
South African Journal of Industrial Engineering August 2017 Vol 28(2), pp 37-45 

37 

 

SINGLE- AND MULTI-OBJECTIVE RANKING AND SELECTION PROCEDURES IN SIMULATION: 

A HISTORICAL REVIEW 

M. Yoon1# & J. Bekker1* 

 

ARTICLE INFO 

Article details 
Submitted by authors 13 Mar 2017 
Accepted for publication 3 May 2017 
Available online 31 Aug 2017 

 

 
Contact details 
* Corresponding author 
 jb2@sun.ac.za 

 

 
Author affiliations 
1 Department of Industrial 

Engineering, Stellenbosch 
University, South Africa 

 
# Author was registered for a PhD 

(Industrial Engineering) in the 
Department of Industrial 
Engineering, Stellenbosch 
University, South Africa 

 

 
DOI 
http://dx.doi.org/10.7166/28-2-1732 

 

ABSTRACT 

Ranking and selection (R&S) procedures form an important research 
field in computer simulation and its applications. In simulation, one 
usually has to select the best from a number of scenarios or 
alternative designs. Often, the simulated processes have a 
stochastic nature, which means that, to distinguish alternatives, 
they must exhibit significant statistical differences. R&S procedures 
assist the decision-maker with the selection of the best alternative 
with high confidence. This paper reviews past and current R&S 
procedures. The review traces back to the 1950s, when the first R&S 
procedure was proposed, and discusses the various R&S procedures 
proposed since then to the present day, presenting a cursory view 
of the research in the area. The review includes studies in both the 
single-objective and the multi-objective domains. It presents the 
research trend, discusses specific issues, and gives 
recommendations for future research in both domains.  

OPSOMMING 

Rangorde- en keuseprosedures (R&K) vorm ‘n belangrike 
navorsingsveld in rekenaarsimulasie en -toepassings. 
Simulasiestudies vereis gewoonlik dat die beste kandidaat van ‘n 
aantal scenarios of alternatiewe ontwerpe gekies moet word. Die 
gesimuleerde prosesse is gewoonlik van ‘n stogastiese aard, en hulle 
moet statisties-beduidend verskil ten einde onderskeid te kan tref. 
R&K prosedures ondersteun die besluitnemer om die beste 
alternatief met groot vertroue te kies. Hierdie artikel verskaf ‘n 
resensie van vroeë en huidige R&K prosedures. Die ondersoek strek 
terug tot in die 1950s toe die eerste R&K prosedures voorgestel is, 
en bespreek die verskeie R&K prosedures wat sedertdien ontwikkel 
is, terwyl ‘n oorsigtelike blik op die navorsingsveld gegee word. Die 
resensie sluit studies in beide enkel- en multidoelwitdomein in. Dit 
bespreek navorsingsneigings en spesifieke kwessies, en maak 
voorstelle vir verdere navorsing in beide domeins. 

 

1 INTRODUCTION 

Computer simulation is a powerful and essential tool in modern society to improve the operation of 
current systems and business practices. It contributes to the efficient management of processes and 
systems – the main focus of many industrial engineers – by providing a what-if analysis. In operating 
a system, one often faces a situation where the following question arises: If some changes were 
made to the current parameter settings (or decision variables)1 in the operation of the system, what 
would happen? Would they result in a better performance of the system or not? It is usually not easy 
to estimate the effect of the changes because the system is often complex and exhibits a stochastic 
nature. Simulation helps decision-makers in such cases by simulating the real system and providing 
the estimates of system performance measures. One can compare the performance of the simulated 

                                                      
1  Various terms are used in simulation to indicate parameter settings of the system: system designs, systems, 

designs, scenarios, and/or alternatives. The term population is also used in the same context in statistics. 
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system (with the changed parameter settings) to that of the real system (with the current parameter 
settings) to reach a better decision.  
 
The question can be easily extended to involve several parameter settings, or system designs: 
suppose there were k different system designs, which of the k designs would give the best result in 
terms of the performance measure? There have been consistent efforts among scholars in simulation 
and statistics to answer this kind of question, which has formed an important subfield of research 
in simulation application: ranking and selection (R&S). Ranking and selection procedures provide the 
decision-makers with a series of actions to take in order to select the best among a number of 
estimated system performances with high confidence. 
 
Ranking and selection procedures are distinguished from general simulation optimisation algorithms, 
in that they are applied to find the best system from a small, limited number of system designs, 
and that they are dedicated to guarantee a certain statistical significance in doing so. R&S 
procedures form part of the larger domain of simulation optimisation, which includes algorithms and 
techniques to solve problems with large solution spaces. (See Amaran et al. [1]Error! Reference 
source not found. for the more general topic of simulation optimisation.) 
 
This paper reviews past and current R&S procedures from a historical point of view. The review 
begins in the 1950s, when the first R&S procedure was proposed by Bechhofer [2], and discusses 
various R&S procedures proposed since then to the present day. We attempt to provide a general 
view of the research area by reviewing different approaches applied in R&S procedures, and by 
studying how the procedures have been developed over the years. We believe that the concise yet 
informative review in this paper will help simulation practitioners to acknowledge the existence of 
various R&S procedures and to understand the differences in their approaches, purposes, strengths, 
and limitations. Our research includes both single-objective and multi-objective R&S procedures.  

2 REVIEW OF SINGLE-OBJECTIVE RANKING AND SELECTION PROCEDURES 

There are two basic approaches in single-objective R&S procedures (or simply ‘R&S procedures’, as 
usually a single performance measure is assumed unless explicitly stated): the indifference-zone (IZ) 
procedures and the optimal computing budget allocation (OCBA) procedures. These are discussed in 
the next two subsections. 

2.1 The indifference-zone procedures 

Indifference-zone (IZ) procedures guarantee, with a probability of at least P∗, that the system design 

ultimately selected is the best when its true mean is at least δ∗ better than the true mean of the 
second-best system design [3]. The smallest difference that the decision-maker considers worth 

detecting is chosen as δ∗ > 0. We assume there are k different system designs, and let Xij denote the 
jth independent observation from system design i. It is assumed that Xij ∼ N(µi, σi

2) with µi and σi 
unknown. Now, without loss of generality, suppose that the true means of the system designs are 
indexed as µ1 ≥ µ2 ≥ . . . ≥ µk so that system design k (which is unknown) is the best system design 
in the minimisation problem. Because the true means µi (i = 1, … , k) are unknown, they are to be 
estimated from observation Xij (i = 1, … , k). Under this formulation, the IZ procedures identify the 
smallest sample size (or the number of simulation replications) Ni for each system i, (i = 1, … , k), 
to guarantee the probability of correct selection: 
 

 P(CS) = P{ select k | µk−1 − µk ≥ δ∗} ≥ P∗, (1) 
 

where 1/k < P∗ < 1. If there are system designs whose means are within δ∗ of the best, then the 
decision-maker is indifferent about which of these is selected, leading to the term ‘indifference-
zone formulation’ [4]. In this case, the IZ procedures select one of these solutions with a probability 

of at least P∗. 

 
The concept is illustrated in Figure 1. Suppose we simulate three designs of a system, and the 
performance indicator follows the three distributions labelled ‘I’, ‘II’, and ‘III’. System design I 

‘seems’ to be ‘close’ to system design II, and if the decision maker chose * beforehand, such that 

* ≥ 1, then it can be concluded that system designs I and II do not differ statistically significantly, 
and they are for practical purposes the same. The different distributions observed (I and II) are due 
to in-sample variation. System design III, on the other hand, ‘seems’ to differ ‘largely’ from system 
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designs I and II. The differences are due to cross-sample variation, which means that system design 
III is worse than system designs I and II if the objective is to be minimised. The decision-maker can 
now choose between system designs I or II, based on practical and financial considerations. 
 

 

Figure 1: Separation of performance measure distributions of three system designs 

The initial work based on the IZ approach is shown in Bechhofer [2]. His work was motivated by 
“some deficiencies” of analysis of variance (ANOVA), one of the most popular statistical techniques 
in those days (and perhaps these days as well). ANOVA tests whether there is a significant difference 
among the means of k populations, often to identify the effects of k different treatments. In many 
instances, however, the interest of the experimenters would be to rank the treatments so that they 
can select the best treatment, or a few best treatments. Bechhofer [2] presents a procedure for 
ranking means of k normal populations with known variances as a solution to this kind of problem. 
His work became the origin of the many R&S procedures that followed, having established not only 

the concept of indifference-zone δ∗ but also that of the probability of correct selection P(CS). 
 
Bechhofer’s procedure is a single-stage procedure that is applied to limited cases – i.e., ranking 
problems with populations of known variances. Dudewicz [5] proved that no procedure that has only 
a single-stage of sampling can satisfy the requirement of (1) when the variances are unknown. For 
a procedure to deal with the cases with unknown variances, at least two stages of sampling are 
required, of which the first stage sampling is to estimate the unknown variances for each population, 
and the later stage(s) of sampling are to obtain more accurate estimates of the true means. 
 
Dudewicz and Dalal’s two-stage procedure [6], called Procedure PE, was the first that assumed 
unknown variances to appear in the literature. The procedure takes an initial sample of size n0 from 
each population (this is the first stage of sampling), calculates the sample variances si

2 for each 

system i, and identifies the required sample size Ni based on the value of si
2, δ∗ and a critical value 

h, which plays a crucial role in the proof of the required P∗. In the second stage of sampling, the 
procedure takes the remaining Ni − n0 observations and indicates the best system based on the total 

Ni observations. The drawback of Procedure PE is that it uses weighted sample means 𝑋𝑖̅
̃  (defined in 

Equation 4.5 in [6], p.37), which is harder to understand than the simple overall sample means 𝑋̅𝑖 =
1

𝑁𝑖

∑ 𝑋𝑖𝑗
𝑁𝑖
𝑗=1 . It seems that Dudewicz and Dalal would have liked to develop a procedure that used 

the overall sample means 𝑋̅𝑖, which is intuitively appealing, but that they failed to prove that such 

a procedure guaranteed the desired confidence P∗. 
 

A few years later, Rinott [7] achieved the task, resulting in the development of Procedure PR
∗.  

Procedure PR
∗ uses the overall sample means 𝑋̅𝑖 and guarantees P∗ in selecting the best among k 

normal populations with unknown variances. Actually, it has almost the same structure as Procedure 

PE, except for the definition of the critical value h and the use of the overall sample means 𝑋̅𝑖. 
Rinotts’s procedure is considered to be one of the most important works in early R&S research, and 
became the touchstone of the IZ procedures that followed. Many IZ procedures that were developed 
after this have been based on Rinott’s procedure, with the goal of improving it. The focus was to 

reduce the sample size Ni to achieve the same confidence level P∗. (See, for example, [8], [9], Error! 
Reference source not found., Error! Reference source not found. and Error! Reference source 
not found..) 
 
Kim and Nelson [13] described their very efficient procedure to reduce the required sample size Ni 

to guarantee P∗. They proposed a procedure (called the KN procedure) that is different from the 

1 2 

3 
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above-mentioned two-stage procedures based on Rinott’s procedure, in the sense that it is fully 
sequential – i.e., it takes as many stages as required. In the KN procedure, n0 samples are taken 
initially for each system i, and after that, inferior systems are eliminated at each stage and a single 
observation from each system i that is still in play is taken in the next stage. The procedure continues 
until there remains only one system, which is concluded to be the best system, or until the 
predesignated number of observations is reached. The screening rule, which decides which system 

should be eliminated at each stage, is designed to guarantee the required confidence level P∗. The 
experimental results show that the fully sequential procedure is far superior to Rinott’s procedure, 

and therefore needs significantly less computational effort to guarantee the same level of P∗. The 

KN procedure is the most advanced form of the IZ procedures, and is widely used in practice, having 
been incorporated into many commercial simulation software programs. 
 
The IZ procedures assume the least favourable configuration (LFC) – that is:  
 

 µ1 = µ2 = … = µk−1 = µk + δ∗ (2) 
 
for a minimisation problem when the means of k populations are indexed as µ1 ≥ µ2 ≥ … ≥ µk. 
Obviously, of all possible situations that satisfy µ1 ≥ µ2 ≥ … ≥ µk and the IZ condition of µk−1 − µk ≥ δ, 
the above-mentioned condition (2) is the worst case to define the best system k (the smallest mean 
µk in this case), and thus the least favourable configuration. In the IZ approach, the required 

confidence P∗ is often guaranteed by showing that the  probability of correct  selection  under  the  

LFC  equals P∗– that is, P(CS) ≥ PLFC(CS) = P∗. Therefore, the IZ procedures are conservative in their 

confirmation of P∗. 

2.2 The optimal computing budget allocation procedures 

In R&S, optimal computing budget allocation (OCBA) presents another approach. Chen et al. [14] 

proposed OCBA procedures, which do not guarantee P∗ or involve the indifference-zone concept δ∗, 
but aim at maximising the probability of correct selection P(CS) given a limited computing budget. 
A preselected limited computing budget – i.e., the total number of simulation replications – is 
allocated across system designs to maximise the P(CS). The problem can be formulated as 
 

  max
𝑁1,⋯,𝑁𝑘

    𝑃(𝐶𝑆)  

 𝑠. 𝑡.       𝑁1 + ⋯ + 𝑁𝑘 = 𝑇 (3) 
 𝑁𝑖 ≥ 0, 
 
where Ni is the number of simulation replications allocated to system design i, while T is the limited 
total computing budget. A big concern in solving (3) is how to approximate P(CS), since there is 
usually no mathematically closed form of it. One solution is proposed by Chen [15], who used an 
approximation of P(CS) with a Bayesian model, by which an asymptotic solution to the approximation 
is obtained. Suppose we have to rank and select from k competing system designs whose 
performances are depicted by random variables with means µ1, µ2, … , µk , and finite variances σ1

2, 
σ2

2, …, σk
2. We let design b be the best design based on the sample mean, Ni the number of simulation 

replications allocated to design i, and δb,i = µi − µb. Chen et al. [14] showed that the following 
relationship between Ni and Nj, 
 

 
𝑁𝑖

𝑁𝑗
=  {

𝜎𝑖/𝛿𝑏,𝑖

𝜎𝑗/𝛿𝑏,𝑗
}

2

,       𝑖, 𝑗 ∈ {1,2, ⋯ , 𝑘},    𝑖 ≠ 𝑗 ≠ 𝑏 (4) 

 
asymptotically maximises the approximated P(CS). The number of simulation replications for the 
best design is given as 
 

 𝑁𝑏 =  𝜎𝑏√∑
𝑁𝑖

2

𝜎𝑖
2

𝑘
𝑖=1,𝑖≠𝑏  (5) 

 
The result in (4) shows that system designs with larger variances are allocated more replications (to 
obtain more accurate estimates). Also, more replications are allocated to system designs whose 
performance is closer to that of the best system design, which is reasonable as more replications 
are generally needed to distinguish smaller differences. However, when the difference between two 
systems is so small that the decision-maker is indifferent to either of them, the OCBA procedure 
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becomes very inefficient, allocating a large amount of the simulation budget to some system designs 
to distinguish the small, insignificant difference. 
 
There are many variants of OCBA that consider correlated sampling [16]; non-normal distributions 
[17]; different objective functions [18]; subset selection [19]; complete ranking [20]; and constraints 
[21]. Lee et al. [22] provided a comprehensive review of these OCBA procedures. 

3 REVIEW OF MULTI-OBJECTIVE RANKING AND SELECTION PROCEDURES 

When two or more performance measures or objectives are concerned in selecting the best among 
k populations, we call them ‘multi-objective ranking and selection’ (MORS) problems. This section 
introduces MORS procedures that have appeared in the literature so far. There are not many of 
them, but they are too important to ignore. 
 
In the multi-objective context, one needs to determine how to define the best system designs when 
multiple (usually conflicting) performance measures are considered. Most modern approaches 
employ the concept of Pareto optimality for this purpose. In this concept, instead of a single best 
solution, a set of solutions that is not dominated by any other feasible solutions is defined to form 
a Pareto optimal set. We first informally discuss Pareto optimality. (See [23] for a formal definition 
of Pareto optimality.) 
 
Consider the deterministic bi-objective Schaffer function No. 1, defined as [24]: 
 

𝑀𝑖𝑛 
𝑓1(𝑥) = 𝑥2

            𝑓2(𝑥) = (𝑥 − 2)2       where  − 105 ≤ 𝑥 ≤ 105. 

 
It is easy to see, on inspection, that 0 ≤ 𝑥 ≤ 2. If 𝑥 = 0, then 𝑓1(𝑥) = 0 and 𝑓2(𝑥) = 4; but if  𝑥 = 2, 
then 𝑓1(𝑥) = 4 and 𝑓2(𝑥) = 0. The values in [0,4] form the Pareto set of this problem. The set can 
be visualised as illustrated in Figure 2. 
 

 

 Figure 2: Graphic display of the Pareto set of the Schaffer 1 function 

Now suppose that we studied a stochastic problem with simulation, and that six system designs were 
considered. The estimations for 𝑓1(𝑥) and 𝑓2(𝑥) were observed with 𝑛0 independent replications per 
design. The results are shown in Figure 3, together with a few important concepts. 
 
First, consider the rightmost point, labelled ‘A’. Here, the estimations for this design are 𝑓1(𝑥)= 2.2 
and 𝑓2(𝑥)= 0.48. Second, note that for each estimation, a distribution per objective is associated 
with it, as shown for point ‘A’ only. Now consider the two points within the square: the question 
here is, are they statistically significantly different or not? They also have distributions representing 
them in both dimensions, and these distributions might significantly overlap. The question raised 
must be answered while accounting for both objectives (two in this case). In a problem with p 
objectives, the task becomes even more complicated. 
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Figure 3: Visual representation of an estimated Pareto set obtained via simulation 

 
With this background, we can proceed to discuss the indifference-zone, the optimal budget 
allocation, and alternative approaches in the multi-objective ranking and selection domain. 

3.1 The multivariate indifference-zone approach 

There were attempts in the 1980s to solve MORS problems using a multivariate concept [25], [26]. 
This line of research can be seen as an extension of the indifference-zone procedures to the multi-
objective domain by dealing with the multiple objectives (say p objectives) of a system with a p-
variate normal population. Let πi be a p-variate normal population with mean vector µi and positive 
definite covariance matrix Σi, i.e. πi  ∼ Np(µi, Σi) (i = 1, … , k). This approach aims at developing a 
procedure that selects the best population out of the k populations (π1, … , πk) when the means of 

all p variates of the k populations are considered that guarantees the desired confidence P∗. 

 
In this multivariate approach, the concept of the Pareto optimality is not employed. Instead, an 
experimenter-specified function g is introduced to define the best in the multi-variate context. The 
function is defined with a range space {1, 2, … , k} such that  
 
 𝑔(𝜇1, ⋯ , 𝜇𝑘) = 𝑗  (6) 

 
if and only if the experimenter, out of π1, π2, … , πk, would prefer πj with µj as the best. A few more 
concepts are introduced, based on the experimenter-specified function g, such as M = (µ1, µ2, … , 
µk) (the set of true mean vectors), Pj (preference sets), and dB(M) (the distance from M to the 
boundary of the preference set it belongs to), in order to establish a probability requirement similar 
to (1) as follows: 
 
 𝑃(𝐶𝑆) ≥ 𝑃∗   whenever  dB(M) ≥ 𝛿∗.            (7) 
 

That is, the procedure guarantees at least P∗ of choosing the true best population g(M), whenever 

the mean vector M is at least Euclidean distance δ∗ from mean vectors where other populations are 
best. 
 
Dudewicz and Taneja [25] initially proposed a multivariate procedure that achieves the requirement 
(7), which is essentially the multivariate version of Procedure PE of Dudewicz and Dalal [6]. It was 
later improved by Hyakutake [26], to make it more efficient and easier to use in practice. This line 
of research, however, is not found further in the literature, probably due to the fact that the 
procedures do not employ the Pareto optimality concept. The MORS problems were left untouched 
for a decade until the advent of the famous multi-objective optimal computing budget (MOCBA) 
procedure. 

3.2 The multi-objective optimal computing budget allocation procedure 

The multi-objective optimal computing budget allocation (MOCBA) procedure has been undoubtedly 
the most popular method in MORS since it was first proposed by Lee et al. [27] – until now. It is the 
multi-objective version of optimal computing budget allocation (OCBA) procedures discussed in 
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Section 2.2. In essence, the MOCBA procedure allocates the limited simulation budget (the number 
of simulation replications) among k systems, so that the probability of incorrect selection is 
minimised. Two types of error are associated with the probability of incorrect selection: a Type I 
error and a Type II error. According to Lee et al. [28], a Type I error occurs when at least one truly 
dominated system design is observed as being non-dominated, while a Type II error occurs when at 
least one truly non-dominated system design is observed as dominated by other system designs. In 
simple terms, this means that one might incorrectly include a system design in the estimated Pareto 
set while it is inferior to at least one of the other members of the set (Type I error), or one might 
incorrectly exclude a system design from the estimated Pareto set when it should be a member of 
the set (Type II error). In the MOCBA procedure, these two types of error are approximated, and 
then bounded by two upper bounds ub1 and ub2 respectively. To minimise ub1, the optimisation 
model is defined as 
 

 min
𝑁1,⋯,𝑁𝑘

    𝑢𝑏1 

 𝑠. 𝑡.       𝑁1 + ⋯ + 𝑁𝑘 ≤= 𝑇 (8) 
 𝑁𝑖 ≥ 0, 
 
where Ni is the number of simulation replications allocated to system design i and T denotes the 
simulation budget – i.e., the total number of simulation replications available. The MOCBA procedure 
provides an asymptotic allocation rule, which is proved to be an optimal solution to the above 
simulation model as 𝑇 → ∞. The allocation rule itself is not discussed here for the purpose of 
simplicity. Interested readers are referred to [28]. 

3.3 The new attempts at multi-objective ranking and selection 

The MOCBA procedure is extremely complicated and very difficult to apply, but has nevertheless 
been widely used because it is virtually the only method applicable in MORS. Very recently a few 
new attempts have been made to develop simpler MORS procedures. 
 
Feldman et al. [29] and Hunter and Feldman [30] discuss ideas that have the same approach in 
principle – one in the multi-objective context, the other in the bi-objective context. The research 
is at an early stage, with the ultimate goal of developing an asymptotic simulation budget allocation 
rule in a multi-objective context. They claim, therefore, that the method is a direct competitor to 
the MOCBA procedure. They mean to achieve the goal by adopting the concept of the SCORE 
(sampling criteria for optimisation using rate estimators) allocation rule [31], which is a simulation 
budget allocation rule for constrained simulation optimisation problems.  
 
Branke and Zhang [32] have proposed another MORS procedure: the myopic multi-objective budget 
allocation (M-MOBA). It is a very simple yet efficient MORS method, which looks one step ahead (thus 
‘myopic’) at each iteration. Suppose that ni samples have been allocated to system design i (i = 1, 
… , k) up to the current iteration, and now the algorithm is about to allocate τ more samples. The 
M-MOBA procedure investigates which system design i would have the biggest probability of changing 
the current Pareto set if all τ new samples were allocated to system design i and none were allocated 
to the rest. It allocates the τ samples to the system design with the highest probability. The principle 
is that, if additional samples allocated to system design i do not lead to a change in the current 
Pareto set, then, in the myopic sense, they do not have any value. However, if the additional samples 
cause a change to the current Pareto set, then this information is assumed to be helpful. The system 
design i is then simulated with the additional samples, bringing an improvement to the current 
Pareto set. 
 
Research work on MORS is relatively new, and we believe that there are still many opportunities for 
refinement, improvement, and new development. 

4 CONCLUSION 

In this paper we reminded the simulation practitioner of the development of R&S procedures. Since 
simulation studies are usually concerned with what-if analyses, they must be able to distinguish good 
system designs, especially when stochastic designs are simulated. Systems designs might seem to 
differ numerically, but the important question for the simulation practitioner is: Which of the system 
designs differ statistically significantly from the others? Once this question has been answered, only 
then can one or more alternatives be proposed to the final decision-makers (e.g., financial officers, 
senior engineering management, directors). Ranking and selection (R&S) procedures not only answer 
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this question, but also extend the scope of simulation applications from the traditional what-if 
analysis (as a tool to improve the current operations of the system) to the level of optimisation (i.e., 
finding the best solution for the current system among a number of possible solutions).  
 
This paper provides a general view of the R&S research area by reviewing past and current R&S 
procedures from a historical point of view. The (single-objective) R&S research begins with the 
indifference-zone procedures in the 1950s, which set the major trend until the early 2000s, when 
the optimal computing budget allocation (OCBA) procedures took over. In multi-objective ranking 
and selection (MORS), the multivariate approach appeared briefly in the 1980s, followed by the 
multi-objective optimal computing budget allocation (MOCBA) procedure, which has clearly been 
the predominant method since it was first introduced in 2004. Very recently, however, new attempts 
have been made to develop simpler MORS methods than the MOCBA procedure – an encouraging and 
desirable development.  
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