreements 
[1]. The concept of sustainable development is nevertheless inherently vague [2] and it 
remains difficult to express it in concrete, operational terms [3]. However, it is generally 
accepted that the three objectives of sustainable development are: social equity, economic 
efficiency, and environmental performance [4]. Businesses and industries, especially 
multinationals, are consequently pressurised to incorporate economic, environmental and 
social performances into policies, corporate cultures and decision-making processes  [5, 6]. 
These performance objectives manifest in three operational focal points that are fundamental 
to the manufacturing industry: 
 
• Projects, which drive change in internal operational practices. The concept of sustainable 

development must be integrated with the planning and management practices over the life 
cycles of projects [6]. 

• Assets, which are required in the manufacturing process. The life cycles of assets must be 
optimised in terms of sustainable development performances objectives of the 
manufacturing facility [7]. 

• Products, which determine the economic value of manufacturing operations. The influence 
of products (including materials and services) on economies, environments and society as a 
whole must be considered, i.e. the concept of product stewardship [8]. 

 
Generic tools have subsequently been developed to incorporate sustainable development into 
management practices in industry, e.g. to assess environmental performances throughout the 
life cycles of projects in the manufacturing sector [6], or to focus on the quantitative 
assessment of sustainability performances in product life cycles [9]. A majority of these tools 
have focused exclusively on the environmental dimension of sustainable development [6] and 
have gained worldwide acceptance through the ISO 14000 family of standards [10], which 
identifies the need to incorporate Environmental Management Systems (EMSs) into existing 
business practices [11]. 
 
1.1  ISO 14000 standards for Environmental Management Systems (EMSs) 
 
The pressure experienced by companies to demonstrate improved environmental stewardship 
and the associated burden of the related accountability, resulted in the need for an 
international EMS standard. The consequence was the development and publication of the 
ISO 14000 family of standards within a period of two years by the International Organization 
for Standardization (ISO) [12]. ISO 14000 aims to achieve standardisation in the field of 
environmental management and clearly distinguishes between Environmental Management 
Systems (EMSs) and environmental management tools. The standards indicate that the 
implementation of an EMS is of central importance in establishing an environmental policy, 
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objectives and targets for a company. The recommended environmental tools can assist a 
company in realizing these targets and objectives [12]. 
 
As is shown in Figure 1 [12], the ISO 14000 family of standards has distinguished two main 
focus areas for environmental tools that are applicable for industry: 
 
• Organisation evaluation, including EMS, Environmental Performance Evaluation, and 

Environmental Auditing; and  
• Product or process evaluation, including Life Cycle Assessment (LCA), Environmental 

Aspects in Product Standards, and Environmental Labelling. 
 

 
Figure 1:  Focus areas of the ISO 14000 standard for EMS 

 
1.2  Mathematical modelling for industry Environmental Management Systems 
 
In industry, mathematical modelling is used for environmental performances, and product and 
process evaluations in EMSs. However, for all of these applications the purpose remains 
similar, i.e. to determine the detrimental anthropogenic impacts of industrial activities on the 
natural and human environment. These environmental impacts can be described by the 
environmental concerns that are influenced by the impacts, i.e. measurable changes in natural 
resources, as well as the temporal and spatial scales of the impacts, e.g. local, regional and 
global [13]. Typical environmental concerns with temporal and spatial scales are shown in 
Figure 2 [14]. 
 
A complication is that industrial activities influence more than one environmental concern. 
For example, typical manufacturing processes release emissions, solid waste and effluents, all 
of which have an impact on air, land and water resources. In order to address these impacts 
mathematical modelling in industry is used at three levels: 
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Figure 2: Typical environmental concerns at global, regional and local level 

 

 
Figure 3:  Focus of mathematical modelling to reduce environmental impacts 
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• Optimisation of core operational processes. These processes incorporate on-site and off-
site activities such as the supply chain, and typically include minimisation of waste (and 
pollutants) and resource use, e.g. energy and water. 

• End-of-pipe process solutions, e.g. cleaning technologies for air emissions and treatment 
technologies for waste and effluents. 

• Cross-boundary modelling of the impacts of industrial resource use and releases, such as 
emissions, waste and effluents, on local, regional and global natural resources. 

 
The modelling of environmental impacts of operational process optimisation, end-of-pipe 
solutions and cross-boundary process parameters is summarised in Figure 3. 
 
Process optimisation and end-of-pipe solution models are industry-specific. A wide variety of 
literature is available that describes these industry-specific applications of mathematical 
modelling, as well as other operational research (OR) techniques applied to environmental 
management [15, 16, 17]. The common characteristics of OR techniques in general to, and 
subsequent application for, environmental planning for sustainable development has been 
described in terms of [18]: 
 
• Systems approaches: Holistic thinking is required in both fields. 
• Interdisciplinary approaches: Expertise of other disciplines must be acquired in order to 

derive solutions to defined problems. 
• Purposeful implementation approaches: Both fields can be described as problem-

determined and action-oriented activities.  
 
It is subsequently impossible to provide an exhaustive review of all the applications (for 
industry) of mathematical modelling in environmental sciences [15]. Therefore, this article 
only summarizes the mathematical approaches that are used to model cross-boundary impacts 
of industry resource use and releases, including emissions, waste and effluents, on natural air, 
water, land and mined abiotic resources. 
 
2.  THE EFFECT OF INDUSTRY ACTIVITIES ON HUMAN HEALTH  
     AND ECOSYSTEM QUALITY 
 
An environmental impact has been defined as the cause-effect relationship between a source, 
the cause of the impact, and a receptor, the element affected by the impact [19]. The 
complexity of modelling the cross-boundary impacts therefore lies in the cause-effect chains, 
linking emissions and resource depletion to the consequences, as is shown in Figure 4 [20]. 
These cause-effect chains show that environmental impacts can be described at different 
impact levels. Table 1 uses the example of greenhouse gas releases to show different impact 
levels [21]. 
 
On the international front the Society of Toxicology and Chemistry (SETAC) and the United 
Nations Environmental Programme (UNEP) are formalising consistent conceptual models 
that are acceptable by the international scientific community and practical for industrial use. 
These models describe industrial impact effects at two distinct levels (see Figure 5) [22], 
namely midpoint and endpoint categories. 
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Figure 4:  The cause-effect chain of industrial environmental impacts [20] 
 
Level Cause – Effect 
Activity Combustion processes, e.g. electricity generation from coal 
Pollutants emitted Carbon dioxide (CO2), methane (CH4), etc. 

Primary effect Radiative forcing, i.e. absorption of thermal infra-red radiation in the 
atmosphere 

Secondary effect Increase in global temperature 
Tertiary effect Ice-melting, rising sea levels, change in weather patterns 
Further effects Specific changes in ecosystems 
 

Table 1:  Different levels of greenhouse gas release impacts [21] 
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• The fate of substances once released into the natural environment, e.g. ambient chemical or 

physical transformation and the dispersion and deposition of substances; and  
• The final exposure of humans and ecosystems to the transformed and dispersed releases, 

e.g. the potential human body intake of transformed substances through inhalation, 
ingestion, etc.  
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Figure 5:  Levels of modelled environmental effects from industrial activities [22] 

 
For resource use, the depletion rate of available reserves is typically considered. Furthermore, 
specific industrial resource use and environmental releases are translated to baseline changes 
caused by certain known depletions or releases. Thereby, the total cross-boundary inventory 
of an industrial activity is classified and characterised into certain impact categories that 
reflect changes in the natural resources. These categories are referred to as midpoint 
categories. The most common of these are shown under the heading ‘impact category’ of 
Figure 5. 
 
2.2  Endpoint Categories 
 
Potential effects on, or changes in, human health and ecosystem quality due to the changes in 
the natural resources represent the second level to describe industrial impacts. At this level it 
is attempted to translate the effects on the midpoint categories into possible effects on 
Safeguard Subjects (in Figure 5), i.e. human health and ecosystem quality. The categories that 
are used at this level are referred to as endpoint categories. For this procedure a damage 
assessment is required, e.g. an increased potential risk of cancer due to the exposure to a 
substance, as well as a quality analysis, e.g. the extent to which an increased potential risk of 
cancer would affect the quality of human health in a region. In South Africa, the four natural 
resource groups, i.e. water, air, land, and mined abiotic resource, have been defined as Areas 
of Protection (AoP) that must be sustained with respect to the Safeguard Subjects [23, 24]. 
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2.3  Industry Reaction 
 
These different levels of effects are considered (in-house) by industries due to regulatory and 
legislation requirements that enforce specific monitoring and assessments of industrial 
activities at the different spatial scales, e.g. air quality monitoring in a defined region, or 
Health Risk Assessments (HRAs) or Environmental Impact Assessments (EIAs) in a 
community. One approach is to convert the levels of effects into possible cost implications for 
internal decision-making purposes [25]. In some cases, weighting procedures are also used to 
obtain an overall perspective of the environmental performance of an industry activity. This is 
referred to as the ‘single index’ in Figure 5. 
 
3.  MODEL APPLICATIONS AND OPERATIONAL RESEARCH  
     AND MATHEMATICAL TECHNIQUES 
 
The first examples of the application of operational research optimisation models to 
environmental problems were published in the mid-seventies [15]. However, optimisation 
techniques were already applied in air quality management in the late 1960’s while 
differential equation based descriptive plume models were used much earlier [16].  
Furthermore, the application of operational research techniques to water resource and water 
quality management began in the late 1950’s [26].  Nevertheless, academia has increasingly 
re-recognised the potential for operational research to make contributions to environmental 
management by the turn of the millennium [18, 27]; this may be attributable to the increased 
attention environmental management has received.    
 
Operational research has been defined as the study of how to form mathematical models 
(collection of variables and relationships needed to describe pertinent features of a problem) 
of complex problems and how to analyze these problems (see Figure 6) [28].  The first step in 
any operational research model is therefore to identify the problem that is to be investigated. 
With respect to the cross-boundary environmental impacts of industry, the problem is to 
determine the impacts associated with the emissions, effluents and other waste streams, and 
resource-use, of operational activities along the cause-effect chain (see Figures 4 and 5). 
 

 
 

Figure 6: Operations Research Process [28] 
 
The complexity of modelling these potential levels of impacts lies in the construction of 
purposeful, credible integrated models from data and prior knowledge or information that can 
explain the effects or outcomes satisfactory by linking causes and effects through the chain 
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(Figure 5). If cross-boundary releases are only considered, the mathematical modelling of the 
individual pollutants emitted and the spreading thereof are thus crucial in the fate and 
exposure analyses stages. Thereafter, models are required to describe the possible changes in 
human health or ecosystem quality due to the outcomes of the fate and exposure analyses 
stages. Table 2 lists some examples of the model applications as well as operational research 
and mathematical techniques that are used during fate and exposure analyses, damage 
assessments and quality analysis. The table is therefore not comprehensive in terms of all the 
cross-boundary environmental models that have been derived. 
 
Analyses of the results of a specific model (after the quality assessment) can result in 
additional decision problems. For example, a company may realise that although the air 
pollution conforms to emissions standards, there may be an additional risk of adverse impacts 
on human health in a community due to topographical locations. The question may then be 
posed of whether to increase pollution controls (i.e. production costs) to decrease the risk of 
the impacts. These decisions are addressed through process optimisation and end-of-pipe 
solution models (section 1.2) and can typically result in tradeoffs between costs and a 
pollution prevention strategy. For example, the new trends towards a more proactive approach 
favours pollution prevention above end-of-pipe solutions, and operational research techniques 
have been applied to study the short-term financial performance impacts due to this choice 
[43]. 
 

Effect  
Level 

Analysis 
Steps/ 

Elements 
Examples of model applications Techniques 

Fate 

Midpoint 

Exposure 

• Dispersion Modelling [29] 
• Water Resource Property Modelling [30] 
• Euthrophication Modelling [31] 
• Air Pollution Management Models [32] 
• Atmospheric Transportation, Physical 

Transformation and Chemical Reaction 
Models [33] 

• Fate and Exposure Modelling [34, 35] 

• Linear Programming; 
• Goal Programming;  
• Stochastic Programming;  
• Non-linear programming 
• Dynamic Programming 
• Simulation 
• Statistical Distributions e.g. 

Gaussian 
• Differential Equations 
• Neural Networks 

Damage 
Assessment 

Endpoint 
Quality 

Analyses 

• Dose-Response Models [36] 
• Damage Functions [37, 38, 39] 
• Human Health Impact Modelling [40] 
• Ecosystem Quality Impact Modelling [41] 
• Method of response function  [42] 

• Probability Modelling 
• Bayesian Models 

 
Table 2:  Examples of model applications with operational research and  

mathematical techniques 
 
3.1  Applying existing operational research models to environmental problems 
 
Although environmental impacts are often modelled from basic principles using operational 
research methodologies, existing operational research techniques or models have been 
adapted to be used to address environmental problems, for example: 
 
• A plant location model has been adapted as a location model for regional environmental 
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facilities [44]. 
• A bicriteria knapsack problem has been used for planning remediation of contaminated 

sites [45]. 
• An m-Postman Chinese postman problem has been applied to determine solid waste 

collection routes [16]. 
 
4.  CONCLUSION – TOWARDS SUSTAINABLE DEVELOPMENT IN INDUSTRY 
 
Operational research models have been applied to environmental problems since the mid 1950 
and 1960’s. However, increased awareness has intensified the attention on environmental 
protection in industry. The consequence has been the re-discovery of the value of operational 
research models within environmental management [18]. Furthermore, the focus of industry is 
progressing towards a comprehensive sustainability approach that does not only address 
environmental aspects, but incorporates social impacts into decision-making as well. The need 
to evaluate the overall sustainability performances of operational activities is therefore 
increasing. This need offers interesting research opportunities within the field of operational 
research. As an example, the field of multi-criteria decision analysis has been proposed as an 
approach to consider the multiple aspects of sustainable development [46]. Also, the models 
proposed for the environmental evaluation of business practices based on the analytical 
network process [47] may (possibly) be extended to include social and economic 
performances as well. 
 
The challenge to achieve sustainable development is a complex societal problem. Since the 
original aim of the operational research community was to handle complex societal problems 
as a whole [48], the application of operational research models and techniques to the 
sustainability challenge is unlimited. 
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