
South African Journal of Industrial Engineering May 2017 Vol 28(1), pp 190-209

190

A MULTI-OBJECTIVE APPROACH TO THE ASSIGNMENT OF STOCK KEEPING UNITS TO
UNIDIRECTIONAL PICKING LINES

G.J. le Roux1# & S.E. Visagie1*

ARTICLE INFO

Article details
Submitted by authors 25 Aug 2016
Accepted for publication 27 Feb 2017
Available online 26 May 2017

Contact details
* Corresponding author
 svisagie@sun.ac.za

Author affiliations
1 Department of Logistics,

University of Stellenbosch, South
Africa

The author was enrolled for an

MCom (Operations Research)
degree in the Department of
Logistics, University of
Stellenbosch

DOI
http://dx.doi.org/10.7166/28-1-1615

ABSTRACT

An order picking system in a distribution centre consisting of
parallel unidirectional picking lines is considered. The objectives
are to minimise the walking distance of the pickers, the largest
volume of stock on a picking line over all picking lines, the number
of small packages, and the total penalty incurred for late
distributions. The problem is formulated as a multi-objective
multiple knapsack problem that is not solvable in a realistic time.
Population-based algorithms, including the artificial bee colony
algorithm and the genetic algorithm, are also implemented. The
results obtained from all algorithms indicate a substantial
improvement on all objectives relative to historical assignments.
The genetic algorithm delivers the best performance.

OPSOMMING

’n Stelsel vir die opmaak van bestellings bestaande uit parallelle
eenrigting uitsoeklyne in 'n distribusiesentrum word beskou. Die
doelwitte is om die loopafstand van die werkers, die grootste
volume van voorraad op ’n uitsoeklyn oor alle uitsoeklyne, die
aantal klein pakkette, en die totale koste van laat distribusies te
minimeer. Die probleem word geformuleer as ’n meerdoelige
veelvuldige rugsakprobleem, maar kan nie in ’n realistiese tyd
opgelos word nie. Bevolking-gebaseerde algoritmes, insluitend die
kunsmatige by-kolonie-algoritme en genetiese algoritme, is ook
geïmplementeer. Al die algoritmes verkry ’n beduidende
verbetering op historiese toewysings vir al die doelwitte. Die
genetiese algoritme vaar die beste.

1 INTRODUCTION

The supply chain of Pep Stores Ltd (PEP) is investigated in this study. PEP is the largest single-brand
retailer in Africa [15], and sells mainly clothing and footwear, with operations in more than 1, 870
retail stores in Southern Africa. They have three distribution centres (DCs) and 13 transport hubs in
South Africa, with a total area of more than 250,000 m2. They employ more than 15, 000 people at
their central offices and stores, are situated in nearly every town and village in South Africa [4].
They sell affordable merchandise and therefore have a low profit margin. To maintain their current
customer base or their target market of low- to middle-income groups, items need to have constantly
low markups. Each year PEP sends more than 600 million items to their stores, with more than 250
million customer transactions being conducted [15].

Products are transported in bulk from various suppliers and factories to PEP’s three DCs where they
are collected and packed into boxes. These boxes are then transferred to hubs to be distributed to
their respective retail stores. The quantity of each product to be sent to each store is determined
by the planning department at their central office to ensure that the same techniques are applied
during the decision process. About half of the products sold by PEP follow a replenishment cycle,
while the other half are seasonal due to changing fashion trends. PEP makes use of a push system in
which seasonal stock is picked from picking lines [1]. The demand at each store is forecasted every

191

week to avoid the cost of keeping stock in inventory, since PEP tries to minimise their storage space
to allow for more items to be displayed in the stores.

All products sold by PEP are distributed from its three DCs, located in Kuilsriver, Durban, and
Johannesburg, South Africa. The DC considered in this study is the one situated in Durban, due to
its high rate of processing goods and its operational flexibility compared with the other two DCs.
This is attributed to the fact that most of PEP’s suppliers are located in the Far East. The
mathematical formulations and algorithms in this study may, however, still be applied to the other
DCs, with an arbitrary number of picking lines and locations within a picking line, due to the DCs’
similar order picking principles. PEP’s DC in Durban is their largest, with a total area of more than
50,000 m2 [1]. The layout of PEP’s Durban DC is shown in Figure 1.

Figure 1: The layout of the functional areas in PEP’s DC in Durban, South Africa

Stock arrives from the suppliers in cartons at the ‘goods received’ area, after which it is transported
either to the storage racks or to the full carton area. The storage racks store cartons that need to
be repackaged into smaller cartons by assigning them to picking lines. A carton that already contains
the orders of a specific store is classified as a full carton, sent to the full carton area, and directly
transported to the distribution area to be shipped to the corresponding retail outlet. Once all
necessary administration of a distribution (DBN) placed on the storage racks has been completed,
the DBN is released to the DC and is available to be assigned to a picking line. Each DBN has an out-
of-DC date – typically less than seven days from its release date – before it has to be picked from a
picking line to be delivered to all retail outlets requiring the stock keeping units (SKUs) in that DBN.

Order picking is the process by which appropriate quantities of SKUs are retrieved from picking line
locations by pickers moving in a clockwise direction. A picking line consists of a fixed number of
locations, with a conveyor belt that leads to the distribution area, where the cartons are collected
for shipping to various retail stores. DBNs consist of one or more different SKUs. A DBN consists of
the same product, and each SKU in a DBN contains a different size of that product. The central
planning department determines which SKUs are placed in which DBNs, and how many of each SKU
are placed in a store’s order. A DBN is assigned to a specific wave1 of picking, with each SKU in the
DBN assigned to a specific location in that picking line – i.e., 𝑛𝑛 SKUs in a DBN will take up 𝑛𝑛 locations
in a picking line. Thus all the SKUs in a DBN are picked in the same wave so that stores will receive
different sizes of the same product at the same time. Furthermore, packages should preferably be
smaller than roughly the size of a shoebox (0.006 m3) to avoid unnecessary transport and handling
cost during distribution to stores. Order picking is a labour-intensive task in DCs, and accounts for
approximately 55 per cent of all operating costs in a DC [1].

Figure 2 contains a schematic representation of the layout of a picking line in the Durban DC. Each
picking line considered in this study has 56 locations (28 locations on either side of the conveyor

1 A wave is defined by three actions: (1) placing DBNs in their locations on the picking line, (2) picking

orders, and (3) clearing out possible leftover stock from the locations after the picking has been
completed.

192

belt). Each location can hold a maximum of five pallets of the same SKU, with the dimensions of
each pallet being approximately 1 m × 1.2 m × 0.14 m. The dotted arrows in the figure indicate the
clockwise direction in which pickers walk around the conveyor belt to collect SKUs from their
assigned locations. An order contains only SKUs from a single wave of picking; thus an order exists
only for a fixed wave of picking. Only when the wave of picking has been completed, may a picker
move to another picking line to start another wave of picking. A store may thus have multiple orders
at a given time, with each order being picked in a separate wave of picking. The Durban DC contains
12 picking lines in total, with six picking lines on either side of a main conveyor. All picking lines are
situated next to one another at floor level. Order picking, populating SKUs on the picking lines, and
cleaning up leftover stock all take place simultaneously on different lines. Therefore, two to four
picking lines are usually available to which SKUs can be assigned at the start of a given day. Pickers
walk around the conveyor belt to pick orders while communicating with a voice recognition system
(VRS) that guides them around the picking line. The VRS always chooses the unpicked SKU in the
store’s order closest to the previous SKU that was picked, while ensuring that pickers move in a
clockwise direction [12].

Three sub-problems need to be solved when planning the operations on picking lines for a given
wave of picking. These problems may be viewed as tiers, where each problem needs to be answered
before the analysis of the next problem can be initiated [1]. The uppermost tier contains the picking
line assignment problem that determines which DBNs should be assigned to which picking lines for
that wave of picking. The SKU location problem in the middle tier decides the locations on the
picking line to which SKUs should be assigned during a wave of picking. The lower tier contains the
order sequencing problem, which considers the sequence of orders that need to be picked during a
wave of picking. The uppermost tier needs to be solved before the middle tier can be addressed,
after which the lower tier follows. The uppermost tier, the picking line assignment problem, will be
the focus of this study.

Figure 2: A schematic representation of the layout of a unidirectional picking line containing
𝒎𝒎 locations, with a conveyor belt leading to the main conveyor belt ([1])

The picking line assignment problem (PLAP) may be seen as a generalised assignment problem (GAP),
where the DBNs are viewed as the agents, and the picking lines can be seen as the tasks to which
the agents are assigned. The total walking distance of all pickers is the main objective to be
minimised in the problem considered in this study. The calculation of this objective was simplified
by introducing a lower bound for the number of cycles traversed in a picking line [12], and was
achieved by considering the SKU on a picking line that the greatest number of stores requires. This
value is referred to as the maximal SKU, and the objective may therefore be restated as minimising
the maximal SKU for a picking line. The other two tiers – the SKU location problem and the order
sequencing problem – also need to be solved to evaluate the objective function. However, this is
too complex, and as a result the lower bound is minimised.

The focus of this paper is on the assignment of a set of DBNs on storage racks that are released to
the available picking lines for a given day in PEP’s Durban DC. The locations of SKUs in a picking
line, and the sequence in which orders are picked, do not fall within the scope of the problem
studied in this paper. Four objectives are minimised when determining whether a DBN should be

193

assigned to a picking line: the walking distance of the pickers, the volume on the picking line with
the largest volume of stock, the number of picked packages smaller than 0.006 m3, and the number
of DBNs assigned to a picking line later than their out-of-DC date.

Section 2 contains a discussion of related studies of picking line assignment problems, while Section
3 addresses the multi-objective multiple knapsack problem (MOMKP) and goal programming (GP)
formulation. Section 4 contains three population-based algorithms: the artificial bee colony
algorithm, the genetic algorithm, and the memetic algorithm. The results of the study are discussed
in Section 5, after which a conclusion is given in Section 6.

2 LITERATURE REVIEW

The problem of assigning DBNs to several picking lines may be viewed as a multiple knapsack problem
(MKP), which deals with items each having a fixed weight and profit that need to be assigned to
various knapsacks, each having a fixed capacity. Because more than one objective needs to be
considered for the problem presented in this study, the multiple knapsack problem must be extended
to contain multiple objective functions. A brief discussion of studies of picking line assignment
problems is given in Section 2.1; and metaheuristics used to solve MKPs and multi-objective knapsack
problems (MOKPs) are found in Section 2.2.

2.1 Picking line assignment problems

Matthews and Visagie [12] undertook a study of the assignment of DBNs to parallel unidirectional
picking lines with the objective of minimising the total walking distance of pickers. They introduced
a greedy insertion approach, after which it was discovered that not all DBNs were assigned to picking
lines when real-world data were tested, although good results were produced. They extended the
idea by proposing a phased greedy insertion (PGI) heuristic, which ensures that all DBNs have a
designated picking line by introducing an incrementally increasing variable that allow DBNs that
require more than one location on a picking line, and DBNs that have a large maximal SKU, to be
considered first. Feasibility was achieved for all the test cases, yielding desirable results; but
operational risk increased after implementing the proposed algorithms, due to large volumes of
stock being transported during the population of picking lines with stock before the waves of picking
could start. Also, after minimising the total walking distance of pickers, the increasing number of
orders consisting of a small volume of stock required carton resizing after being picked.

Matthews and Visagie [13] addressed the problem of carton use by introducing four different
correlation measures, which included two desirability scores based on the Jaccard statistic. Of the
four measures tested and compared with the historical case and PGI approach, the desirability score
– considering the number of stores required by the candidate DBN, and the number of stores requiring
at least one DBN already assigned to a specific picking line – was found to be the most effective
measure of correlation. This was marginally better than the second desirability measure, which
considers the correlation of a candidate DBN with all DBNs already assigned to picking lines. A
modified PGI algorithm is then used to assign successful DBNs – those having the largest desirability
score – into picking lines. Application of the measure resulted in an increase in the total walking
distance of pickers, compared with the normal PGI approach. Carton use was improved nonetheless,
but the use of correlations was unable to reduce significantly the volume of DBNs on some picking
lines – the other problem that Matthews and Visagie [12] faced.

Matthews [10] suggested the use of capacity constraints with the aim of focusing on the issue of
reducing the volume of DBNs on picking lines – the issue that Matthews and Visagie [13] were unable
to resolve. He formulated a mixed integer linear programming (MILP) model that included
constraints in which the maximum volume for each picking line was considered. However, the MILP
could not present an optimal solution in a reasonable amount of time when more than three picking
lines were active. He therefore adopted a segmentation methodology, in which DBNs are first
assigned to clusters consisting of no more than three picking lines. The MILP is then used to solve
each cluster to assign a DBN to a specific picking line within its cluster. Computational times
suggested that no more than three clusters should be used, and that a further segmentation should
take place, provided that there are clusters consisting of more than three picking lines. It was further
proposed that a hybrid assignment algorithm be used, in which the segmentation and capacity
constraint formulation is integrated with the correlation measure suggested by Matthews and Visagie
[13]. An average improvement of 15 per cent on the walking distance of pickers was obtained using
the hybrid approach, compared with the historical data. Carton use was maintained while work

194

balance was achieved, due to the limit of volumes of stock on each picking line. They concluded
that improvements need to be made when determining which DBNs to assign to which picking lines
on a given day or shift, and when to leave DBNs for the following day or shift. The cost of moving
pallets to the picking lines, picking costs, and out-of-DC dates need to be taken into consideration
when determining the scheduling of DBNs. Addressing these issues will be the focus of this study
while minimising the walking distance of pickers, ensuring a desirable distribution of stock among
the available picking lines, and keeping orders consisting of a small volume of stock as low as possible
in order to decide which DBNs to assign to which picking lines on a given day or shift.

2.2 Metaheuristics for solving MOKPs and MKPs

Three metaheuristics have been studied in the literature for solving MOKPs and MKPs. Firstly,
Gandibleux and Freville [5] studied how to solve bi-objective knapsack problems using a tabu search
based procedure (TSBP). They used a decision space reduction technique that brackets feasible
solutions by introducing a lower bound and an upper bound. This helps to reduce the feasible domain
and thus the size of the neighbourhood. A recency-based tabu memory is used that stores a change
in solution attributes in a specified number of previous iterations. Intensification and diversification
strategies were discovered to be crucial aspects of tabu search when solving multi-objective
combinatorial optimisation problems. They therefore used an intensification strategy that deals with
promoting interestingly-found move combinations and solution features, and a diversification
strategy in which unvisited regions of the search space are explored in order to consider different
solutions than those already seen. They found encouraging results using the TSBP. A minimum
number of search directions and relevant indicators about the quality of potential efficient solutions
were not considered.

Secondly, Wei and Zhang [17] investigated the application of a discrete artificial bee colony (ABC)
algorithm to MKPs. A possible solution of the MKP is indicated by the position of a food source, while
the quality of that particular solution is determined by the nectar amount (similar to the fitness
value of genetic algorithms (GAs)) of the food source in the discrete ABC algorithm. A randomly-
distributed initial population is generated where each solution in the population consists of food
source positions – i.e., a solution consists of assigning all the items to knapsacks. A new food source
is then found by employed or onlooker bees according to a certain probability. If the nectar amount
of the new food source is higher than the nectar amount of the best food source found to date, then
the bee abandons its old food source. Once all the employed bees have explored food sources, the
onlookers select the best food sources according to a certain probability, causing good food sources
to receive more onlookers than others. It was shown that the algorithm produced better results than
those of fuzzy genetic algorithms, although the ABC approach is a peculiar choice for solving a MKP.

Lastly, Fidanova [3] introduced the use of ant colony optimisation (ACO) to find good solutions to
MKPs. The mapping of the MKP to a graph is to represent all items with a node and to connect all
nodes by arcs to form a complete graph. An ant first chooses an initial node (the first item to be
assigned to a knapsack) as a starting point, and iteratively moves towards different nodes to form a
path representing all items to be assigned to knapsacks along its path without violating the MKP’s
resource constraints. Two different ways of laying pheromone trails were considered: on traversed
nodes to increase the desirability of the nodes and so to increase their chances of being visited by
other ants; and on traversed arcs with the aim of attracting more ants to specific arcs. It was
revealed that better results were achieved when pheromone trails are laid on arcs. The results of
three different ACO algorithms were compared, specifically the ant colony system algorithm, the
max-min ant system algorithm, and the ant algorithm with additional reinforcement (ACO-AR). The
ACO-AR, which involves adding more pheromone to unused arcs or nodes after pheromone updating,
achieved the best results. This method forces the ants to search unexplored paths in an attempt not
to repeat bad paths. It was concluded that, in certain test cases, the ACO-AR achieved the best
results of all the metaheuristics found in the literature for the MKP. On the other hand, it was unable
to solve MOKPs, and took too long to solve most MKPs. As a result, this algorithm is not recommended
for solving the PLAP.

3 MATHEMATICAL FORMULATION

This section provides an exact formulation for the PLAP as a multi-objective multiple knapsack
problem. Four objectives are minimized: the walking distance of the pickers; the largest volume of
stock on a picking line over all picking lines; the number of small packages; and the penalty incurred
for DBNs being assigned later than a preferred date. A goal programming formulation is then given

195

to manage the multiple conflicting objective functions. This is achieved by minimising the weighted
sum of the percentage deviations or, alternatively, the maximum weighted deviation from any goal.

The following assumptions are made so that modelling the picking line assignment problem
resembles the real life situation:

1. All of the picking lines have the same number of locations.
2. Every SKU belongs to only one DBN for a wave of picking.
3. Every SKU requires only one location in a picking line.
4. There are a sufficient number of DBNs available to assign a SKU to each picking line location.

In the mathematical formulation that follows, the mathematical notation below is used. The
following sets and parameters are defined. Let

ℒ be the set of all picking lines with elements 𝑙𝑙,
|𝑙𝑙| be the number of SKU locations available for picking line 𝑙𝑙,
𝒮𝒮 be the set of all SKUs with elements 𝑠𝑠,
𝑠̃𝑠 be the volume of SKU 𝑠𝑠,
𝒟𝒟 be the set of all DBNs with elements 𝑑𝑑,
𝑑𝑑𝑠𝑠 be the DBN 𝑑𝑑 that contains SKU 𝑠𝑠,
|𝑑𝑑| be the number of locations required by DBN 𝑑𝑑,
⌈𝑑𝑑⌉ be the size of the maximal SKU associated with DBN 𝑑𝑑,
𝑑̃𝑑 be the total volume of stock associated with DBN 𝑑𝑑,
ℬ be the set of all stores with elements 𝑏𝑏,
𝑣𝑣 be the minimum volume a package is allowed to be, and
𝑧𝑧𝑏𝑏𝑏𝑏 be the number of units of SKU 𝑠𝑠 required by store 𝑏𝑏.

The set of variables to determine is

 𝑥𝑥𝑑𝑑𝑑𝑑 = �1, if DBN 𝑑𝑑 is assigned to picking line 𝑙𝑙

0, otherwise. (1)

An approximation for the walking distance 𝑤𝑤𝑙𝑙 is defined as the size of the maximal SKU for picking
line 𝑙𝑙, while 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is the largest volume of stock on a picking line over all picking lines. To make
provision for carton utilisation, define the set of variables

 𝑥𝑥𝑑𝑑𝑠𝑠𝑙𝑙 = �1, if SKU 𝑠𝑠 is assigned to picking line 𝑙𝑙

0, otherwise (2)

and

⌈𝑏𝑏⌉𝑙𝑙 = �
1, 𝑖𝑖𝑖𝑖 0 < �(𝑧𝑧𝑏𝑏𝑏𝑏 ⋅ 𝑠̃𝑠𝑥𝑥𝑑𝑑𝑠𝑠𝑙𝑙)

𝑠𝑠∈𝒮𝒮

< 𝑣𝑣

0, otherwise.
 (3)

The variable ⌈𝑏𝑏⌉𝑙𝑙 is set to 1 if the volume of store 𝑏𝑏’s package from picking line 𝑙𝑙 is less than a
certain volume 𝑣𝑣, and 0 if the store’s package from picking line 𝑙𝑙 exceeds volume 𝑣𝑣, or if the store
does not have a package from that picking line. The logical statement set (3) is written as if-then
constraints in constraint sets (13)–(18). The out-of-DC date is taken into account by denoting the
parameter 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 to be the current penalty associated with DBN 𝑑𝑑, the parameter 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 to be the
preferred number of days before DBN 𝑑𝑑’s out-of-DC date that DBN 𝑑𝑑 should be assigned to a picking
line at the latest, and the parameter 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 to be the number of days until DBN 𝑑𝑑’s out-of-DC date
from the current day. The parameter 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 is initially set to 0 in the dynamic model, which indicates
that if DBN 𝑑𝑑 were to be assigned on the day it was released to the DC, it would be assigned on time.
Define the variable

𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 = �
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 + 1, if 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 and �𝑥𝑥𝑑𝑑𝑑𝑑

𝑙𝑙∈ℒ

= 0

𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 , otherwise
 (4)

196

to be the penalty associated with DBN 𝑑𝑑 for the following day for not being assigned to a picking
line before a preferred date. This logical statement set is written as sets of if-then constraints in
constraint sets (19)–(21).

The objectives are therefore to

 minimise �𝑤𝑤𝑙𝑙
𝑙𝑙∈ℒ

 (5)

 minimise 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (6)

 minimise ��⌈𝑏𝑏⌉𝑙𝑙
𝑙𝑙∈ℒ𝑏𝑏∈ℬ

 , 𝑎𝑎𝑎𝑎𝑎𝑎 (7)

 minimise �𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑∈𝒟𝒟

 (8)

subject to

 �𝑥𝑥𝑑𝑑𝑑𝑑
𝑙𝑙∈ℒ

≤ 1 𝑑𝑑 ∈ 𝒟𝒟, (9)

 �(𝑥𝑥𝑑𝑑𝑑𝑑 ⋅ |𝑑𝑑|)
𝑑𝑑∈𝒟𝒟

= |𝑙𝑙| 𝑙𝑙 ∈ ℒ, (10)

 𝑤𝑤𝑙𝑙 ≥ 𝑥𝑥𝑑𝑑𝑑𝑑 ⋅ ⌈𝑑𝑑⌉ 𝑑𝑑 ∈ 𝐷𝐷, 𝑙𝑙 ∈ ℒ, (11)

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≥ �(𝑥𝑥𝑑𝑑𝑑𝑑 ⋅ 𝑑̃𝑑)
𝑑𝑑∈𝒟𝒟

 𝑙𝑙 ∈ ℒ, (12)

 1 − ⌈𝑏𝑏⌉1𝑙𝑙 ≤ 𝑀𝑀1𝑦𝑦1 𝑏𝑏 ∈ ℬ, 𝑙𝑙 ∈ ℒ, (13)

 �(𝑧𝑧𝑏𝑏𝑏𝑏 ⋅ 𝑠̃𝑠𝑥𝑥𝑑𝑑𝑠𝑠𝑙𝑙)
𝑠𝑠∈𝒮𝒮

≤ 𝑀𝑀1(1 − 𝑦𝑦1) 𝑏𝑏 ∈ ℬ, 𝑙𝑙 ∈ ℒ, (14)

 1 − ⌈𝑏𝑏⌉2𝑙𝑙 ≤ 𝑀𝑀2𝑦𝑦2 𝑏𝑏 ∈ ℬ, 𝑙𝑙 ∈ ℒ, (15)

 𝑣𝑣 −�(𝑧𝑧𝑏𝑏𝑏𝑏 ⋅ 𝑠̃𝑠𝑥𝑥𝑑𝑑𝑠𝑠𝑙𝑙)
𝑠𝑠∈𝒮𝒮

≤ 𝑀𝑀2(1 − 𝑦𝑦2) 𝑏𝑏 ∈ ℬ, 𝑙𝑙 ∈ ℒ, (16)

 1 − ⌈𝑏𝑏⌉𝑙𝑙 ≤ 𝑦𝑦3 𝑏𝑏 ∈ ℬ, 𝑙𝑙 ∈ ℒ, (17)

 ⌈𝑏𝑏⌉1𝑙𝑙 + ⌈𝑏𝑏⌉2𝑙𝑙 − 1 ≤ 1 − 𝑦𝑦3 𝑏𝑏 ∈ ℬ, 𝑙𝑙 ∈ ℒ, (18)

 1 − 𝑑̂𝑑 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑦𝑦4 𝑑𝑑 ∈ 𝒟𝒟, (19)

(𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 + 1)�1 −�𝑥𝑥𝑑𝑑𝑑𝑑

𝑙𝑙∈ℒ

� ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ (1 − 𝑦𝑦4)
𝑑𝑑 ∈ 𝒟𝒟, (20)

 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑̂𝑑 𝑑𝑑 ∈ 𝒟𝒟, (21)

 𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3, 𝑦𝑦4 ∈ {0, 1}, (22)

 ⌈𝑏𝑏⌉1𝑙𝑙 , ⌈𝑏𝑏⌉2𝑙𝑙 , ⌈𝑏𝑏⌉𝑙𝑙 ∈ {0, 1} 𝑏𝑏 ∈ ℬ, 𝑙𝑙 ∈ ℒ, (23)

 𝑑̂𝑑 ∈ {0, 1} 𝑑𝑑 ∈ 𝒟𝒟, (24)

 𝑥𝑥𝑑𝑑𝑑𝑑 ∈ {0, 1} 𝑑𝑑 ∈ 𝒟𝒟, 𝑙𝑙 ∈ ℒ, (25)

 𝑥𝑥𝑑𝑑𝑠𝑠𝑙𝑙 ∈ {0, 1} 𝑙𝑙 ∈ ℒ, 𝑠𝑠 ∈ 𝒮𝒮, (26)

 𝑤𝑤𝑙𝑙 ≥ 0 𝑙𝑙 ∈ ℒ, and (27)

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0 (28)

where 𝑀𝑀1 = ∑ (𝑧𝑧𝑏𝑏𝑏𝑏 ⋅ 𝑠̃𝑠)𝑠𝑠∈𝒮𝒮 for 𝑏𝑏 ∈ ℬ, 𝑀𝑀2 = max {𝑣𝑣, 1}, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = max {𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 + 1, 1} for 𝑑𝑑 ∈ 𝒟𝒟, and 𝑑̂𝑑
is an auxiliary variable used in the sets of if-then constraints in constraint sets (19)-(21).

Objective function (5) minimises the walking distance of the pickers – i.e., the sum of the maximal
SKUs over all picking lines. The second objective function (6) minimises the largest volume of stock
on a picking line over all picking lines to ensure that stock is evenly distributed among the available
picking lines. Objective function (7) minimises the number of packages whose volume is less than a

197

specified volume, while the last objective function (8) minimises the total penalty incurred for DBNs
not being assigned to a picking line before their preferred date.

Constraint set (9) ensures that each DBN is assigned to no more than one picking line. The fact that
the number of locations that the assigned DBNs require must be equal to the number of available
locations of a picking line is determined by constraint set (10), while constraint set (11) determines
the size of the maximal SKU for each picking line. The largest volume of stock 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 on a picking line
over all picking lines is determined by constraint set (12). Constraint sets (13)–(18) set ⌈𝑏𝑏⌉𝑙𝑙 to 1 if
the volume of a certain store’s package from a certain picking line is less than 𝑣𝑣, and to 0 if the
store’s package from that picking line exceeds volume 𝑣𝑣, or if the store does not have a package
from that picking line. Constraint sets (19)–(21) penalise DBNs for being assigned to picking lines
later than desired. The variable sets in (22)–(24) are used for the if-then constraint sets (13)–(21),
while the variable sets (25)–(28) ensure that a DBN is either assigned to a picking line or not, a SKU
is assigned to a picking line or not, the maximal SKU is non-negative, and the largest volume of stock
on a picking line over all picking lines is non-negative.

Goal programming was used to assign a target to each objective function and weights to the
deviational variables for each of these target values in order to determine a solution for the MOMKP.
It takes approximately 15 minutes to find one Pareto optimal solution using the branch-and-bound
technique in LINGO 11.0 [9] on a Macintosh OS X system equipped with a 2.6GHz Intel Core i5
processor and 8GB 1600MHz DDR3 SDRAM. This is not a reasonable amount of time. Ideally a set of
solutions should be presented to the DM to decide which trade-offs need to be made. This results in
a running time of two to three hours, which is excessive for the limited time that PEP’s management
has during the planning phase of the picking lines. Metaheuristics are thus developed in the following
section to find a set of non-dominated solutions in a shorter time frame that are close to the Pareto
frontier.

4 METAHEURISTIC APPROACHES

Quick algorithms need to be implemented, since three tiers must be addressed every morning during
the planning phase of the picking lines, and a solution needs to be obtained from the PLAP before
solving the SLP and OSP, shifting the focus more to the computational times of the algorithms to
find a set of good solutions in less than a minute. Three metaheuristics are developed: the artificial
bee colony algorithm, the genetic algorithm, and the memetic algorithm. These algorithms are
chosen because they provide a set of good solutions upon termination instead of a single solution.
The DMs can then decide which solution to implement, depending on their preference.

4.1 Artificial bee colony algorithm

The artificial bee colony (ABC) algorithm was first suggested by Karaboga [7]. The behaviour of
honey bee swarms was the inspiration for the basic structure of the algorithm, due to the collective
intelligence shared among the employed and unemployed foragers about their food sources. The
ABC algorithm forms part of a group of swarm intelligence algorithms that have shown promising
results in multi-objective optimisation problems, such as the multi-objective design optimisation of
composite structures [14].

The foragers consist of employed bees, onlooker bees, and scout bees. The employed bees search
and exploit food sources in the environment of recently-visited food sources in an attempt to find
new regions containing flowers with a larger amount of nectar. They then travel back to the beehive
to exchange information about their sources with the onlooker bees by means of a waggle dance in
the dancing area, to communicate the location and profitability of their sources. Each onlooker bee
decides which source to fly to, with each source having a certain probability that an onlooker bee
will decide to pursue it. Sources containing more nectar will have a higher chance of having more
onlooker bees exploiting their nectar. The profitability of a food source depends on its distance from
the nest, the abundance of energy that it provides to onlooker bees, and the ease of extracting its
nectar. If a food source is abandoned, scout bees discover new food sources by exploring the
environment surrounding the beehive. A food source is represented by the solution, which is defined
by the matrix

198

𝑋𝑋𝑖𝑖 = �

𝑥𝑥𝑖𝑖11 𝑥𝑥𝑖𝑖12
𝑥𝑥𝑖𝑖21 𝑥𝑥𝑖𝑖22

⋯ 𝑥𝑥𝑖𝑖1|ℒ|
⋯ 𝑥𝑥𝑖𝑖2|ℒ|

⋮ ⋮
𝑥𝑥𝑖𝑖|𝒟𝒟|1 𝑥𝑥𝑖𝑖|𝒟𝒟|2

⋱ ⋮
⋯ 𝑥𝑥𝑖𝑖|𝒟𝒟||ℒ|

� (29)

with

𝑖𝑖 the index of a food source – i.e., a feasible DBN assignment to picking lines,
|𝒟𝒟| the number of DBNs initially in the storage racks that are considered to be assigned, and
|ℒ| the number of available picking lines.

Each element 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 in the food source 𝑋𝑋𝑖𝑖 is set to 1 if DBN 𝑑𝑑 is assigned to picking line 𝑙𝑙, and to 0 if
DBN 𝑑𝑑 is not assigned to picking line 𝑙𝑙. An initial solution is determined by not violating any of the
constraints in constraint sets (9)–(21). Penalty functions are used for objective functions (7) and (8)
due to the DM wanting to have the percentage of small packages and the number DBNs that are
assigned later than their out-of-DC date to be under a specified level. To use penalty functions while
minimising objective functions (5) and (6) as much as possible, let

𝑧𝑧(𝑋𝑋𝑖𝑖) =
1

2𝑡𝑡1
𝑓𝑓1(𝑋𝑋𝑖𝑖) +

1
2𝑡𝑡2

𝑓𝑓2(𝑋𝑋𝑖𝑖) + 𝑝𝑝3(𝑋𝑋𝑖𝑖) + 𝑝𝑝4(𝑋𝑋𝑖𝑖), (30)

where

𝑡𝑡𝑗𝑗 is the target value of objective function 𝑗𝑗, and
𝑝𝑝𝑗𝑗(𝑋𝑋𝑖𝑖) is the penalty function associated with function 𝑗𝑗 in objective functions (7) and (8)
 for food source 𝑖𝑖.

The functions

 𝑓𝑓1(𝑋𝑋𝑖𝑖) = � max
𝑑𝑑∈𝒟𝒟

(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ ⌈𝑑𝑑⌉)
𝑑𝑑∈𝒟𝒟

, and (31)

𝑓𝑓2(𝑋𝑋𝑖𝑖) = max
𝑙𝑙∈ℒ

���𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑑̃𝑑�
𝑑𝑑∈𝒟𝒟

� (32)

are defined exactly as in objective functions (5) and (6). Penalty functions 𝑝𝑝3(𝑋𝑋𝑖𝑖) and 𝑝𝑝4(𝑋𝑋𝑖𝑖) in
equation (30) assign penalties linearly according to intervals for which a goal value 𝑢𝑢 and an
increment 𝛥𝛥𝛥𝛥 need to be specified. The penalties are then assigned according to intervals, as seen
in Table 1.

The nectar amount is given by the reciprocal 1/𝑧𝑧(𝑋𝑋𝑖𝑖). The probability of an onlooker bee selecting
a certain food source 𝑘𝑘 is given by

𝑝𝑝𝑘𝑘 =
1

𝑧𝑧(𝑋𝑋𝑘𝑘)∑ 1
𝑧𝑧(𝑋𝑋𝑗𝑗)

𝑛𝑛
𝑗𝑗=1

 , (33)

where 𝑛𝑛 is the total number of food sources. Once an onlooker bee has found a food source2, it will
extract nectar and find a neighbouring food source. This action is simulated in the algorithm by two
actions. A random DBN from a random picking line is swapped with a DBN from another picking line
in that solution with a specified probability 𝛼𝛼. If a DBN does not fit in the other DBN’s picking line,
it is sent to the storage racks, and one or more other random DBNs from the storage racks will be
inserted into the available location(s) of that picking line to ensure that all |𝑙𝑙| locations of the picking
line are occupied by a SKU. In the second action a random DBN from a random picking line is replaced
by one or more DBNs from the storage racks with a specified probability 𝛽𝛽. The equation 𝛼𝛼 + 𝛽𝛽 = 1
must hold. The employed bee will travel to this new food source if it is an improvement on the
existing one, and inform the onlooker bees in the dancing area about the newly-found food source.

2 A food source contains only one employed bee, but may contain more than one onlooker bee.

199

The new solution is then compared with the previous solution of the onlooker bee. Three cases may
occur when comparing two solutions:

1. Any solution with no penalty is preferred to any solution with a non-zero penalty – i.e., a

solution with 𝑝𝑝3(𝑋𝑋𝑖𝑖) + 𝑝𝑝4(𝑋𝑋𝑖𝑖) = 0 is preferred to a solution with 𝑝𝑝3(𝑋𝑋𝑖𝑖) + 𝑝𝑝4(𝑋𝑋𝑖𝑖) > 0.
2. When comparing two zero penalty solutions, the one having a smaller weighted objective

function value is chosen – i.e., the solution having a smaller value for 1
2𝑡𝑡1

𝑓𝑓1(𝑋𝑋𝑖𝑖) + 1
2𝑡𝑡2

𝑓𝑓2(𝑋𝑋𝑖𝑖).
3. When comparing two non-zero penalty solutions, the one having a smaller value for 𝑝𝑝3(𝑋𝑋𝑖𝑖) +

𝑝𝑝4(𝑋𝑋𝑖𝑖) is chosen. If the penalties are the same for both solutions, the solution having the smaller
value for 1

2𝑡𝑡1
𝑓𝑓1(𝑋𝑋𝑖𝑖) + 1

2𝑡𝑡2
𝑓𝑓2(𝑋𝑋𝑖𝑖) is chosen.

A set of non-dominated solutions is maintained during the execution of the algorithm. An external
archive is used to keep a historical record of all non-dominated solutions. During each iteration,
feasible solutions are added to the external archive after which all solutions that are dominated by
other solutions are removed from the external archive during the evaluation process. A solution, 𝑋𝑋1,
with objective function values 𝑓𝑓𝑗𝑗(𝑋𝑋1) is said to dominate another solution, 𝑋𝑋2, with objective
function values 𝑓𝑓𝑗𝑗(𝑋𝑋2) if 𝑓𝑓𝑗𝑗(𝑋𝑋1) ≤ 𝑓𝑓𝑗𝑗(𝑋𝑋2) for each objective function 𝑗𝑗 ∈ {1, … , 4}.

If an employed bee and onlooker bees cannot find an improving food source in a specified number
of iterations, the employed bee’s food source is abandoned. A scout bee then determines a
randomly-generated food source, which is described as inserting DBNs from the storage racks into
the available picking lines without violating constraints in constraint sets (9)–(21). The employed
bee then travels to this food source, and the next iteration of the algorithm begins. The fact that
scout bees generate random solutions ensures that diversity in solutions is maintained throughout
the algorithm, which is vital to the success of multi-objective evolutionary algorithms. The algorithm
terminates after a specified number of iterations. All feasible non-dominated solutions in the
external archive are then returned to the decision-maker with their corresponding objective
function values to determine which trade-offs need to be made.

Table 1: The penalty associated with the percentage of small packages and the average
number of days that DBNs are late the following day.

Interval Penalty
[0,𝑢𝑢] 0

(𝑢𝑢,𝑢𝑢 + 𝛥𝛥𝛥𝛥] 1
(𝑢𝑢 + 𝛥𝛥𝛥𝛥,𝑢𝑢 + 2𝛥𝛥𝛥𝛥] 2

(𝑢𝑢 + 2𝛥𝛥𝛥𝛥,𝑢𝑢 + 3𝛥𝛥𝛥𝛥] 3
⋮ ⋮

Algorithm 1 contains the pseudocode for the implementation of the ABC algorithm. It requires the
number of food sources 𝑛𝑛, the number of unsuccessful trials 𝑡𝑡 before a food source is abandoned by
an employed bee, the number of times 𝑚𝑚 that the bees search for food sources, and the probability
𝛼𝛼 of swapping two DBNs from two different picking lines as input. The initialisation process takes
place in lines 1–6, which represent the creation of the external archive 𝒜𝒜, generating 𝑛𝑛 initial food
sources 𝒳𝒳 and setting counters 𝑐𝑐𝑖𝑖 to zero for each food source 𝑖𝑖 that are used to determine when
food sources are abandoned. The employed bees’ phase follows in lines 8–17, while the onlooker
bees’ phase is given in lines 19–28. Lines 29–33 show that certain food sources are abandoned if
better food sources are not found after 𝑡𝑡 trials. The probability of an onlooker bee visiting each food
source is determined between each employed bee’s phase and each onlooker bee’s phase, and the
external archive is updated after each scout bee’s phase in each of the 𝑚𝑚 iterations. Procedure 1
contains the pseudocode to compare two solutions during the employed bees’ phase and the
onlooker bees’ phase in lines 11 and 22 in Algorithm 1.

4.2 Genetic algorithm

The genetic algorithm (GA) was invented and proposed by John H. Holland in the early 1970s, and
became popular after his book Adaptation in Natural and Artificial Systems [6] was published in
1975. The motivation that led to its creation came from Holland’s interest in complex adaptive
systems. All living organisms are made up of cells. A chromosome is made up of a collection of genes,
with each gene defined as a block of deoxyribonucleic acid (DNA). Genes are used to form the

200

characteristics of each individual3. The use of the GA to solve the PLAP was inspired by a study by
Knowles and Corne [8] that focused on the implementation of a memetic algorithm for multi-
objective optimisation.

A chromosome is represented by the solution (similar to that of the ABC algorithm), which is defined
by the matrix

𝑋𝑋𝑖𝑖𝑘𝑘 =

⎣
⎢
⎢
⎢
⎡ 𝑥𝑥𝑖𝑖11𝑘𝑘 𝑥𝑥𝑖𝑖12𝑘𝑘

𝑥𝑥𝑖𝑖21𝑘𝑘 𝑥𝑥𝑖𝑖22𝑘𝑘
⋯ 𝑥𝑥𝑖𝑖1|ℒ|

𝑘𝑘

⋯ 𝑥𝑥𝑖𝑖2|ℒ|
𝑘𝑘

⋮ ⋮
𝑥𝑥𝑖𝑖|𝒟𝒟|1
𝑘𝑘 𝑥𝑥𝑖𝑖|𝒟𝒟|2

𝑘𝑘
⋱ ⋮
⋯ 𝑥𝑥𝑖𝑖|𝒟𝒟||ℒ|

𝑘𝑘 ⎦
⎥
⎥
⎥
⎤
 (34)

with

𝑖𝑖 the index of the individual in the population,
𝑘𝑘 the generation of the current population,

Algorithm 1: Artificial bee colony algorithm

3 The word ‘individual’ refers to the chromosome, fitness value, and all characteristics associated with the

individual, whereas ‘chromosome’ refers to the gene structure of the individual.

201

Procedure 1: Compare two solutions

|𝒟𝒟| the number of DBNs initially in the storage racks that are considered to be assigned, and
|ℒ| the number of available picking lines.

Each gene 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 in the chromosome 𝑋𝑋𝑖𝑖𝑘𝑘 is set to 1 if DBN 𝑑𝑑 is assigned to picking line 𝑙𝑙, and to 0 if DBN
𝑑𝑑 is not assigned to picking line 𝑙𝑙. The initial population is determined by inserting DBNs from the
storage racks into a specified number of picking lines until all of the locations in all the picking lines
contain a SKU for each individual4. This is analogous to the way the initial food sources are
determined in Algorithm 1. All of the constraints in constraint sets (9)–(21) are always satisfied. The
final similarity is that the fitness function is analogous to equation (30), which is given by

ℎ�𝑋𝑋𝑖𝑖𝑘𝑘� =

1
2𝑡𝑡1

𝑓𝑓1�𝑋𝑋𝑖𝑖𝑘𝑘� +
1

2𝑡𝑡2
𝑓𝑓2�𝑋𝑋𝑖𝑖𝑘𝑘� + 𝑝𝑝3�𝑋𝑋𝑖𝑖𝑘𝑘� + 𝑝𝑝4�𝑋𝑋𝑖𝑖𝑘𝑘�, (35)

where 𝑓𝑓1�𝑋𝑋𝑖𝑖𝑘𝑘� and 𝑓𝑓2�𝑋𝑋𝑖𝑖𝑘𝑘� are defined exactly as in equations (31) and (32) by replacing 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 with 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 .
Tournament selection is used to select the individuals from the current population 𝒫𝒫𝑘𝑘 and local
archive 𝒜𝒜𝑙𝑙 as parents to breed children for the offspring population 𝒫𝒫𝑜𝑜. The local archive is
synonymous with the external archive mentioned earlier in this section, which is initially empty.
Binary tournament selection is used. It works by merging 𝒫𝒫𝑘𝑘 and 𝒜𝒜𝑙𝑙 into a single population 𝒫𝒫𝑘𝑘 ∪𝒜𝒜𝑙𝑙,
called the entire population. Groups of four individuals are randomly selected from 𝒫𝒫𝑘𝑘 ∪𝒜𝒜𝑙𝑙 in each
of the 𝑛𝑛/2 iterations, where 𝑛𝑛 is the size of the population. Each of these groups is independent of
the others, meaning that an individual may feature in several of the groups. The first pair of
individuals is evaluated, where the individual with the smallest value for ℎ(𝑋𝑋𝑖𝑖𝑘𝑘) is selected as a
parent, after which the second pair is evaluated. The two selected parents in this group will then
produce two offspring using the crossover operator. Working with groups of four rather than with
pairs ensures that a parent does not breed with itself.

Two parents – say, 𝑋𝑋𝛿𝛿𝑘𝑘 and 𝑋𝑋𝜂𝜂𝑘𝑘 – produce two children by using a crossover operator called the random
column crossover operator (RCXO). RCXO selects a random parent for each of the |ℒ| picking lines.
For picking line 𝜆𝜆, if parent 𝑋𝑋𝛿𝛿𝑘𝑘 was selected, then the first child will receive the genes from column

�𝑥𝑥𝛿𝛿1𝜆𝜆𝑘𝑘 , … , 𝑥𝑥𝛿𝛿|𝒟𝒟|𝜆𝜆
𝑘𝑘 �𝑇𝑇 and the second child will receive the genes from column �𝑥𝑥𝜂𝜂1𝜆𝜆𝑘𝑘 , … , 𝑥𝑥𝜂𝜂|𝒟𝒟|𝜆𝜆

𝑘𝑘 �𝑇𝑇.
Similarly, if parent 𝑋𝑋𝜂𝜂𝑘𝑘 was selected, then the first child will receive the genes from column

�𝑥𝑥𝜂𝜂1𝜆𝜆𝑘𝑘 , … , 𝑥𝑥𝜂𝜂|𝒟𝒟|𝜆𝜆
𝑘𝑘 �𝑇𝑇 and the second child will receive the genes from column �𝑥𝑥𝛿𝛿1𝜆𝜆𝑘𝑘 , … , 𝑥𝑥𝛿𝛿|𝒟𝒟|𝜆𝜆

𝑘𝑘 �𝑇𝑇. An
example of RCXO may be found in Figure 3 for the case when four picking lines are available.

RCXO may, however, cause individuals in 𝒫𝒫𝑜𝑜 to be produced that contain one or more DBNs that are
assigned to two picking lines, which violates one or more constraints in constraint set (9). This
problem is fixed by using a repair operator that removes a random duplicate DBN and places one or
more DBNs from the storage racks in their place. This process is repeated until all assigned DBNs are
assigned to only one picking line. Once the children have been repaired, each child is mutated
according to a specified probability 𝜇𝜇. Mutation is performed by removing a certain number of DBNs
from the picking lines and replacing them with DBNs from the storage racks. This enables diversity
in 𝒫𝒫𝑜𝑜, since previously unassigned DBNs from the storage racks are now allowed to be assigned to a
picking line; and this potentially causes an individual to be more fit.

4 The size of the population must be an even number to keep the population constant, since two children are

produced by two parents.

202

Once all children have been generated after performing the repair and mutation operators, only the
children that represent zero penalty solutions are added to 𝒜𝒜𝑙𝑙. The local archive 𝒜𝒜𝑙𝑙 is then updated
by removing all solutions that are dominated by another solution in 𝒜𝒜𝑙𝑙. If the number of non-
dominated solutions in 𝒜𝒜𝑙𝑙 is more than a specified maximum size of 𝒜̅𝒜𝑙𝑙, solutions are removed
according to the concept of the crowding distance [2] given by the formula

𝑑𝑑�𝑋𝑋𝑖𝑖𝑘𝑘 ,𝑌𝑌𝑖𝑖𝑘𝑘� = ���
𝑓𝑓𝑗𝑗�𝑋𝑋𝑖𝑖𝑘𝑘� − 𝑓𝑓𝑗𝑗�𝑌𝑌𝑖𝑖𝑘𝑘�
𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 �

2𝑘𝑘

𝑗𝑗=1

 (36)

Figure 3: A graphical illustration of RCXO, with each parent containing four columns of genes
(four picking lines). In this example, the first offspring receives the first and last column of the
first parent and the second and third column of the second parent. Consequently, the second

offspring receives the first and last column of the second parent and the second and third
column of the first parent.

for solutions 𝑋𝑋𝑖𝑖𝑘𝑘 and 𝑌𝑌𝑖𝑖𝑘𝑘 with 𝑋𝑋𝑖𝑖𝑘𝑘 ≠ 𝑌𝑌𝑖𝑖𝑘𝑘, and where

𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value for function 𝑗𝑗 for all the solutions in 𝒜𝒜𝑙𝑙 and
𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum value for function 𝑗𝑗 for all the solutions in 𝒜𝒜𝑙𝑙.

The functions

 𝑓𝑓3�𝑋𝑋𝑖𝑖𝑘𝑘� = ��⌈𝑏𝑏⌉𝑙𝑙
𝑙𝑙∈ℒ𝑏𝑏∈ℬ

, and (37)

 𝑓𝑓4�𝑋𝑋𝑖𝑖𝑘𝑘� = �𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑∈𝒟𝒟

 (38)

are equivalent to objective functions (7) and (8).

In this case, 𝑓𝑓3(𝑋𝑋𝑖𝑖𝑘𝑘) and 𝑓𝑓4(𝑋𝑋𝑖𝑖𝑘𝑘) are used in conjunction with 𝑓𝑓1(𝑋𝑋𝑖𝑖𝑘𝑘) and 𝑓𝑓2(𝑋𝑋𝑖𝑖𝑘𝑘) to determine the
distance between solutions in the four-dimensional objective function space. The local archive 𝒜𝒜𝑙𝑙
grows too large in the experimental tests in section 5. The computational time saved by managing
a smaller local archive can be used to increase the number of iterations that can be performed by
the algorithm. As a result, a size restriction is imposed to avoid the algorithm from being

computationally expensive. Let 𝐬𝐬𝑋𝑋𝑖𝑖𝑘𝑘 = �𝑠𝑠𝑋𝑋𝑖𝑖𝑘𝑘
1 , … , 𝑠𝑠𝑋𝑋𝑖𝑖𝑘𝑘

𝑟𝑟 � be the vector containing the distances 𝑑𝑑(𝑋𝑋𝑖𝑖𝑘𝑘 ,𝑌𝑌𝑖𝑖𝑘𝑘)
of the 𝑟𝑟 nearest neighbours of solution 𝑋𝑋𝑖𝑖𝑘𝑘, with 𝑠𝑠𝑋𝑋𝑖𝑖𝑘𝑘

1 being the distance of the nearest neighbour, 𝑠𝑠𝑋𝑋𝑖𝑖𝑘𝑘
2

being the distance of the second nearest neighbour, and so on; then the total crowding distance of
a solution 𝑋𝑋𝑖𝑖𝑘𝑘 may be given by

203

𝑑̅𝑑�𝑋𝑋𝑖𝑖𝑘𝑘� = �𝑠𝑠

𝑋𝑋𝑖𝑖
𝑘𝑘
𝑗𝑗

𝑟𝑟

𝑗𝑗=1

 . (39)

The |𝒜𝒜𝑙𝑙| − 𝒜̅𝒜𝑙𝑙 solutions with the smallest value for 𝑑̅𝑑(𝑋𝑋𝑖𝑖𝑘𝑘) are then removed from 𝒜𝒜𝑙𝑙 where |𝒜𝒜𝑙𝑙| is
the size of 𝒜𝒜𝑙𝑙 before any solutions are removed. The best 50 per cent of the individuals – those with
the lowest fitness value in equation (35), from 𝒫𝒫𝑘𝑘 ∪ 𝒫𝒫𝑜𝑜 – then proceed to the following generation
to produce the next offspring population with 𝒜𝒜𝑙𝑙.

The pseudocode for the implementation of the GA may be found in Algorithm 2. It requires the
population size 𝑛𝑛, the number of generations 𝑔𝑔 until the algorithm is terminated, the number of
DBNs 𝑚𝑚 to be removed from the picking lines by replacing them with DBNs from the storage racks
during mutation, the probability 𝜇𝜇 of mutating an individual’s chromosome, the maximum size 𝒜̅𝒜𝑙𝑙
of the local archive, and the number of nearest neighbours 𝑟𝑟 to be considered when removing
individuals from the local archive as input to be executed. The initialisation process takes place in
lines 1–3, which represent the initiation of the local archive 𝒜𝒜𝑙𝑙 and generate 𝑛𝑛 initial individuals in
𝒫𝒫𝑘𝑘. The offspring population 𝒫𝒫𝑜𝑜 is produced in lines 5–12, where the crossover, repairing and
mutation take place. All feasible solutions in 𝒫𝒫𝑜𝑜 are added to 𝒜𝒜𝑙𝑙 after which all non-dominated
solutions in 𝒜𝒜𝑙𝑙 are kept, as is evident in lines 13–15. If the size of 𝒜𝒜𝑙𝑙 is greater than a specified
limit, then solutions are removed from 𝒜𝒜𝑙𝑙 according to the total crowding distance in equation (39),
which may be seen in lines 16–18. Finally, the current population for the following generation is
determined in lines 19–21.

The GA is then extended to a memetic algorithm (MA), which applies a local neighbourhood hill-
climbing (LNH) algorithm to a child with a specified probability after the crossovers, repairing, and
mutation have taken place in the genetic part of the algorithm. In each iteration of the LNH
algorithm, a new solution is determined either by swapping two DBNs assigned to different picking
lines in the best found solution, or by swapping a DBN assigned to a picking line with one or more
DBNs on the storage racks in the best found solution. The best found solution is then updated to the
new solution if the new solution’s fitness value is
better than the best found solution’s fitness value. This process is repeated for a specified number
of iterations. The LNH algorithm was chosen to play a role in solving the MOMKP, since other local
searches are too computationally expensive for the problem, or have the potential to lead the search
away from promising regions in the domain that the GA managed to explore. The MA requires
additional computation than does the GA, due to the local search.

5 RESULTS

Historical data [11] was collected by PEP over a period of 12 weeks, of which seven weeks were used
for static and dynamic testing. Historical solutions are currently found by hand by the picking line
managers. In the static testing, the DBNs released for the present day, and the DBNs that are in the
storage racks in the historical case, were used to determine whether the ABC algorithm, GA, and
MA could assign a subset of these DBNs to the picking lines in a better way than was the historical
case for that specific day. The DBNs that are available for that day for the algorithm to use in this
testing are dependent on the DBNs assigned on the previous days in the historical case, and not on
the DBNs that the respective algorithm assigned on the previous days. Dynamic testing is carried out
by starting with the same set of DBNs as the historical case on the first day of assignment. The
assigned DBNs in the preferred solution produced by the respective algorithm for the current day
are then removed from the set of available DBNs, and the DBNs released on the following day are
then added to the set of available DBNs. The algorithm uses this new set of DBNs to assign DBNs for
the following day. The DBNs that are available for a specific day for the algorithm are thus
independent of the DBNs assigned on the previous days in the historical case, but instead are
dependent on the DBNs assigned by the specific algorithm on the previous days.

204

Algorithm 2: Genetic algorithm

The original data set contained 61 working days, where each day had a specific number of available
picking lines for that day, ranging from two to 11 picking lines [12]. The data set was converted into
seven data sets, where each set has a constant number of scheduled picking lines for each day of
picking, ranging from two to eight picking lines. This allows for an accurate comparison between
the historical case and the algorithms. The re-organisation was achieved by removing picking lines
from each historical day of picking while preserving the DBNs that were picked on that day – i.e.,
the DBNs in the new dataset are a subset of the DBNs in the original dataset. Table 2 summarises
the modified historical data for the seven-week period used in the static and dynamic testing.

All tests were executed on a Macintosh OS X system equipped with a 2.6GHz Intel Core i5 processor
and 8GB 1600MHz DDR3 SDRAM. The mathematical formulations were coded and solved in LINGO
11.0, after which it was concluded that it was impossible to solve a real-world problem and present
a set of solutions in a reasonable amount of time. All algorithms presented were implemented in
Python 3.3 [16].

Parameter calibration was performed for each of the algorithms to determine which combination of
parameter settings provides the best results in the allocated time. It was decided that the
parameters 𝑛𝑛 = 15, 𝑚𝑚 = 50, 𝑡𝑡 = 4 and 𝛼𝛼 = 0.5 be used for the ABC algorithm, and 𝑛𝑛 = 15, 𝑔𝑔 = 50,
𝑚𝑚 = 5 and 𝜇𝜇 = 0.5 be used for the GA and MA. For the MA, five iterations were performed each time
LNH was executed; the probability of performing LNH on an individual was taken as 0.2; and the
probability of swapping two DBNs from two different picking lines was chosen to be 0.25. Once an
algorithm has terminated, the DM is presented with a set of non-dominated solutions to decide which
trade-offs need to be made in terms of the walking distance (the sum of the maximal SKUs) and the
maximal volume of stock (the largest volume of stock on a picking line over all picking lines). Figure
4 contains a scatter plot of 𝑓𝑓1�𝑋𝑋𝑖𝑖𝑘𝑘� vs 𝑓𝑓2�𝑋𝑋𝑖𝑖𝑘𝑘�, showing an example of a set of non-dominated
solutions. It is evident from this plot that, when moving from one solution to another, one of the
objective functions increases while the other one decreases.

205

Table 2: The composition of the historical data for 2013-02-18 to 2013-04-04.

Number of lines per day Number of instances Number of DBNs Number of SKUs
2 34 1656 2588
3 30 2256 3230
4 27 2747 3843
5 22 2614 3546
6 18 2477 3629
7 13 2010 3291
8 9 1612 2852

Figure 4: A scatter plot representing an example of non-dominated solutions that are
presented to the decision-maker to decide which trade-offs need to be made.

5.1 Static testing

The first two objective function values – the sum of the maximal SKUs (the walking distance of the
pickers) and the maximal volume of stock – are compared for all the algorithms and the historical
case. The DBNs released for the present day and the DBNs that are in the storage racks in the
historical case were used to determine whether the ABC algorithm, GA, and MA could assign a subset
of these DBNs to the picking lines in a better way than the historical case for that specific day. The
DBNs that are available for that day for the algorithm to use in this testing are dependent on the
DBNs assigned on the previous days in the historical case, and not on the DBNs that the respective
algorithm assigned on the previous days. The algorithm thus solves, for each day, the same problem
that was solved historically. This explains the static nature of the results performed in this section.

Figures 5 and 6 contain the results for the first two objective functions by means of grouped bar
charts for a period of four weeks for three picking lines. The values in both figures for a specific day
correspond to the same solution. Out of the 16 days of picking in the four-week period, 12 days show
an improvement for the first objective and 11 days show an improvement for the second objective
for the ABC algorithm. There is an on-average 5.12 per cent decrease in the first objective and a
1.98 per cent increase in the second objective. For the GA, there is an improvement 16 days of the
time for the first objective, and an improvement 13 days of the time for the second objective. The
average decrease is 23.64 per cent and 34.97 per cent for the first and second objectives
respectively. Lastly, there is an improvement in 16 of the days for the first objective and 12 of the
days for the second objective for the MA, with an average decrease of 25.70 per cent and 23.05 per
cent for the first and second objectives respectively. A comparison of computational times for three
available picking lines is shown in Table 3 for all the algorithms.

206

Figure 5: A grouped bar chart of the sum of the maximal SKUs for three picking lines for a
period of four weeks (see online version for colour image)

Figure 6: A grouped bar chart of the maximal volume of stock for three picking lines for a
period of four weeks (see online version for colour image)

Algorithm Min 𝑄𝑄1 Median 𝑄𝑄3 Max 𝜇𝜇 𝜎𝜎
ABC 21.674 26.658 27.834 29.413 35.993 27.998 2.810
GA 15.811 21.234 24.501 27.505 32.223 24.417 4.004
MA 21.563 27.454 31.778 35.437 57.356 32.234 6.649

Table 3: A comparison of computational times, in seconds, for three available picking lines for
the assignment of DBNs in the form of the standard measures of spread, mean (𝝁𝝁) and standard

deviation (𝝈𝝈) for all algorithms for a period of four weeks.

5.2 Dynamic testing

To compare the percentage of small packages and the average days that late DBNs are assigned later
than their out-of-DC date to the historical case, the ABC algorithm, GA, and MA need to assign the
DBNs in a dynamic sense. This is carried out by starting with the same set of DBNs as the historical
case on the first day (2013-02-18 in the testing performed in this section) of assignment. The
assigned DBNs in the preferred solution produced by the respective algorithm for the current day
are then removed from the set of DBNs, and the DBNs released on the following day are added to
the set of DBNs. The algorithm uses this new set of DBNs to assign DBNs for the following day. The
DBNs that are available for a specific day for the algorithm are independent of the DBNs assigned on
the previous days in the historical case, but instead are dependent on the DBNs assigned by the
algorithm on the previous days.

207

Figures 7 and 8 display the results for the percentage of small packages and the average days that
late DBNs are assigned later than their out-of-DC date, respectively, in the form of line graphs for a
period of seven weeks for three picking lines. It is clear that all of the algorithms were able to
maintain the percentage of small packages, avoiding the rapid increases in the percentage of small
packages compared with the historical case. The GA shows the lowest percentage of small packages
over the seven-week period. The average days that late DBNs are assigned later than their out-of-
DC date show a decrease of 20 per cent when using the GA, and 22.08 per cent when using the MA,
compared with the historical data. The ABC algorithm performs the best in terms of assigning DBNs
no later than their out-of-DC date, with an average decrease of 48.97 per cent in the average days
that late DBNs are assigned later than their out-of-DC date.

The graphical boxplots in Figure 9 indicate that the sum of the maximal SKUs and the maximal
volume of stock shows an improvement in the dynamic testing for all of the tested algorithms.
Convergence graphs for the tested algorithms may be found in Figure 10. The values on the 𝑦𝑦-axis
are the weighted objective function values given by the formula

𝑦𝑦(𝑡𝑡) =
𝑓𝑓1(𝑡𝑡)
𝑡𝑡1

+
𝑓𝑓2(𝑡𝑡)
𝑡𝑡2

 , (40)

where 𝑓𝑓𝑖𝑖(𝑡𝑡) is the objective function value for objective 𝑖𝑖 at time 𝑡𝑡 and 𝑡𝑡𝑖𝑖 is the target value for
objective 𝑖𝑖. The points on the plot represent the cut-off mark of 50 iterations for each algorithm.
The ABC algorithm flattens out prematurely, while the GA and MA continue to decline. The weighted
objective function value for the MA does not improve significantly after the GA’s cut-off mark. In
this regard it is suggested to use the GA instead of the MA.

6 CONCLUSION

An order picking system in a distribution centre (DC) owned by Pep Stores Ltd (PEP), consisting of
parallel unidirectional picking lines, was investigated. Order picking is a labour-intensive task, and
the cost associated with order picking accounts for approximately 55 per cent of all operating costs
in a DC. SKUs that differ only in size classification are grouped together in a single DBN, and must
be picked in the same wave. Previous studies suggested that improvements needed to be made when
determining which DBNs to assign to which picking lines on a given day, and when to leave DBNs for
the following day [13].

The problem was formulated as a multi-objective multiple knapsack problem where the picking lines
may be viewed as the knapsacks and the DBNs as the items to be inserted into the knapsacks. The
artificial bee colony algorithm, the genetic algorithm and the memetic algorithm were implemented
to approximate the Pareto frontier for the first two objectives while using penalty functions for the
last two objectives. Penalty functions allow the percentage of small packages and the average
number of days that DBNs are assigned later than their out-of-DC date to be kept under specified
limits while minimising the first two objectives.

It is recommended that PEP use the genetic algorithm to assign DBNs to the available picking lines,
since it performed best in both the static and the dynamic cases. The genetic algorithm showed an
average decrease of 23.64 per cent and 34.97 per cent in the walking distance of the pickers and
the largest volume of stock on a picking line over all picking lines respectively. The percentage of
small packages was maintained, with a 20 per cent decrease in the average number of days that
DBNs are assigned later than their out-of-DC date.

Future work may include the implementation of other nature-inspired algorithms, such as the
artificial immune system and particle swarm optimisation algorithms, to see the effect they have
on the provided solutions, compared with the algorithms developed in this study. Scheduling
techniques could be applied to determine on which day a specific DBN should be assigned to a picking
line. This is different from the dynamic case, where DBNs are only to be considered for assigning on
the present day. All of the algorithms presented in this study, and other nature-inspired algorithms,
could be tested when a single DBN could be picked from multiple picking lines by splitting DBNs into
smaller DBNs. Lastly, different picking line configurations found at PEP’s DCs could be analysed using
the implemented algorithms.

208

Figure 7: A line graph of the percentage of small packages for three picking lines for a period
of seven weeks.

Figure 8: A line graph of the average days that late DBNs are assigned later than their out-of-
DC date for three picking lines for a period of seven weeks.

Figure 9: Graphical boxplots of the sum of the maximal SKUs and the maximal volume of stock
for three picking lines for a period of seven weeks. The vertical lines on either side of each
box represent the first quartile (𝑸𝑸𝟏𝟏) on the left and the third quartile (𝑸𝑸𝟑𝟑) on the right, and
the vertical line within each box indicates the median (𝑸𝑸𝟐𝟐). The two vertical lines outside

each box, called the whiskers, show the minimum and maximum values of the non-outliers.
The outliers, which are either 1.5 times the interquartile range (the difference between 𝑸𝑸𝟏𝟏

and 𝑸𝑸𝟑𝟑 or the width of the box) less than 𝑸𝑸𝟏𝟏 or greater than 𝑸𝑸𝟑𝟑, are represented by the
individually-plotted coordinates.

209

Figure 10: A typical convergence graph of the weighted objective function value for three
picking lines. Each algorithm was given 75 iterations (the number of times that the bees

search for food sources in the ABC algorithm and the number of generations in the GA and the
MA) after which it was terminated. The points on the graph indicate the 50th iteration for each

algorithm, which represents the cut-off mark when a set of non-dominated solutions is
returned.

REFERENCES

[1] De Villiers, A.P. 2011. Minimising the total travel distance to pick orders on a unidirectional picking line,
Master’s Thesis, Stellenbosch University, Stellenbosch.

[2] Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. 2002. A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), pp 182-197.

[3] Fidanova, S. 2007. Ant colony optimization and multiple knapsack problem, pp 498-509 in Rennard, J.P.
(Ed.), Handbook of Research on Nature Inspired Computing for Economics and Management, London: Idea
Group Reference.

[4] Fivaz, D. 2013. SKU duplication on a unidirectional picking line, Master’s Thesis, Stellenbosch University,
Stellenbosch.

[5] Gandibleux, X. & Freville, A. 2000. Tabu search based procedure for solving 0-1 multiobjective knapsack
problem: The two objective case, Journal of Heuristics, 6(3), pp 361-383.

[6] Holland, J.H. 1975. Adaptation in natural and artificial systems, University of Michigan Press.
[7] Karaboga, D. 2005. An idea based on honey bee swarm for numerical optimization, Erciyes University,

Turkey (unpublished).
[8] Knowles, J.D. & Corne, D.W. 2000. M-PAES: A memetic algorithm for multiobjective optimization,

Proceedings of the 2000 Congress on Evolutionary Computation, 1(1), pp 325-332.
[9] LINDO Systems. 2015. Lingo 11.0. Available from www.lindo.com.
[10] Matthews, J. 2015. SKU assignment in a multiple picking line order picking system, PhD Thesis,

Stellenbosch University, Stellenbosch.
[11] Matthews, J. & Visagie, S.E. 2014. Picking line problems. Available from

scholar.sun.ac.za/handle/10019.1/86110.
[12] Matthews, J. & Visagie, S.E. 2014. Order sequencing on a unidirectional picking line, European Journal of

Operational Research, 231(1), pp 79-87.
[13] Matthews, J. & Visagie, S.E. 2015. SKU assignment using correlations on unidirectional picking lines,

ORiON, 31(2), pp 61-76.
[14] Omkar, S., Senthilnath, J., Khandelwal, R., Narayana Naik, G. & Gopalakrishnan, S. 2011. Artificial bee

colony (ABC) for multi-objective design optimization of composite structures, Applied Soft Computing
Journal, 11(1), pp 489-499.

[15] Pep Stores Ltd. 2015. PEP. Available from www.pepstores.com.
[16] Python Software Foundation. 2015. Python 3.3. Available from www.python.org.
[17] Wei, X. & Zhang, K. 2012. Discrete artificial bee colony algorithm for multiple knapsack problems,

International Journal of Advancements in Computing Technology, 4(21), pp 484-490.

	A MULTI-OBJECTIVE APPROACH TO THE ASSIGNMENT OF Stock Keeping UNITS TO UNIDIRECTIONAL PICKING LINES
	article info
	ABSTRACT
	OPSOMMING
	1 INTRODUCTION
	2 literature review
	2.1 Picking line assignment problems
	2.2 Metaheuristics for solving MOKPs and MKPs

	3 MATHEMATICAL FORMULATION
	4 METAHEURISTIC APPROACHES
	4.1 Artificial bee colony algorithm
	4.2 Genetic algorithm

	5 RESULTS
	5.1 Static testing
	5.2 Dynamic testing

	6 CONCLUSION
	REFERENCES

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [515.906 728.504]

>> setpagedevice

