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ABSTRACT 

The bacteria foraging algorithm (BFA) is a new computation technique inspired by the social 
foraging behaviour of Escherichia coli (E. coli) bacteria. Since the introduction of the BFA 
by Kevin M. Passino, there have been many challenges in employing this algorithm to 
problems other than those for which the algorithm was proposed. This research aims to 
apply this emerging optimisation algorithm to develop a mixed-integer programming model 
for designing cellular manufacturing systems (CMSs), and production planning in dynamic 
environments. In dynamic environments, product mix and part demand vary under multi-
period planning horizons. Thus the best-designed cells for one period may not be adequate 
for subsequent periods, requiring their reconstruction. The advantages of the proposed 
model are as follows: consideration of batch inter-cell and intra-cell material handling by 
assuming the sequence of operations, allowing for alternative process plans for part types, 
and consideration of machine copying, with an emphasis on the effect of trade-offs 
between production and outsourcing costs. The goal is to minimise the sum of the 
machines’ constant and variable costs, inter-cell and intra-cell material handling costs, 
reconstruction costs, partial subcontracting costs, and inventory carrying costs. In addition, 
a newly-developed BFA-based optimisation algorithm has been compared with the branch 
and bound algorithm. The results suggest that the proposed algorithm performs better than 
related works. 

OPSOMMING 

Die ‘bacteria foraging algorithm’ (BFA) is ‘n berekeningstegniek gebaseeer op die sosiale 
soekgedrag van Escherichia coli (E. coli) bakterieë. Sedert die bekendstelling van BFA was 
daar talle uitdagings oor toepassings van die algoritme op ander probleme as dié waarvoor 
dit ontwikkel is. Dié navorsing poog om deur toepassing van die algoritme ‘n gemengde 
heelgetalprogrammeringmodel te ontwikkel vir die ontwerp van sellulêre vervaardiging-
stelsels sowel as die produksiebeplanning in dinamiese omgewings. Die doel is om die som 
van die masjienkoste, inter- en intraselmateriaalhanteringkoste, rekonstruksiekoste, 
gedeeltelike subkontrakteringkoste sowel as voorraaddrakoste te minimiseer. ‘n Nuut 
ontwikkelde BFA-optimiseringalgoritme is ook met die vertakkings-en-begrensingsalgoritme 
vergelyk. Die resultate toon dat die voorgestelde algoritme gunstig presteer in vergelyking 
met soortgelyke algoritmes. 
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1. INTRODUCTION 

Cellular manufacturing is described as a manufacturing method that produces part families 
within a single line or cell of machines serviced by operators and or robots that work only 
within the line or cell. 
 
Cell formation (CF), as the first and most important step in designing cellular 
manufacturing systems, includes two fundamental tasks: part-family formation, and 
machine-cell formation. Part-family formation groups parts with similar geometric 
characteristics or processing necessities to determine the benefits of their similarities for 
design or manufacturing purposes. Because of the growing variety of consumer goods and 
shorter product life cycles, manufacturing organisations often face variations in product 
demand and product mix, leading to a dynamic or unstable production environment [19]. In 
dynamic production environments, a multi-period planning horizon is considered in which 
the product mix or the part demand rate in each period might be different – e.g., cyclical 
products demand. As commonly discussed in the literature, traditional CMS has many 
operational advantages over other manufacturing systems, such as job shop and flow shop; 
yet there are also some drawbacks, such as the limitation in shop flexibility and machine 
utilisation [19]. Traditional CMS discounts any changes in demand over time from product 
redesign and other factors. It assumes that product mix and part demand are constant for 
the entire planning horizon. Product mix passes on a set of part types to be produced in 
each period. In a dynamic environment, a planning horizon can be separated into smaller 
periods, where each has different product mix and demand requirements. Accordingly, the 
formed cells in a particular period may not be optimal or efficient for the next period.  
 
To overcome the drawbacks of traditional CMS, the concept of the dynamic cellular 
manufacturing system (DCMS) has been introduced [19]. DCMS involves the reconstruction 
of manufacturing cells, including part families and machine groups in each period. 
Reconstruction entails the substitution of existing machines between cells, called ‘machine 
replacement’; adding new machines to cells, or ‘machine copying’; and removing existing 
machines from cells. Recently, the advancing computational practice of swarm intelligence 
has promised solutions to many engineering and financial problems. It has been found to be 
a powerful method in domains where analytical solutions have not been very effective.  
 
The Bacterial Foraging Optimisation (BFO), invented by Passino [18], is one such 
evolutionary computational approach. It is inspired by the foraging behaviour of Escherichia 
coli bacteria in human intestines. According to this approach, foraging is seen as an 
optimisation process: the bacterium strives to maximise the energy gained per unit of 
foraging time. The BFO has been successfully applied to various real-world problems, such 
as harmonic estimation by Mishra [15], transmission loss reduction by Tripathy et al. [26], 
active power filter for load compensation by Mishra & Bhende [16], power network by 
Tripathy & Mishra [25], load forecasting by Ulagammai et al. [27], independent component 
analysis by Acharya et al. [1], identification of nonlinear dynamic systems by Majhi & Panda 
[11,12] and Panda et al. [17], stock market prediction by Majhi et al. [14], and adaptive 
channel equalisation by Majhi et al. [13].  
 
In this paper, the bacteria foraging algorithm (BFA), which is a kind of metaheuristic 
algorithm, is proposed for minimising the sum of the machine constant and variable costs, 
inter-cell and intra-cell material handling, reconstruction costs, inventory costs, back order 
costs, and subcontracting costs in dynamic machine cell formation problems. 
 
This paper is organised as follows: Section 2 introduces the literature review. Section 3 
presents the proposed dynamic cell formation model. Section 4 overviews the optimisation 
of bacterial foraging and presents the proposed bacterial foraging algorithm. Computational 
experiences, with a number of test problems drawn from the literature, are shown in 
Section 5. Section 6 summarises the findings and draws conclusions. 
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2. LITERATURE REVIEW 

The idea of the dynamic cellular manufacturing system (DCMS) was introduced by Rheault 
[19]. Seifoddin & Djassemi [23] introduced a simple dynamic part assignment (DPA) 
procedure and evaluated its effects on the performance of cellular manufacturing systems. 
In this procedure, rerouting of parts among machine cells is permitted for better use of 
machines. Baykasogylu & Gindy [4] developed a simulated annealing-based procedure for 
dynamic layout. Tavakkoli-Moghaddam et al. [24] discussed solving a cell formation (CF) 
problem in dynamic conditions by applying some traditional meta-heuristic methods such as 
the genetic algorithm, SA, and tabu search.  
 
Jeon & Leep [9] developed a methodology that can be used to form manufacturing cells, 
applying both a new similarity coefficient based on the number of alternative routes during 
machine failure, and demand changes for multiple periods. The methodology is divided into 
two phases. A new similarity coefficient, which takes into account the number of available 
alternative routes during machine failure, is suggested in Phase I. A new methodology for 
cell formation, which considers the scheduling and operational aspects in cell design under 
demand changes, is begun in Phase II.  
 
Defersha & Chen [6] proposed a comprehensive mathematical model for the design of CMS, 
based on the tooling requirements of the parts and the tooling available on the machines. 
The model integrates dynamic cell configuration, alternative routings, lot splitting, 
sequence of operations, multiple units of identical machines, machine capacity, workload 
balancing among cells, operation cost, cost of subcontracting part processing, tool 
consumption cost, setup cost, cell size limits, and machine adjacency constraints.  
 
Defersha & Chen [7] developed a mathematical programming model following an integrated 
approach to cell configuration and lot sizing in a dynamic manufacturing environment. The 
model development also takes into account the impact of lot sizes on product quality. The 
solution of the mathematical model is to minimise both production and quality-related 
costs.  
 
Boulif & Atif [5] studied manufacturing cell formation, considering the dynamic behaviour 
of the production system. First, they discussed the importance of considering the dynamic 
aspect of the problem, which has been insufficiently studied in the related literature. They 
further argued that, by considering a multi-periodic planning horizon, the problem can be 
resolved according to two strategies: passive and active.  
 
Safaei et al. [20] developed a mixed-integer programming model to design the cellular 
manufacturing systems (CMSs) under dynamic environments. The advantages of the 
proposed model are that it takes into account the batch inter-cell and intra-cell material 
handling by assuming the sequence of operations; and it considers alternative process plans 
for part types, as well as machine copying. The major constraints are maximum cell size 
and machine time-capacity. The aim is to minimise the sum of the machine constant and 
variable costs, inter-cell and intra-cell material handling, and reconstruction costs. An 
efficient hybrid meta-heuristic method, based on mean field annealing and simulated 
annealing (MFA–SA), is applied to solve the proposed model. In this case, the MFA technique 
is used to generate a good initial solution for SA.  
 
Safaei et al. [21] presented an integration of explicit uncertainty for a cell formation 
problem (CFP) with a dynamic condition in cellular manufacturing systems (CMS). A fuzzy 
approach was developed to solve an extended mixed-integer programming model of the 
dynamic CFP, in which piecewise fuzzy numbers are coefficients in the objective function 
and the technological matrix. The method is proposed to find out the optimal cell 
configuration in each period, with the optimal achievement of fuzzy objectives under the 
given constraints.  
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Safaei et al. [22] proposed an integrated mathematical model of multi-period cell 
formation and production planning in a dynamic cellular manufacturing system (DCMS) with 
the aim of minimising machines’ inter-cell and intra-cell travelling costs, reconstruction, 
partial subcontracting, and inventory carrying costs. Emphasis is placed on the effect of the 
trade-off between production and outsourcing costs on the re-configuration of the cells in 
cellular manufacturing systems (CMSs) in a dynamic environment. 
 
Bajestani et al. [3] presented a multi-objective dynamic cell formation problem, where the 
total cell load variation and sum of the miscellaneous costs – i.e., machine cost, inter-cell 
material handling cost, and machine replacement cost – are minimised concurrently, and a 
new multi-objective scatter search (MOSS) is designed for finding the local Pareto-optimal 
frontier.  
 
Ah Kioon [2] presented and analysed a comprehensive model for the design of cellular 
manufacturing systems. A recurring theme in the research is a gradual approach when 
formulating CMS models. The proposed model is comprehensive, with a more integrated 
approach to CMS design, where production planning and system reconstruction decisions are 
integrated.  
 
Deljoo et al. [8] discussed solving a cell formation problem in dynamic conditions using the 
genetic algorithm (GA). Some errors related to model formulation were discussed, while a 
new improved formulation for dynamic cell formation (DCF) problem was presented.  
 
Mahdavi et al. [10] presented an integer mathematical programming model for the design 
of cellular manufacturing systems in a dynamic environment. The benefits of the proposed 
model are as follows: consideration of multi-period production planning, dynamic system 
reconstruction, duplicate machines, machine capacity, available time of workers, and 
worker assignment. The intention of the proposed model is to minimise holding and 
backorder costs, inter-cell material handling costs, machine and reconstruction costs, and 
hiring, firing, and salary costs. 
 
As a general rule, incorporation of the theories of CMS design and PP is meant to be basic to 
the modelling and simulation of the real production environments. In fact, variations in 
product mix, volume, and introduction of new products are the key aspects that validate 
the incorporation of the CMS and PP. The research in this paper refers to the model of 
Safaei [22]. The purpose of a typical PP problem is to minimise total production-related 
costs such as variable production, inventory, and shortage costs, over a fixed planning 
horizon [22]. The main constraints of PP problem areas go beyond: 1) the inventory balance 
equation for balancing the inventory and/or shortages with those from the previous period, 
production quantity, and demand quantity; 2) capacity constraints that ensure that the 
total workload for each supply (labour, machines, etc.) does not exceed the capacity in 
each period [22]. Because of the dynamic environment of PP problems, the incorporation of 
CMS and PP makes problems very complex and difficult to compute. The reason is that the 
cell rearrangement is the vital operational feature of the CMS design in the dynamic 
environment, all of which must be considered in a real incorporated model [22]. 
 
Meta-heuristics methods, including Genetic Algorithm (GA), Simulated Annealing (SA), Tabu 
Search (TS), Ants Colony Systems (ACS), Particle Swarm Optimisation (PSO), and Bee Swarm 
Optimisation (BSO), are popular algorithms for solving cell formation problems using MPIM 
(Machine Part Incidence Matrix). Therefore it is believed that the opportunity exists for a 
wide range of research into the application of meta-heuristic techniques on cell formation, 
by considering real-life production factors and the effects of meta-heuristic tools’ 
parameters that are set up to provide guidelines for users. As a consequence, it is advisable 
to examine the performance of meta-heuristic models using real-value matrices.  
 
This research initiates the application of a bacteria foraging algorithm in dynamic cell 
formation. The model has been tested using a wide variety of problems reported in the 
literature, and has been found to produce consistently good results. The major purpose of 
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this work is to develop a simple yet efficient methodology that is capable of producing 
quick solutions for shop floor managers with minimal computational efforts. 

3. PROBLEM FORMULATION 

In this section a new mixed-integer programming model of integrated DCMS and production 
process planning is formulated under the following assumptions [22]. 

3.1 Assumptions 

1) Each part type has a number of operations that should be processed respectively as 
numbered. 

2) The processing time for all operations of a part type on different machine types is 
known and determined. 

3) The demand for each part type in each period is acknowledged and determined. 
4) The abilities and time-capacity of each machine type are known and constant over the 

planning horizon. 
5) The constant cost of each machine type is recognised. The constant cost is independent 

of the workload allocated to the machine, and entails rent or overall service costs. This 
cost is considered for each machine in each cell and period, whether the machine is 
active or idle. 

6) The variable cost of each machine type is recognised. Variable cost entails an operating 
cost that is dependent on the workload allocated to the machine. 

7) The replacement cost of each machine type from one cell to another between periods is 
recognised. All machine types can be moved to any cell. Replacement cost is the sum of 
uninstalling, shifting, and installing costs, where installing and uninstalling costs are 
supposed to be the same. Note that, if a new machine is added to the system, we have 
only an installing cost. On the other hand, if a machine is removed from the system, we 
have only an uninstalling cost. Thus we assume that the unit cost of adding a new 
machine or removing a current machine is half of the replacement cost [22]. 

8) Parts are moved between and within cells as batches. As mentioned earlier, inter- and 
intra-cell batches have different costs and sizes. To reduce complexity, unit inter- and 
intra-cell travelling costs are constant for all moves, regardless of the distance 
travelled. In other words, we suppose that the distance between cells is the same, the 
distance between machines in each cell is the same, and also all machine types have the 
same dimensions [22].  

9) The maximum number of cells formed in each period is specified beforehand. 
10) The maximum cell size is known beforehand. A lower limit is not considered for the cell 

size, because we suppose that smaller cells are preferable. 
11) All machine types are supposed to be multipurpose. Thus, each machine type can carry 

out one or more operations without incurring a modification cost. Likewise, each 
operation-part can be carried out on different machine types with different processing 
times. 

12) Holding and backorders inventories are allowed between periods with known costs. Thus 
the demand for a part in a given period can be satisfied in the preceding or succeeding 
periods. 

13) Partial subcontracting is allowed. This means that all or only a part of the demand of 
the part types can be subcontracted in each period. Also, the time-gap between 
releasing and receiving orders – the lead time – is known in advance. 

3.2 Notation 

Indices 
c        index for manufacturing cells (c = 1, . . . , C) 
m       index for machine types (m = 1, . . . ,M) 
p        index for part types (p = 1, . . . , P) 
h        index for time periods (h = 1, . . . ,H) 
j         index for operations belong to part p (j = 1, . . . ,Op) 
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3.3 Input parameters 

P number of part types 
𝑂𝑝  number of operations for part p 
M  number of machine types 
C maximum number of cells that can be formed 
𝐷𝑝ℎ  demand for part p in period h 
𝛽𝑝𝑖𝑛𝐿𝑦𝑟          batch size for inter-cell travelling of part p 
𝛽𝑝𝑖𝑛𝐿𝑟𝐿         batch size for intra-cell travelling of part p 
𝛾𝑖𝑛𝐿𝑦𝑟       inter-cell travelling cost per batch 
𝛾𝑖𝑛𝐿𝑟𝐿     intra-cell travelling cost per batch. For justification of CMS, it is assumed                                

that (𝛾𝑖𝑛𝐿𝑟𝐿/𝛽𝑝𝑖𝑛𝐿𝑟𝐿 ) < ( 𝛾𝑖𝑛𝐿𝑦𝑟/𝛽𝑝𝑖𝑛𝐿𝑦𝑟 ) [22].    
𝛼𝑦  constant cost of machine type m in each period 
𝛽𝑦  variable cost of machine type m for each unit time  
𝛿𝑦            replacement cost of machine type m 
𝑇𝑦  time-capacity of machine type m in each period 
UB  maximal cell size 
𝑡𝑗𝑝𝑦              processing time required to perform operation j of part type p on machine type m 
𝑎𝑗𝑝𝑦 = 1  if operation j of part p can be done on machine type m; 0 otherwise 
𝜆𝑝  unit cost of subcontracting part p        
𝜂𝑝 inventory carrying cost per unit part p during each period 
𝜌𝑝 backorder cost per unit part p during each period 
l  lead time where l≤ 𝐻 − 1 
𝑀∞ large positive number  

3.4 Decision variables 

𝑁𝑦𝑦ℎ  number of machines type m allocated to cell c in period h 
𝐾𝑦𝑦ℎ         
+  number of machines type m added in cell c in period h 

𝐾𝑦𝑦ℎ       
−  number of machines type m removed from cell c in period h 

𝑋𝑗𝑝𝑦𝑦ℎ = 1    if operation j of part type p is done on machine type m in cell c in period h. 
𝑄𝑝ℎ number of  part p that produced during period h 
𝑦𝑝ℎ =1 if  𝑄𝑝ℎ > 0; 0 otherwise 
𝑆𝑝ℎ  number of demand of part p to be subcontracted in period h 
𝐼𝑝ℎ inventory/backorder level of part p at the end of period h.  
 A negative value of 𝐼𝑝ℎ means the backorder level or shortage 

3.5 Mathematical model 

By using the above notations, the proposed model is written as follows: 
  

min   𝑍 = � � �𝑁𝑦𝑦ℎ
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𝐼𝑝ℎ = 𝐼𝑝(ℎ−1) + 𝑄𝑝ℎ + 𝑆𝑝(ℎ−1) − 𝐷𝑝ℎ             ∀𝑝, ℎ                                                                                         (6) 
𝐼𝑝ℎ+ ≤ 𝐼𝑝ℎ , 𝐼𝑝ℎ− ≥ −𝐼𝑝ℎ         ∀𝑝, ℎ;   𝐼𝑝𝐻 = 0      ∀𝑝                                                                                           (7) 
𝑄𝑝ℎ ≤ 𝑀∞𝑦𝑝ℎ                       ∀𝑝, ℎ                                                                                                                         (8) 
𝑥𝑗𝑝𝑦𝑦ℎ , 𝑦𝑝ℎ ∈ {0,1},𝑁𝑦𝑦ℎ, 𝐾𝑦𝑦ℎ 

+ , 𝐾𝑦𝑦ℎ
− , 𝑄𝑝ℎ, 𝐼𝑝ℎ+ , 𝐼𝑝ℎ− , 𝑆𝑝ℎ ≥ 0   and integer ,−∞ < 𝐼𝑝ℎ < ∞ and  

integer                                                                                                                          (9) 
 
The objective function given in Eq. (1) is to minimise the total sum of the machine constant 
and variable costs, inter-cell and intra-cell travelling cost, reconstruction cost, inventory 
cost, backorder cost, and subcontracting costs over the planning period. The first term 
represents the constant cost of all machines needed in all cells over the planning period. 
This cost is attained by the product of the number of machine type m allocated to cell c in 
period h and their associated costs. This term does not allow for extra machine copying, 
and forces the model to achieve maximum machine exploitation. The second term is the 
variable cost of all machines needed in all cells over the planning period. It is the sum of 
the product of the time-workload assigned to each machine type in each cell and their 
associated cost. This term balances the workload assigned to machines at each cell [20]. It 
should be remembered that each machine type with low (or high) constant cost does not 
necessarily have a low (or high) variable cost, and vice versa. Thus there is a deal between 
the first and second terms of the objective function, with the remaining terms of the 
objective function for choosing the machines with high capability and low relatively cost.  
 
In general, the proposed model picks a machine type based on four criteria: constant cost, 
variable cost, processing capabilities, and capacity [20]. The third term computes the total 
inter-cell material handling cost. It is the sum of the product of the number of inter-cell 
transfers (i.e., 𝑄𝑝ℎ/𝛽𝑝𝑖𝑛𝐿𝑦𝑟 ) resulting from both the consecutive operation of each part type 
and the cost of moving an inter-cell batch of each part type (𝛾𝑖𝑛𝐿𝑦𝑟). Likewise, the fourth 
term of the objective function calculates the total intra-cell material handling cost. It is 
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the sum of the number of the product of intra-cell transfers (i.e., 𝑄𝑝ℎ/𝛽𝑝𝑖𝑛𝐿𝑟𝐿 ) resulting from 
both the consecutive operation of each part type and the cost of moving an intra-cell batch 
of each part type (𝛾𝑖𝑛𝐿𝑟𝐿). The sequence of operations directly affects the inter- and intra-
cell moving costs [20]. If two consecutive operations of a part type that must be processed 
are assigned to different cells, then the system will acquire a unit inter-cell moving cost 
(𝛾𝑖𝑛𝐿𝑦𝑟). Conversely, if two consecutive operations of a part type are allocated to the same 
cell but to different machines, then the system will acquire a unit intra-cell moving cost 
(𝛾𝑖𝑛𝐿𝑟𝐿). From the modelling approach, if two consecutive operations j and j+1 of part p 
cause inter- or intra-cell moving in period h, then, 𝜔𝑗𝑝𝑦ℎ = ∑ �𝑥(𝑗+1)𝑝𝑦𝑦ℎ − 𝑥𝑗𝑝𝑦𝑦ℎ� = 1𝑀

𝑦=1 . 
On the other hand, if two consecutive operations j and j+1 of part p cause only inter-cell 
moving in period h, then,  𝜇𝑗𝑝𝑦ℎ = �∑ 𝑥(𝑗+1)𝑝𝑦𝑦ℎ − ∑ 𝑥𝑗𝑝𝑦𝑦ℎ

𝑀
𝑦=1

𝑀
𝑦=1 �. Consequently, if 

𝜔𝑗𝑝𝑦ℎ − 𝜇𝑗𝑝𝑦ℎ = 1 , then intra-cell moving will be encountered [20]. 
 
Inter-cell and intra-cell moving costs are computed with respect to the third and fourth 
terms of the objective function. The coefficient 1/2 in the third and fourth terms is 
implanted because each inter- and intra-cell movement has been calculated twice, since 
moving from a cell or a machine corresponds to moving towards another cell or machine.  
 
The fifth term of the objective function computes the reconstruction cost in a dynamic 
environment. This term is the sum of the number of products of relocated, added, and/or 
eliminated machines, and their associated costs. The coefficient 1/2 in this term is 
implanted because each replacement is considered twice in computations [20]. 
 
The last three terms are related to the total sum of the PP costs, including inventory 
carrying, backorder incurring, and subcontracting costs. The first term is the sum of the 
product of the inventory level for each part type at the end of the given period, and 
related cost. Similarly, the second term is the sum of the product of the backorder shortage 
level for each part type at the end of the given period, and related cost. The third term is 
the sum of the product of the number of the subcontracted parts and related cost [22]. 
 
Eq. (2) ensures that each part operation is assigned to one machine and one cell in each 
period. Eq. (3) guarantees that machine capacities are not exceeded, and thus satisfy the 
demand. Also, this equation determines the required number of each machine type in each 
cell, to avoid machine duplication. Inequality (4) makes certain that the maximum cell size 
is not violated. Eq. (5) is named ‘balance constraint’, and ensures that the number of 
machines in the current period is equal to the number of machines in the previous period, 
plus the number of machines being moved in, minus the number of machines being moved 
out. On the other hand, it ensures the conserving of machines over the time period, and 
remembers the available machine types in each period.  
 
The last term of the objective function and combination constraint (6) sets up a connection 
between periods [20]. Eq. (6) points out the balance inventory constraint between periods 
for each part type in each period. It denotes that the inventory level of each part at the 
end of each period is equal to the inventory level of the part at the end of the previous 
period, plus the quantity of production and quantity of subcontracting, minus the part 
demand rate in the current period. Eq. (7) finds out the inventory and backorder level of 
each part type in each period. Clearly, the total demand for all part types over the 
planning period must be fulfilled during the planning period. As a result, the inventory and 
backorder level of all part types in the last period must be zero [22].  
 
Eq. (8) balances Eq. (2), guaranteeing that a portion of the part demand can be produced 
at the given period if its operations are allocated in the first constraint given in Eq. (2). Eq. 
(5), Eq. (6), and Eq. (7) establish a connection between periods. By removing these 
equations, the model will be fully decomposed into sub-problems corresponding to different 
periods [22]. This decomposition approach can be used to obtain a lower boundary for the 
objective function value. By removing the last three terms of Eq. (1), and relaxing from the 
demands of Eqs. (6) – (9), the basic DCMS model of Safaei et al. [20] can be obtained 
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without considering outsourcing. Linearisation of the proposed model is explained fully in 
[22]. 
 
By reconstructing Eq. (3) and (5), 𝑁𝑦𝑦ℎ ,𝐾𝑦𝑦ℎ 

+  and 𝐾𝑦𝑦ℎ 
− can be formulated as follows: 

𝑁𝑦𝑦ℎ =     ���𝑄𝑝ℎ𝑡𝑗𝑝𝑦𝑥𝑗𝑝𝑦𝑦ℎ

𝑂𝑝

𝑗=1

𝑃

𝑝=1

�/𝑇𝑦                ∀ 𝑡, 𝑙, ℎ,                                                                     (10) 

 
𝐾𝑦𝑦ℎ 
+ = max�𝑁𝑦𝑦ℎ − 𝑁𝑦𝑦(ℎ−1), 0� , 𝐾𝑦𝑦ℎ 

− = max�𝑁𝑦𝑦(ℎ−1) − 𝑁𝑦𝑦ℎ, 0�                                 (11) 

4. BACTERIA FORAGING OPTIMISATION: A BRIEF OVERVIEW AND ALGORITHM 

4.1 BFO operators 

The survival of a species in any natural evolutionary process depends on its fitness criteria, 
which in turn rely on its food searching and motile behaviour. The law of evolution supports 
those species that have a better food searching ability, and either eliminates or reshapes 
those with a poor search ability. The genes of those species that are stronger propagate in 
the evolutionary chain, since they possess the ability to reproduce even better species in 
future generations. In the light of this, a clear understanding and modelling of the foraging 
behaviour in any evolutionary species is critical to its successful application in any non-
linear system optimisation algorithm. The foraging strategy of Escherichia coli bacteria in 
human intestines can be explained by four processes: chemo taxis, swarming, reproduction, 
and elimination–dispersal [18]. 
 
The characteristics of bacteria travelling in search of food are defined in two ways: 
swimming and tumbling, referred to together as ‘chemo taxis’. A bacterium is said to be 
‘swimming’ if it travels in a predefined direction, and ‘tumbling’ if moving in an altogether 
different direction. Mathematically, the tumble of any bacterium can be described by a 
unit length of random direction φ(j) multiplied by the step length of that bacterium C(i). In 
the case of swimming, this random length is predefined [18]. 
 
For the bacteria to reach the richest food location (i.e., for the algorithm to converge at 
the solution point), it is desired that the optimum bacterium, until a point of time in the 
search period, tries to attract other bacteria so that they converge together at the desired 
location (solution point) more rapidly [18]. Achieving this entails a penalty function based 
upon the relative distances of each bacterium from the fittest bacterium until that search 
duration is added to the original cost function. Eventually this penalty function becomes 
zero when all the bacteria have merged into the solution point. The purpose of swarming is 
to make the bacteria congregate into groups and travel as concentric units of high density 
[18]. Since a cell-to-cell attraction calculation is needed for all bacteria in swarming, 
swarming increases the computational time of algorithm execution, while it only slightly 
enhances the performance of the BFO algorithm. Thus swarming has not been considered in 
the proposed algorithm. 
 
After evolving through several chemo tactic stages, the original set of bacteria reaches the 
reproduction stage. Here the best set of bacteria (selected from all of the chemo tactic 
stages) is divided into two groups. The healthier group of bacteria replaces the other group, 
which is eliminated due to its poorer foraging abilities. This effects a constant population of 
bacteria in the evolutionary process [18]. After Nc chemo tactic steps, a reproduction step 
is taken. Let Nre be the number of reproduction steps to be taken. To expedite the 
convergence of the proposed algorithm, it is assumed that only 1/5 of bacteria reproduce. 
Let 
 
𝑆𝑟 = 𝑆

5
                                                                                                                          (12) 
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be the number of population members that have had sufficient nutrients to reproduce with 
no mutations. For reproduction, the population is sorted in the order of ascending 
accumulated cost. A higher accumulated cost means that a bacterium has not received 
many nutrients during its lifetime of foraging, and hence is not ‘healthy’ enough, making it 
unlikely to reproduce. Accordingly, the 𝑆 − 𝑆𝑟 least healthy bacteria die and the other 𝑆𝑟 
healthier bacteria are each copied into four places at the same location as their parents   
(S-Sr) bacteria had been copied. This method rewards bacteria that have encountered a lot 
of nutrients, and allows for a constant population size, which is convenient for coding the 
algorithm.  
 
In the evolutionary process, any sudden unexpected event can occur that may drastically 
alter a smooth evolution, thus ultimately leading to the elimination of the set of bacteria 
and/or their dispersal into a new environment. Ironically, instead of disturbing the usual 
chemo tactic growth of the set of bacteria, this unknown event may place a newer set of 
bacteria nearer to the food location [18]. 
 
From a wide perspective, elimination and dispersal are parts of the population level’s long-
distance motion behaviour [18]. In its application to optimisation, it helps to reduce the 
behaviour of stagnation (i.e., trapping bacteria in a premature solution point or local 
optima) that is quite often encountered in such parallel search algorithms [18]. Let Ned be 
the number of elimination-dispersal events. In any elimination and dispersal event, every 
bacterium in the population is considered with probability ped to experience elimination 
and dispersal. 

4.2 Problem-solving representation schema 

To determine the solution representation schema, the two matrices 𝑥ℎ𝑗
𝑝 , and 𝑦ℎ𝑗

𝑝  have been 
used during each period, as shown in Figure 5. The matrix [X] denotes the allocation of 
operation-part to machine, and the matrix [Y] denotes the allocation of operation-part to 
cell. 𝑥ℎ𝑗

𝑝  is the machine by which the operation j of part p must be performed, where 
𝑥ℎ𝑗
𝑝 ∈ 𝜑𝑗𝑝 and  𝜑𝑗𝑝 = {𝑡|𝑎𝑗𝑝𝑦 = 1} . Also, 𝑦ℎ𝑗

𝑝   is the cell that operation j of part p is 
allocated to, where 1 ≤ 𝑦ℎ𝑗

𝑝 ≤ 𝐶.  
 

                         X=�
𝑥11
𝑝 ⋯ 𝑥1𝑂𝑝

𝑝

⋮ ⋮
𝑥ℎ1
𝑝 ⋯ 𝑥𝐻𝑂𝑝

𝑝
�                             Y=�

𝑦11
𝑝 ⋯ 𝑦1𝑂𝑝

𝑝

⋮ ⋮
𝑦ℎ1
𝑝 ⋯ 𝑦𝐻𝑂𝑝

𝑝
�        

Figure 1: Solution representation schema in each period h 

To generate neighborhood solutions, four heuristic operators have been used with respect 
to the proposed structure, shown in Figure 1, as follows: 
 
Local-mutation on [X] matrix: To implement this operator, an operation of a part in a 
period (e.g., operation j of part p in period h) is randomly selected and then randomly 
allocated to another machine as 𝑥ℎ𝑗

𝑝 → 𝑥ℎ𝑗′
𝑝  where 𝑥ℎ𝑗

𝑝 ≠ 𝑥ℎ𝑗′
𝑝  𝑎𝑎𝑎 𝑥ℎ𝑗′

𝑝 ∈ 𝜑𝑗𝑝. 
 
Local-mutation on [Y] matrix: To implement this operator, an operation of a part in a 
period (e.g., operation j of part p in period h) is randomly selected and then randomly 
allocated to another cell as 𝑦ℎ𝑗

𝑝 → 𝑦ℎ𝑗′
𝑝   where 𝑦ℎ𝑗′

𝑝 ≠ 𝑦ℎ𝑗
𝑝  and1 ≤ 𝑦ℎ𝑗′

𝑝 ≤ 𝐶. 
 
Global-mutation on [X] matrix: To implement this operator, a period (e.g., period h of part 
p) is randomly selected and then all its operations in this period are randomly allocated to 
other machines as 𝑥ℎ𝑗

𝑝 → 𝑥ℎ′𝑗
𝑝′  ∀𝑗 where 𝑥ℎ𝑗

𝑝 ≠ 𝑥ℎ′𝑗
𝑝′  and𝑥ℎ′𝑗

𝑝′ ∈ 𝜑𝑗𝑝 ∀𝑗 . 
 
Global-mutation on [Y] matrix: To implement this operator, a period (e.g., period h of part 
p) is randomly selected and then all its operations in this period are randomly allocated to 
the random cell as 𝑦ℎ𝑗

𝑝 → 𝑦ℎ′𝑗
𝑝′  ∀𝑗 where 𝑦ℎ𝑗

𝑝 ≠ 𝑦ℎ′𝑗
𝑝′  and 1 ≤ 𝑦ℎ′𝑗

𝑝′ ≤ 𝐶 ∀𝑗 . 
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a) For i = 1,2,…, S, take a chemo tactic step for bacterium i as follows.  
b) Compute Z( i, t,k,l). 
c) Let 𝑍𝐿𝐿𝐿𝐿 = Z (i ,t,k,l ) to save this value since we may find a better cost via a tumbling or 
swimming. 
d) Tumble 

If 𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦=1 and  𝑝𝑦𝑦𝑦𝑦𝑦𝑦⬚ >RND then DO local mutation for 𝑦ℎ𝑗
𝑝 (𝑖, 𝑡, 𝑘, 𝑙) and  𝑓𝑦𝑦⬚ = 1 

If 𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦=1 and  𝑝𝑦𝑦𝑦𝑦𝑦𝑦⬚ <RND then DO global mutation for 𝑦ℎ𝑗
𝑝 (𝑖, 𝑡, 𝑘, 𝑙)  𝑎𝑎𝑎 𝑓𝑦𝑦⬚=1 

If 𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦=0 and  𝑝𝑥𝑥𝑥𝑥𝑥𝑥⬚ >RND then DO local mutation for  𝑥ℎ𝑗
𝑝 (𝑖, 𝑡, 𝑘, 𝑙)    𝑎𝑎𝑎 𝑓𝑥𝑥⬚=1 

If 𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦=0 and  𝑝𝑥𝑥𝑥𝑥𝑥𝑥⬚ <RND then DO global mutation for  𝑥ℎ𝑗
𝑝 (𝑖, 𝑡, 𝑘, 𝑙)   𝑎𝑎𝑎 𝑓𝑥𝑥⬚=1 

f) Compute Z( i, t + 1,k,l). 
(𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦,  𝑝𝑦𝑦𝑦𝑦𝑦𝑦⬚  𝑎𝑎𝑎  𝑝𝑥𝑥𝑥𝑥𝑥𝑥⬚  𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜 𝑦 , 
𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜 𝑦 𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜 𝑥 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

 

These four operators are experimental and can be used with the same rate, but the system 
designer can tune this operator’s applying rate to accelerate the convergence of the 
algorithm. In other words, when the tuning of the operators is changed, a significant 
improvement cannot be seen in the performance of BFA. After the implementation of each 
operator, the value of the decision variable 𝑁𝑦𝑦ℎ must be updated with respect to the 
entries of matrices [X] and [Y]. This is done by using Eq. (10) and then the decision 
variables 𝑘𝑦𝑦ℎ 

+ and 𝑘𝑦𝑦ℎ 
−  are updated using Eq. (11). 

 
If the intention is to find the minimum of Z (θ), θ€𝑅𝑃, where the gradient 𝛻Z (θ) cannot be 
measured or analytically described, then the bacterial foraging algorithm is employed to 
solve such a non-gradient optimisation problem. First, suppose that θ is the position of a 
bacterium and Z(θ) represents the combined effects of attractants and repellants from the 
environment with, for example, Z(θ) < 0, Z(θ) = 0, and Z(θ) > 0 representing the bacterium 
location in nutrient-rich, neutral, and noxious environments respectively. Basically, chemo 
taxis is a foraging behaviour that implements a type of optimisation where bacteria tend to 
climb up the nutrient concentration (i.e., find lower and lower values of Z (θ)), avoid 
noxious substances, and search for ways out of neutral media (avoid being at positions θ 
where Z (θ) ≥ 0). They implement a type of biased random walk [18]. 
 
Define a chemo tactic step to be a tumble followed by a tumble or a tumble followed by a 
run. Let t be the index for the chemo tactic step. Let k be the index for the reproduction 
step. Let l be the index for the elimination-dispersal event. Let 
 
P( t,k,l ) = {𝜃𝑖( t,k,l )|i =1,2,….,S}                                                                                (13) 
 
represent the position of each member in the population of the S bacteria at the 𝑡𝐿ℎ  chemo 
tactic step, kth reproduction step, and l the elimination-dispersal event. Also let Z(i, t,k,l ) 
denote the cost at the location of the 𝑖𝐿ℎ bacterium 𝜃𝑖( t,k,l ) €𝑅𝑝 (we may drop the indices 
and refer to the 𝑖𝐿ℎ bacterium position as 𝜃𝑖). Note that we shall interchangeably refer to Z 
as being a ‘cost’ (using terminology from optimisation theory) and as being a nutrient 
surface (in reference to the biological connections) [18]. Let Nc be the length of the 
lifetime of the bacteria as measured by the number of chemo tactic steps they take during 
their life. The algorithm in Figure 2 represents the tumbling process. 
 

Figure 2: Pseudo-code of tumbling steps 

If at 𝜃𝑖 (t+1,k,l) the cost Z(i , t+1,k,l ) is better (lower) than at 𝜃𝑖 (t,k,l), then another step 
of swimming  in the same direction will be taken; and again, if that step results in a 
position with a lower cost value than that of the previous step, another step will be taken. 
The swimming continues as long as the cost reduces. However, this process is limited to a 
maximum number of steps, Ns. This means that the cell will tend to keep moving as long as 
it is heading in the direction of increasingly favourable environments. The algorithm in 
Figure 3 describes the swimming process: 
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If 𝑥ℎ𝑗
𝑝  ≠0   and    𝑦ℎ𝑗

𝑝 ≠0 and a(j,p, 𝑥ℎ𝑗
𝑝 )=1 

 then 𝑥𝑗𝑗𝑗𝑗ℎ = 1 else  𝑥𝑗𝑗𝑗𝑗ℎ = 0    ∀ j,h,p 

 

 Swim: 
i) Let m = 0 (counter for swim length). 
ii) While m < Ns (if bacteria have not climbed down too long)  

Let m = m+ 1. 
I f Z( i, t + 1,k,l) < 𝑍𝐿𝐿𝐿𝐿 (if doing better), let 𝑍𝐿𝐿𝐿𝐿 =Z( i, t + 1,k,l) and let 
 
 
            If  𝑓𝑦𝑦⬚=1 then DO global mutation for 𝑦ℎ𝑗

𝑝 (𝑖, 𝑡 + 1, 𝑘, 𝑙)     ∃ h ≠ℎ𝑝, p ≠𝑝𝑝                  
          If  𝑓𝑥𝑥⬚=1  then DO global mutation for 𝑥ℎ𝑗

𝑝 (𝑖, 𝑡 + 1, 𝑘, 𝑙)     ∃ h ≠ℎ𝑝, p ≠𝑝𝑝 
          𝐼𝐼 𝑓𝑥𝑥⬚=1 then DO local mutation for  𝑥ℎ𝑗

𝑝 (𝑖, 𝑡 + 1, 𝑘, 𝑙)     ∃ h ≠ℎ𝑝, p ≠𝑝𝑝 ,j≠𝑗𝑝  
       If  𝑓𝑦𝑦⬚=1 then DO local mutation for  𝑦ℎ𝑗

𝑝 (𝑖, 𝑡 + 1, 𝑘, 𝑙)      ∃ h ≠ℎ𝑝, p ≠𝑝𝑝 ,j≠𝑗𝑝 
 (ℎ𝑝, 𝑝𝑝 ,𝑗𝑝 are numbers of period,part and operation which randomize selected in pervious 
tumbling or swimming period, this strategy  prevents  to fall in local minima.) 

𝑖𝑖 ∑ 𝑁𝑚𝑚ℎ >  𝑈𝑈    ∀ 𝑐, ℎ,𝑀
𝑚=1     then  

        
      Find c′ ∈  {∑ 𝑁𝑚𝑚′ℎ < 𝑈𝑈 }𝑀

𝑚=1   
          If  exist c′ then  
             Move the machines are more than UB in cell c to cell c′ until  ∑ 𝑁𝑚𝑚′ℎ ≤ 𝑈𝑈𝑀

𝑚=1  
                  Set  𝑥ℎ𝑗

𝑝
𝑛𝑛𝑛

 𝑎𝑎𝑎 𝑦ℎ𝑗
𝑝
𝑛𝑛𝑛

   

                  Calculate  objective function 
                  Assign  𝑥ℎ𝑗

𝑝
𝑛𝑛𝑛

𝑎𝑎𝑎 𝑦ℎ𝑗
𝑝
𝑛𝑛𝑛

 𝑡𝑡 𝑥ℎ𝑗
𝑝  𝑎𝑎𝑎 𝑦ℎ𝑗

𝑝  𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
         End 
End     

 

                    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   𝑥𝑗𝑗𝑗𝑗ℎ
⬚

𝑛𝑛𝑛
𝑎𝑎𝑎 𝑁𝑚𝑚ℎ

⬚
𝑛𝑛𝑛 

Figure 3: Pseudo-code of the swimming process 

To satisfy the definition of 𝑥𝑗𝑝𝑦𝑦ℎ (= 1  if operation j of part type p is done on machine type 
m in cell c in period h) and constraint (2), the following subroutine is introduced (Figure 4). 
As indicated in the subroutine, if operation j of part p during period h to cell c (𝑦ℎ𝑗

𝑝 = 𝑙) and 
machine m (𝑥ℎ𝑗

𝑝 = 𝑡) is assigned and 𝑎𝑗𝑝𝑦 =1 then 𝑥𝑗𝑝𝑦𝑦ℎ = 1 else 𝑥𝑗𝑝𝑦𝑦ℎ = 0. 
 
 

 
 

Figure 4: Definition of   𝒙𝒋𝒑𝒎𝒄𝒉 subroutine 

From the viewpoint of factory management, satisfaction of constraint (4) is most critical. 
Therefore, for the changing solution representation schema, the application of a repairing 
programme is needed. The subroutine shown in Figure 5 is designed to solve this problem. 
Accordingly, when the algorithm reaches the final solution, it modifies the solution and 
tries to reallocate machines that occupy more than the maximum cell size to other cells 
that have fewer machines than their cell size constraint. 

Figure 5: Solution representation of schema repairing pseudo-code 

Adding the inventory cost for all periods of any part according to Eq.(6), and considering 
𝐼𝑝𝐻 = 0 ∀𝑝: 
 
𝐼𝑝1 = 𝐼𝑝0 + 𝑄𝑝1 + 𝑆𝑝0 − 𝐷𝑝1                                 ∀𝑝  
 +       +        +       +         + 
𝐼𝑝2 = 𝐼𝑝1 + 𝑄𝑝2 + 𝑆𝑝1 − 𝐷𝑝2                         ∀𝑝 
+       +        +       +         + 
⋮            ⋮         
𝐼𝑝𝐻 = 𝐼𝑝(𝐻−1) + 𝑄𝑝𝐻 + 𝑆𝑝(𝐻−1) − 𝐷𝑝𝐻            ∀𝑝                                                               (14) 
 
this summing up leads to: 
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𝑆𝑄𝑝 = �∑ 𝑆𝑝ℎ𝐻

ℎ=1 + ∑ 𝑄𝑝ℎ𝐻
ℎ=1 � = ∑ 𝐷𝑝ℎ −𝐻

ℎ=1 𝐼𝑝0    ∀𝑝                                                         (15) 
 
This relationship can be used to determine the solution representation schema for process 
planning parameters ( 𝑄𝑝ℎ and  𝑆𝑝ℎ ), considering the following definition: 
 
𝑇𝑆𝑝 = ∑ 𝑆𝑝ℎ𝐻

ℎ=1  ;  𝑇𝑄𝑝 = ∑ 𝑄𝑝ℎ                          𝐻
ℎ=1 ∀𝑝                                                           (16) 

                 
Following this routine,  𝑇𝑄𝑝 of part 𝑝  at all periods is randomly selected from the 
summation of  𝑇𝑄𝑝  and  𝑇𝑆𝑝   ( 𝑇𝑄𝑝 +  𝑇𝑆𝑝), and after that, each  𝑄𝑝ℎ at any period for each 
part is selected randomly from random part of  𝑇𝑄𝑝 and then reduced from  𝑇𝑄𝑝 of part 𝑝 at 
all periods. Likewise,  𝑆𝑝ℎ  of part 𝑝 at any period is selected randomly from random part of 
 𝑇𝑆𝑝 and then reduced from  𝑇𝑆𝑝 of part p at all periods. Therefore the procedure shown in 
Figure 6 is proposed to determine 𝑄𝑝ℎ and 𝑄𝑝ℎ at each period for all parts: 
 

Step 1: calculate 𝑇𝑄𝑝      ∀𝑝 
            𝑇𝑄𝑝 = 𝑅𝑁𝐷 ×   𝑆𝑄𝑝  
 
Step 2: calculate 𝑄𝑝ℎ      ∀𝑝 
                𝑄𝑝ℎ = 𝑅𝑁𝐷 × (𝑇𝑄𝑝 − (𝑄𝑝1 + 𝑄𝑝2 +⋯+𝑄𝑝(ℎ−1)))          ∀ ℎ < 𝐻 
                𝑄𝑝𝐻 = 𝑇𝑄𝑝 − �𝑄𝑝1 + 𝑄𝑝2 +⋯+ 𝑄𝑝(𝐻−1)�   
       
Step 3: calculate 𝑆𝑝ℎ      ∀𝑝 
 
              𝑇𝑆𝑝=𝑆𝑄𝑝-𝑇𝑄𝑝     
                                               
               𝑆𝑝ℎ = 𝑅𝑁𝐷 × (𝑇𝑆𝑝 − (𝑆𝑝1 + 𝑆𝑝2 +⋯+ 𝑆𝑝(ℎ−1)))             ∀ ℎ < 𝐻 
              𝑆𝑝𝐻 = 𝑇𝑆𝑝 − �𝑆𝑝1 + 𝑆𝑝2 … + 𝑆𝑝(𝐻−1)� 
 
Step 4:𝑙𝑎𝑙𝑙𝑡𝑙𝑎𝑡𝑎  𝐼𝑝(ℎ−1) = 𝐼𝑝ℎ − 𝑄𝑝ℎ − 𝑆𝑝(ℎ−1) + 𝐷𝑝ℎ  ,  𝐼𝑝𝐻=0           ∀𝑝, ℎ 
  
Step 5:𝑙𝑎𝑙𝑙𝑡𝑙𝑎𝑡𝑎 𝐼𝑝ℎ+ = 𝐼𝑝ℎ  𝑖𝑓  𝐼𝑝ℎ > 0 𝑝𝑡ℎ𝑎𝑎𝑠𝑖𝑟𝑎 0,                       ∀𝑝, ℎ 
        
Step 6:𝑙𝑎𝑙𝑙𝑡𝑙𝑎𝑡𝑎 𝐼𝑝ℎ− = −𝐼𝑝ℎ  𝑖𝑓  𝐼𝑝ℎ < 0 𝑝𝑡ℎ𝑎𝑎𝑠𝑖𝑟𝑎 0,                    ∀𝑝,h 

 

Figure 6: Production planning data initialisation procedure pseudo-code 

For tumbling and swimming, the local mutation operation has been applied on [𝑄]𝑝×ℎ and 
the [𝑆]𝑝×ℎmatrix. To implement this operator, a part is randomly selected, and then its 𝑇𝑄𝑝 
amount is randomly selected, and therefore, as shown in Figure 6, all new 𝑄𝑝ℎ and 𝑆𝑝ℎ 
amounts are generated as 𝑄𝑝ℎ → 𝑄𝑝ℎ′ , 𝑆𝑝ℎ → 𝑆𝑝ℎ′ ∀ℎ  where p is not equal to the part that 
was selected in the previous tumbling or swimming to avoid local minima.  
 
To construct cells and plan production concurrently, initially matrices [𝑄]𝑝×ℎ and [𝑆]𝑝×ℎ are 
formed. Then, based on the obtained 𝑄𝑝ℎ, the cells are formed simultaneously. This routine 
is followed in all tumbling and swimming steps in such a way that first 𝑄𝑝ℎ and 𝑆𝑝ℎ are 
determined, and then,  𝑥ℎ𝑗

𝑝   and  𝑦ℎ𝑗
𝑝   are created. Likewise, to choose the chemo taxis 

representation, the probability 𝑃𝑝𝑝 is considered so that, if 𝑃𝑝𝑝 > 𝑅𝑁𝐷, then doing chemo 
taxing of 𝑄𝑝ℎ and 𝑆𝑝ℎ, otherwise, doing chemo taxing for  𝑥ℎ𝑗

𝑝   and  𝑦ℎ𝑗
𝑝 .  The proposed 

bacteria foraging algorithm to solve the proposed mathematical model is shown in Figure 7. 
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Figure 7: The proposed BFO algorithm (section 1) 

 

Figure 7: The proposed BFO algorithm (section 2) 
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5. COMPUTATIONAL RESULTS 

In this study, an efficient algorithm based on the bacteria foraging phenomenon is proposed 
to solve the integrated dynamic cell formation and process planning problem. The 
algorithm has been coded in PC MATLAB and tested on a Pentium 4 machine T3400 2GHz 
with 1 GB RAM. The number of bacteria and number of reproduction steps in the population 
varied from problem to problem within the range of 5 to 25 and 10 to 1000, respectively. In 
contrast, the number of chemo tactic steps per bacteria lifetime, the limits of the length of 
a swim, and the number of elimination–dispersal events based on some designed 
experiments were fixed at 2, 10, and 5, respectively. These parameters may vary, 
depending on the decision maker who adjusts the algorithm.  
 
The aim of this section is to verify the applicability of the proposed model through 
hypothetical examples with randomly-generated data. These examples are solved by the 
branch and bound (B&B) method using Lingo 8.0 software. They are generated according to 
the information provided in Table 1. In this table, the term ‘U’ indicates uniform 
distribution [20, 21]. 
 
The instance 1-related data set is shown in Table 2. Instance 1 consists of five part types, 
five machine types, and three periods in which each part type is assumed to have three 
operations that must be processed respectively. Each operation can be performed on two 
alternative machines. Thus each part type has 2×3=6 process plans, and there are 
68 combinations to select a process plan for each part type in each period. Therefore there 
are about ([6 + 3]5)3 = 915 combinations (because H=3) for allocating operation-parts to 
machines throughout the planning horizon [20, 22]. 
 
First, the four columns of Table 2 (included at the end of this paper) include the machine 
information: capacity, constant cost, variable cost, and replacement cost. The quantity of 
demand for each part type, and the product mix for each period, are given in Table 2. The 
last rows of Table 2 show the inter- and intra-cell batch size, inventory and backorder 
costs, and the initial inventory for each part type. After linearisation, the proposed model 
consists of 1,125 integer variables, 1,575 non-integer variables, and 1,383 constraints in the 
example under consideration. The best solution was found after 29 seconds (Zbest) in 
detail, and the cell configurations for all periods corresponding to the best obtained 
solution from BFO for this instance are reported in Table 3 and shown in Figure 8.   
 
In order to verify the performance of the BFO approach compared with B&B, 10 random 
instances have been solved according to Table 4. For simplicity, it is assumed that the 
capacities of the machines are independent of their types, but dependent on the length of 
the planning horizon [20]. 
 
Each problem is allowed to run on Lingo for 10,800 seconds (3 hours). However, because of 
the computational complexity, the proposed model could not be optimally solved within 
10,800 seconds, or even over a longer time for medium- and large-sized instances. Thus, to 
solve the small- and medium-sized problems whose runtime was more than three hours, the 
software was interrupted after 3 hours and the best solution at that time was reported. 
 

Parameter Value Parameter Value Parameter Value 
H 3 𝐷𝑝ℎ U(100,1000) 𝛿𝑦 𝛼𝑦/2 
M (p/2)+2 𝑡𝑗𝑝𝑦 U(0,1) 𝛽𝑝𝐼𝑛𝐿𝑦𝑟 U(10,50) 
𝑂𝑝 2 ∑ 𝑎𝑗𝑝𝑦𝑦   2  ∀𝑗, 𝑝 𝛽𝑝𝐼𝑛𝐿𝑟𝐿 𝛽𝑝𝐼𝑛𝐿𝑦𝑟/5 
C 3 𝛼𝑦 U(1000,2000) 𝛾𝑖𝑛𝐿𝑦𝑟 50 
UB ��𝑝� + 1 𝛽𝑦 U(1,10) 𝛾𝑖𝑛𝐿𝑟𝐿 5 
𝜆𝑝 U(1,5) 𝜂𝑝 U(1,5) 𝜌𝑝 U(20,30) 
𝐼0𝑝 𝜒2 (0,max[𝐷𝑝ℎ])    

Table 1: Test problem generation standardisation [20, 22] 
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   C1 C2 
   P2 P3 P1 P4 

C1 
2 M1 1,2,3 3   
1 M5  2   
1 M4  1   

C2 

1 M5   1 2 
2 M3   2,3 1 

1 M2 
 
 

Period2 
  3 

 

   C1 C2 
   P2 P1 P3 P5 
C1 4 M1 1,2,3    

C2 
1 M3  1,2,3 2 3 
1 M2   1,3 2 
1 M5    1 

 
Period 1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Formed cells resulted from the proposed BFO for instance No.1. 

 

Machine info.  P1 P2 P3 P4 P5 
𝑇𝑦 𝛼𝑦 𝜷𝒎 𝜹𝒎  1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
500 1800 9 900 M1 0 0 0 .76 .65 .39 0 0 .46 .49 .83 0 0 0 0 
500 1500 7 750 M2 0 .79 0 0 0 0 .99 0 .33 0 0 .74 .40 .63 0 

500 1800 5 900 M3 .73 .93 .44 0 0 0 0 .57 0 .45 0 0 0 0 .59 

500 1700 9 850 M4 0 0 .46 .80 .81 0 .14 0 0 0 0 0 0 .26 0 

500 1300 8 650 M5 .54 0 0 0 0 .93 0 .48 0 0 .67 .62 .12 0 .75 

𝐷𝑝ℎ  

Period 
1 300 850 200 0 250 

Period 
2 400 700 700 200 0 

Period 
3 400 0 450 950 350 

𝛽𝑝𝑖𝑛𝐿𝑦𝑟           35 25 20 40 45 
𝛽𝑝𝑖𝑛𝐿𝑟𝐿           7 5 4 8 9 

𝜆𝑝  13 12 15 12 11 
𝜂𝑝  14 13 16 13 12 
𝜌𝑝  40 39 30 36 34 
𝐼0  0 0 300 150 0 

l =1,  C=3 , UB=4 

Table 2: Data set for instance No.1 

 

 h=1 h=2 h=3 
 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 

𝑄𝑝ℎ 170 882 70 676 79 689 441 362 26 208 218 89 363 41 313 
𝑆𝑝ℎ 23 138 255 162     95       

𝐼𝑝ℎ -
130 32 170 826 -

171 182 -90 86 809 37      

𝐷𝑝ℎ 300 850 200 0 250 400 700 700 200 0 400 0 450 950 350 

Table 3: Optimal production plans resulting from the proposed BFO for instance No.1 

   C1 C2 
   P4 P5 P1 P3 

C1 
1 M3 1 3   
1 M5 2,3 1   
1 M2  2   

C2 
1 M3   1,3 2 
1 M2   2 3 
1 M4    1 

Period 3 
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Table 4 shows the comparison between the results obtained using B&B and the proposed 
BFO, corresponding to 10 small- and medium-sized problems in terms of computational time 
and the best solution obtained. To verify the performance of the proposed BFO algorithm, 
each problem has been run 20 times. The average CPU runtime and best solution obtained 
for each problem are reported in Table 4. As shown in Table 4, the proposed BFO algorithm 
solved problems in 8% (861/10,440) of the computational time of B&B, while qualified 
solutions show a 6% improvement – i.e., (497823 − 467743)/ 497823. 
 
 
 
 

 
 
 
 
 
 
 
 

 

Table 4: Performance of the proposed BFO compared with B&B in term of 
approximately the same cost function 

If the reproduction steps of BFO are relaxed until they reach the best solutions, then the 
results in Table 5 can be obtained for all mentioned data sets. As shown in this table, for all 
data sets, BFO obtained the best results in terms of the amount of cost function and 
computational time. Standard deviation in terms of the amount of cost function and 
computational time has been shown. Because of the one tailed p-values used in all 
instances, in terms of the resulting population, the mean difference between B&B and BFO 
is equal to zero. Therefore the statistical tests signify a better performance by the BFO 
algorithm in terms of the amount of the cost function and the computational time, 
compared with the B&B method. 
 

Table 5: Performance of the proposed BFO compared with B&B in term of finding the 
minimum cost function 

 
Table 6 shows the details of statistical test results obtained from the MINITAB software for 
data set 1 (smallest instance) and data set 10 (largest instance). 
 
Finally, the data set 1 of size 5 × 5 × 3 is taken as an example to illustrate the convergence 
curve of the proposed BFO during reproduction steps. After 35 reproduction steps, the 
objective value Z is to be 160,000. It is reduced when the number of reproduction steps 

No. 
Problem info. B&B BFO 

P×M×H C UB 𝐹𝑦𝑦𝐿𝐿 𝑇𝐵&𝐵 𝑍𝑦𝑦𝐿𝑛 𝑇𝐵𝐹𝐴 
1 5×5×3 3 4 144612 7205 139720 29.3 
2 10×7×3 3 5 211019 10800 199960 135 
3 14×9×3 3 5 279306 10800 268040 298 
4 18×11×3 3 6 336751 10800 296540 549 
5 22×13×3 3 7 540408 10800 478780 586 
6 26×15×3 3 8 539170 10800 536770 767 
7 28×16×3 3 9 542248 10800 539190 1193 
8 28×16×4 3 9 898763 10800 874970 1585 
9 30×17×3 3 10 622107 10800 572650 1694 
10 30×17×4 3 10 863846 10800 770810 1777 

Avg    497823 10440 467743 861.3 

No. 

Problem info. B&B BFO 

P×M×H C UB 𝐹𝑦𝑦𝐿𝐿 𝑇𝐵&𝐵 𝑍𝑦𝑦𝐿𝑛 𝑇𝐵𝐹𝐴 
St  

Dev 
 Z 

St 
Dev 

 Time 

P-
Value 

Z 

P-
Value 
Time 

1 5×5×3 3 4 144612 7205 126190 160 3803 29 0.0 0.0 
2 10×7×3 3 5 211019 10800 179504 612 6107 109 0.0 0.0 
3 14×9×3 3 5 279306 10800 227593 1293 7424 218 0.0 0.0 
4 18×11×3 3 6 336751 10800 245980 2644 7450 414 0.0 0.0 
5 22×13×3 3 7 540408 10800 420800 2794 15490 460 0.0 0.0 
6 26×15×3 3 8 539170 10800 437682 3588 16063 606 0.0 0.0 
7 28×16×3 3 9 542248 10800 460791 5501 15754 922 0.0 0.0 
8 28×16×4 3 9 898763 10800 750374 6445 27441 1135 0.0 0.0 
9 30×17×3 3 10 622107 10800 472951 7672 14747 1303 0.0 0.0 
10 30×17×4 3 10 863846 10800 698274 7038 26656 1309 0.0 0.0 
Avg    497823 10441 402014 3775     
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decrease to 20%. At the 100th reproduction step, it reached to the value of 148,000, a 
decrease of 7.5%. During the 170th reproduction, the Z value is 139,720, a decrease of 5.6%. 
So it is terminated at this point, because the algorithm reaches approximately the same 
value around B&B’s value. The convergence curve is shown in Figure 9. 
 
Two-Sample No.1  
T-Test and CI: B&B_Z, BFA_Z  
 
             N        Mean  St Dev   SE Mean 
B&B_Z   20      144612    0.0       0.0 
BFA_Z   20      126190   3803      850 
 
Difference = mu (B&B_Z) - mu (BFA_Z) 
Estimate for difference:  18422 
99.999% lower bound for difference:  13637 
T-Test of difference = 0 (vs >): 
 T-Value = 21.66  
 P-Value = 0.000  DF = 19 

Two-Sample No.1 
T-Test and CI: B&B_Time, BFA_Time  
 
                  N      Mean  St Dev  SE Mean 
B&B_Time  20     7205     0.0       0.0 
BFA_Time   20     160.3   29.2      6.5 
 
Difference = mu (B&B_Time) - mu (BFA_Time) 
Estimate for difference:  7044.70 
99.999% lower bound for difference:  7007.99 
T-Test of difference = 0 (vs >):  
T-Value = 1079.67  
 P-Value = 0.000  DF = 19 

Two-Sample No.10  
T-Test and CI: B&B_Z, BFA_Z  
 
            N        Mean     St Dev   SE Mean 
B&B_Z  20      863846    0.0         0.0 
BFA_Z   20      698274   26656     5960 
 
Difference = mu (B&B_Z) - mu (BFA_Z) 
Estimate for difference:  165572 
99.999% lower bound for difference:  132035 
T-Test of difference = 0 (vs >):  
T-Value = 27.78 
  P-Value = 0.000  DF = 19 

Two-Sample No.10  
T-Test and CI: B&B_Time, BFA_Time  
 
                     N       Mean   St Dev  SE Mean 
B&B_Time_1  20      10800    0.0       0.0 
BFA_Time_1   20       7038   1309      293 
 
Difference = mu (B&B_Time) - mu (BFA_Time) 
Estimate for difference:  3762 
99.999% lower bound for difference:  2116 
T-Test of difference = 0 (vs >):  
T-Value = 12.86  
 P-Value = 0.000  DF = 19 

Table 6: Statistical test results obtained from MINITAB for data sets 1 and 10  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Convergence curve of proposed BFO for data set No.4 
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6. CONCLUSION 

In this paper, an optimisation model of the integrated dynamic cellular manufacturing 
system (DCMS) and production process planning has been introduced along with a solution 
approach based on BFO. The advantages of the proposed model are as follows: 
simultaneous analysis of inter- and intra-cell material handling by assuming the sequence of 
operations, alternative process plans for part types, machine copying, and process planning 
costs including inventory, backorder, and partial subcontracting costs.  
 
The main difference between the Branch and Bound method and the proposed BFO – i.e., 
generating a high quality solution in a shorter computational time – has been presented in 
this research work. The results show that BFO provides significantly better solutions in a 
considerably shorter time, where the average gap between the quality of the solution found 
by BFO and the best solution found by the Branch and Bound (B&B) method has been 
significant. Also, BFO can be used to generate solutions in evolutionary algorithms, and is 
suggested for future research that aims to minimise tooling costs, setup costs, and hiring, 
firing, and salary costs. Such methods emphasise the effect of the trade-off between 
machine adjacency constraints, workload balancing, product quality, available time of 
workers, and worker assignment for the reconfiguration of cells in dynamic cellular 
manufacturing systems. 
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