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ABSTRACT 

Uncertainty is ever-present and is an integral part of life. 
Recognising the existence of uncertainty and its possible effects on 
decision-making may be important for the profitability, financial 
success, or even survival of an organisation. A relatively new 
discipline, - known as probability management, - has recently 
emerged as part of operations research/management science. This 
paper will attempt to provide a brief introduction to the concepts 
of probability management and the motivation behind its 
development. One of the major driving forces resulting in this 
development is the phenomenon known as the ‘flaw-of-averages’. 
The flaw-of-averages has important consequences in industrial 
engineering, financial, business, and economic models. The classic 
newsvendor problem will be used as an illustrative example. 
However, the main purpose of this paper is to discuss the most 
important characteristics of the flaw-of-averages. It will investigate 
and attempt to quantify some of the generic factors that may have 
an influence on the existence and severity of the flaw-of-averages 
and its expected consequences. Various models will be developed, 
and experiments will be conducted using Microsoft Excel as a 
modelling tool and an experimental approach based on Monte Carlo 
simulation modelling. 

OPSOMMING 

Onsekerheid is altyd teenwoordig, en is ŉ integrale deel van die 
lewe. Die herkenning van die bestaan van onsekerheid en die 
moontlike gevolge vir besluitneming mag belangrik wees vir die 
winsgewendheid, finansiële sukses en selfs die voortbestaan van ŉ 
organisasie. ŉ Relatief nuwe konsep het onlangs verskyn as deel van 
operasionele navorsing / bestuurswetenskap bekend as waarskynlik-
heidsbestuur. Hierdie artikel sal poog om ŉ kort inleiding te verskaf 
tot die konsep van waarskynlikheidsbestuur en die motivering agter 
die ontwikkeling daarvan. Een van die belangrike dryfvere agter 
hierdie ontwikkeling is die fenomeen bekend as die ‘gemors-van-
gemiddeldes’. Die gemors-van-gemiddeldes het belangrike gevolge 
in bedryfsingenieurswese, finansiële, ekonomiese en besigheids-
modelle. Die klassieke koerantverkoperprobleem sal as ŉ 
illustratiewe voorbeeld gebruik word. Die hoofdoelwit van hierdie 
publikasie is egter om die mees belangrike eienskappe van die 
gemors-van-gemiddeldes te bespreek. Dit sal sommige van die 
belangrikste generiese faktore wat ŉ invloed mag hê op die bestaan 
en die erns van die gemors-van-gemiddeldes ondersoek, en poog om 
die verwagte gevolge daarvan te kwantifiseer. Verskeie modelle sal 
ontwikkel word, en eksperimente sal uitgevoer word deur gebruik 
te maak van Microsoft Excel en ŉ eksperimentele benadering 
gebaseer op Monte Carlo simulasie modellering. 
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1 INTRODUCTION 

Statistical thinking will one day be as necessary for efficient citizenship as the 
ability to read and write. H G Wells (1866-1946) 

 
The world is “living on the edge of uncertainty” [1]. Any planning exercise is involved with the 
future. Crossing the boundary between the known present and the uncertain future represents a 
jump into the mysterious unknown. Organisations spend large amounts of money on planning 
exercises that inevitably include expensive efforts – for example, insurance – to mitigate the possible 
negative effects of the uncertain future. If not enough is known about a subject there is a tendency 
to classify it as random, and therefore as unfathomable and uncontrollable. However, science is 
continually attempting to push the envelope of knowledge and the barriers of the unknown, and 
thus move into the realm of what may be considered as unknown, or at least as uncertain. 

1.1 Historical perspective 

In mediaeval times, the throw of a die was controlled by the gods until Girolamo Cardano (1501-
1579) proved otherwise [2]. Uncertainty is everywhere in one form or another. This is not new, and 
has been a part of the human condition since time immemorial. The Roman scholar, Pliny the Elder 
(23-79), declared: “In these matters the only certainty is that nothing is certain”; and Benjamin 
Franklin (1706-1790) maintained that: “Nothing is certain except death and taxes”. Furthermore, it 
seems as if the level of uncertainty is increasing, given the existing and ever-increasing political, 
social, and economic turmoil in the world. One may choose to ignore the existence of uncertainty 
or assume that nothing can be done about it. However, the consequences of uncertainty in the 
business of everyday life may be quite severe. Fortunately, Blaise Pascal (1623-1662) and Pierre de 
Fermat (1601-1665) laid the foundations of probability theory some time ago, and people such as 
Abraham de Moivre (1667-1754), Sir Francis Galton (1822-1911), and Sir Ronald Aylmer Fisher (1890-
1962), among many others, developed statistical models and descriptive statistics [2]. These 
developments and their enhancements over the years provide the tools at least to analyse 
uncertainty, investigate its origins and possible effects, and maybe even to quantify it to some 
extent. 

1.2 New developments 

Apart from the ongoing development of the theory of mathematical statistics, some other more 
recent developments facilitate the effective application of mathematical statistics. The availability 
of inexpensive and powerful computer hardware and software greatly increases the ability to handle 
the extensive computational load often required. Furthermore, the traditional complaint of the 
statistician about not having enough data is disappearing, and quite the contrary may be true, since 
“we are drowning in a sea of data and data insecurity” [3]. Data bases in use today, containing zeta 
bytes of raw data, are not uncommon. These developments, techniques, and models are certainly 
not perfect. The results of, and conclusions based on, the application of a statistical technique, 
possibly based on huge amounts of data, to investigate and analyse uncertainty are, of necessity, 
mostly subject to their own form of uncertainty – such as those embedded in statistical inference. 
But these uncertainties are, at least to some extent, controllable and quantifiable. Even so, the 
application of mathematical statistics in a structured and consistent way to real-world problems has 
become mandatory. It may provide at least some insight into and understanding of the structures of 
the stochastic processes surrounding us, and may especially enable the evaluation of the severity of 
the possible consequences of uncertainty and how to plan and be prepared for it in advance. This 
paper intends to illuminate some of these concepts. 

2 BACKGROUND 

This section is intended to provide some background information that may be required for the rest 
of this paper. A reader with intimate knowledge of Monte Carlo simulation, spreadsheet software, 
Jensen’s inequality, or the flaw-of-averages may skip this paragraph without loss of continuity. 

2.1 Monte Carlo simulation 

Anyone who attempts to generate random numbers by deterministic means is, of course, living in 
a state of sin. John von Neumann (1903–1957) 
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Simulation modelling has gone through some remarkable developments over the last 50 or 60 years, 
and has become one of the most widely-used techniques available to industrial engineers and 
managers for modelling and designing complex stochastic systems [4]. Techniques such as system 
dynamics, discrete/continuous simulation, agent-based approaches, and the plethora of associated 
software products, are commonplace. However, the Monte Carlo method is the basis of any kind of 
simulation model intended to model and investigate stochastic processes. 
 
Regarding Figure 3, a random number, R, from a distribution, in this case normal, may be generated. 
By substituting this value into the input/output transformation function of the model, F(X), the 
output value, Y, may be obtained. The essence of the Monte Carlo method consists of repeating this 
process several times [5].  
 
This process is a typical, albeit very simplified, example of what is known as a Monte Carlo simulation 
model. The Monte Carlo method was first formulated by John von Neumann (1903-1975) and 
Stanislaw Ulam (1909-1984) as part of their research for the Manhattan Project [2]. Monte Carlo 
simulation seems, at present, to be the only viable way to investigate the existence and extent of 
what is known as the flaw-of-averages (see sections 2.3 and 2.4), and will be used extensively for 
this purpose in this paper. Furthermore, Monte Carlo simulation is used quite extensively in industrial 
engineering, management and financial analysis (especially for risk analysis), and project scheduling 
[6,7,8,9]. Monte Carlo simulation will be used extensively as a modelling approach in this paper. 

2.2 Spreadsheet software 

Despite their drawbacks, spreadsheets have overwhelmingly become the analytical 
vernacular of management. Sam L Savage 

 
Spreadsheets certainly have some severe drawbacks, especially as a general purpose platform for 
model development; but they also have some significant advantages [5]. They are widely available, 
and probably have the largest and most diversified user base of any single software product. 
Spreadsheet software is known, used, and trusted by almost every engineer, business manager, and 
accountant. Almost everyone has become accustomed to the rapid, interactive responses available 
from spreadsheet applications, even though they are slow in terms of execution speed. This may 
present a problem in the case of large Monte Carlo simulations requiring large sample sizes and using 
only standard spreadsheet software. Applicable commercial software, usually available as 
spreadsheet add-ins that address this problem to some extent, are available from companies such 
as Palisade Corporation and Frontline Systems Inc., and new developments may be expected [10, 
11, 12]. Spreadsheet software, specifically Microsoft Excel, will be used exclusively in this paper for 
the model development and execution. 

2.3 Jensen’s inequality 

The worst form of inequality is to make unequal things equal. Aristotle (384-322 BC) 
 
The mathematical basis of the so-called flaw-of-averages (FoA) [13] may be found in a mathematical 
concept known as Jensen’s inequality [14]. It is named after the Danish mathematician Johan Jensen 
(1859-1925) who defined and proved it in 1906, and relates the value of a convex function of an 
integral to the integral of a convex function. In its simplest form, the inequality states that the 
convex transformation of a mean is less than or equal to the mean after convex transformation; it 
is a simple corollary that the opposite is true for concave transformations. Jensen’s inequality may 
be demonstrated as shown in Figure 1. 
 

 

Figure 1: Graphical demonstration of Jensen’s inequality 
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With reference to Figure 1, for an arbitrarily chosen value of X = x0, if a is a point on the secant line 
of the function between x1 and x2, and b is a point on the graph of the function. It is clear that: 
 

a ≥ b for all values x1 ≤ X ≤ x2 

 
In the context of probability theory, Jensen's inequality is generally stated in the following form: If 
X is a random variable with expected value E(X), and F(X) is a convex function, then 
 

F(E(X)) ≤ E(F(X)) 
 
where F(E(X)) is the function of the expected value and E(F(X)) is the expected value of the function.  
 
This is often known as the flaw-of-averages (FoA) [13] and may be stated as: 
 
The function of the expected value (mean) is less than or equal to the expected value (mean) 

of the function. 

2.4 The flaw-of-averages 

The law-of-averages. This often misused, so-called ‘law’ is a layman’s term without any valid 
mathematical basis. It is also known as the gambler’s fallacy [15]. 

 
The variance of a stochastic variable has traditionally been used, and still is used, as a measure of 
variation and uncertainty. The dictum ‘a mean without a standard deviation does not mean much’ 
is still true, but the standard deviation may not provide the complete picture. The so-called flaw-
of-averages may be present in numerous industrial engineering and business models – for example, 
quality control, inventory management, reliability engineering, financial planning, budgeting, 
project management, maintenance planning, investment analysis, marketing, risk analysis, and most 
simulation models – to name but a few [5,7,8,9]. The FoA may also be stated as “average inputs do 
not always result in average outputs” [16]. Often, planning for the future or making predictions 
dependent on uncertain inputs and outcomes is replaced by a single, constant, so-called average 
number [17,18]. This leads to a class of systematic errors that is called the flaw-of-averages [5]. All 
that is required for the existence of the FoA is for the model to have a non-linear input-output 
transformation function, and for at least one of the model input variables to be subjected to 
uncertainty. The FoA may be illustrated as shown in Figure 2. The FoA and the Monte Carlo method 
may be further demonstrated by using the hypothetical example shown in Figure 3. The summary 
results for this example, as shown in Table 1, were obtained by designing and executing a Monte 
Carlo model with a sample size of 10 replications, each consisting of 1,000 observations. The results 
shown in Table 1 indicate that F(E(X)) ≤ E(F(X)), as predicted by Jensen’s inequality, and the 
existence and severity of the flaw-of-averages is obvious, as indicated by the flaw-of-averages 
percentage defined as FoA% = [E(F(X)) – F(E(X))] / F(E(X)). The discussion and investigation of the 
FoA is the main focus of this paper.        
 

 

Figure 2: A generic depiction of a non-linear, stochastic model and the flaw-of-averages 
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Figure 3: A hypothetical example demonstrating the flaw-of-averages 

Table 1: Summary simulation results for the hypothetical example 

3 PROBABILITY MANAGEMENT  

Nearly all organisations worship at the false altar of determinism. Steve Roemerman, as quoted 
by Kirmse and Savage [19] 

 
A relatively new discipline, known as probability management, has recently emerged as part of 
operations research/management science [11,12,19,20,21]. The principles of probability 
management are by no means new or unknown, but have recently come under the spotlight and, in 
conjunction with risk analysis and other kinds of financial analysis, are one of the major applications 
of spreadsheet software and Monte Carlo simulation. Actuaries have been using the principles of 
probability theory and statistical analysis for many years, and industrial engineering techniques – 
such as quality control and reliability engineering – are well-established. Advances in computer 
technology are well-known. It may be these advances and the availability and popularity of 
spreadsheet software that have highlighted the problems associated with the FoA. Ironically, 
however, these same advances and developments may be instrumental in resolving these problems. 
 
“Probability management could be a new paradigm that shifts traditional decision-making from the 
reliance on point estimates (i.e., the mean-variance paradigm), to decision-making that addresses 
the variability and more complex relationships affecting decision-making environments” [22]. “The 
main focus of probability management is on estimating, maintaining, and communicating the 
distribution of the random events driving a business” [20]. The principles and structure of 
probability management were defined in two seminal papers by Savage, Scholtes, and Zweidler that 
were published in OR/MS Today in 2006. They not only initiated this new discipline and defined some 
initial structures, but gave it a name and therefore a much-needed identity. Probability management 
seems to be a natural progression and development from relative deterministic information systems 
to decision-making supported by stochastic-systems thinking. 
 
Probability management, as defined so far, rests on three main concepts [22]: 

The function value 
obtained by substituting 
the mean E(X) into F(X) 

F(E(X)) = 24.53 

The estimated 
sample mean 

obtained from the 
simulation output 
E(F(X)) = 41.62 

The flaw-of-averages percentage (FoA%) 
may be defined as : 

FoA% = [E(F(X)) – F(E(X))] / F(E(X)) 
= 69.67% 
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Interactive simulation of complex stochastic and non-linear systems provides engineers and 
managers with enhanced decision support and, perhaps more importantly, with timely and a better 
understanding of, and insight into, the multi-faceted characteristics and uncertainty of their 
environment. 
 
Stochastic libraries involve the gathering, maintaining, and disseminating of all data of a stochastic 
nature that may be of importance to the organisation. The data should be analysed and manipulated 
into suitable formats for example, statistical distributions and other primary statistical models and 
should be made available for decision-making over different computing platforms. These libraries 
and sub-models collectively may be an important asset for any organisation, similar to other assets 
– such as people, equipment, and facilities – and should be treated as such. 
 
A certification authority, which may be a separate department in an organisation and that will be 
responsible for the management of all probability management activities. These may include the 
gathering and dissemination of the appropriate data, the specification of the required data 
structures, and the development and dissemination of modelling expertise. 

 
The FoA (see section 2.4) is one of the primary driving forces behind the development of probability 
management, and is the main topic of the rest of this paper. 

4 THE NEWSVENDOR PROBLEM 

What you lose on the swings you gain on the roundabouts! Attributed to P G Wodehouse 
(1881-1975) 

 
It seems that most applications of the flaw-of-averages have been concerned with applications of 
financial analysis, although some other applications have been reported [22,23]. However, a large 
number of instances in industrial engineering and general management may also exist [5,7,9]. As a 
typical generic example, consider the newsvendor model, a well-known, classical inventory theory 
model [24]. What is now known as the newsvendor problem – first mentioned in 1888 by Francis Isidro 
Edgeworth (1845-1926) [25] – is arguably the beginning of stochastic inventory control theory. The 
simplest variant of the newsvendor problem may be formulated as follows [24]: 

 
A company buys and sells a single product every day. 
C0 is the unit cost of overage. 
Cu is the unit cost of underage. 
The demand per day is a continuous non-negative random variable. 
The statistical distribution function of the demand is f(x) and the cumulative distribution function 
is F(x). 
The decision variable is the order quantity Q, the number of units to buy at the beginning of a day. 
The objective is to determine the value of the order quantity Qopt that will minimise the expected 
total overage and underage cost at the end of the planning period. 
 
Figure 4 shows the input/output transformation function (I/OTF) of the newsvendor problem for 
different values of the cost ratio Cu/Co. The I/OTF is piecewise linear and discontinuous, and should 
therefore be classified as non-linear (see section 5.3) except for Cu/Co = 1. Furthermore, at least 
one input, the demand, is subjected to uncertainty, and the I/OTF is convex. Thus a FoA should be 
expected, and the flaw-of-averages percentage (FoA%) should be negative. 
 

 

Figure 4: Input/output transformation functions for different values of the cost ratio Cu/Co 
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Assume the following values for the input parameters: 
 
Co = 50, Cu = 100 and the demand has a normal distribution with a mean of 3,000 units and a standard 
deviation of 1,000 units. The optimum order quantity, Qopt, may be determined from the following 
formula [24]: 
 
Qopt = F-1[(Cu /(Cu+C0)] = 3,431 units 
where F-1(x) is the inverse distribution function of the demand. 
 
The newsvendor problem has numerous applications. It is used, for example, by airlines to determine 
so-called ‘optimum over-booking’ [25,26]. Given these assumptions, it may minimise the expected 
total overage and underage cost. However, it may not maximise the expected profit and, 
furthermore, disregarding the flaw-of-averages may cause a significant over-estimation of the 
expected profit, as shown in Table 2. 
 
A Monte Carlo simulation model for the newsvendor problem was designed and executed with a 
sample size of 100 replications, each consisting of 1,000 observations. The results are summarised 
in Table 2. 
 
This formulation of, and solution to, the newsvendor problem suffers from some limitations. For 
example, the sales and purchase prices are not included, and thus Qopt is the value of the order 
quantity that minimises the sum of the overage and underage (O/U) cost but does not necessarily 
provide the value of the order quantity that will maximise the profit, Popt. Furthermore, though the 
distribution of the demand is taken into account, the possible FoA is ignored. 
 
The problem may be enhanced slightly by including the following input parameters and output 
quantities: 
 
C : Sales price per unit = 100, 
P : Purchase price per unit = 200, 
V : Salvage value per unit not sold = 90, 
Popt : The order quantity that will maximise the profit, and 
FoA% : The flaw-of-averages percentage defined as [E(F(X))-F(E(X))]/FE(F(X)). 
 
With these additional variables, a Monte Carlo simulation model may be constructed, providing the 
summary results shown in Table 2 and Figures 5, 6, and 7. Furthermore, Popt was obtained by running 
the simulation model for a specific value for the order quantity, and with a sample size of 1,000 
observations (days), replicated 100 times.  

 

This experiment was repeated for different values of the order quantity. The expected profit and 
FoA were calculated and second degree polynomial functions fitted, as shown in Figure 5. 
 
 
 
 

Figure 5: Profit and O/U 
cost as a function of the 

order quantity 

Figure 6: Profit 

histogram 

Figure 7: Profit risk 

profile 
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Table 2: Summary results for the newsvendor problem 

Theoretical Qopt = 3430.73 
Popt from fitted line = 

Qopt from fitted line = 

3188.48 

3439.02 

Profit using averages = 
 F(E(X)) = 

235390.91 

Profit at Popt from simulation =  

Profit at Popt from fitted line =  

Profit at Qopt from fitted line = 

161773.87 

162923.39 

158919.53 

F(E(X)) was calculated using the mean 
demand and Qopt as follows: 

F(E(X)) = Revenue – cost of buying Qopt – 

cost of overage (zero in this case) – cost of 
underage  

 
FoA% at Popt from simulation = 

FoA% at Popt from fitted line = 

FoA% at Qopt from fitted line = 
 

 
-31.27% 

-30.79% 

-32.49% 

 

 
From Table 2 and Figures 5 and 6 it seems as if: 
 
The theoretical value for Qopt (3430.73) and the value obtained from the simulation (3409.02) is 
almost equal, validating the simulation model to some extent (see Table 2). 
 
According to the simulation, the maximum profit occurs at Popt and not at Qopt (see Figure 5). 
 
The flaw-of-averages is obviously present and significant (see Table 2). 
 
The Monte Carlo simulation may also provide some other useful information. For example, Figure 6 
shows the profit distribution (histogram), which is not symmetrical even though the input has a 
normal distribution and thus is symmetrical. Furthermore, Figure 7 shows the risk profile from which 
estimates of the upside/downside risk [5] for any value of an assumed profit may be obtained. For 
example, an estimate of the probability of making a loss (approximately 0.14) may be determined 
from the risk profile. 

5 MONTE CARLO SIMULATION EXPERIMENTS 

If your experiment needs statistics, you ought to have done a better experiment.  
Ernest Rutherford (1871-1937) 

 
The factors influencing the existence and severity of the flaw-of-averages (FoA) may be classified 
as those factors that are inherently present in most problems (generic), or factors that are problem-
dependent. The purpose of Section 5 is mainly to investigate, and maybe quantify, the influence of 
some generic factors using an experimental approach based on Monte Carlo simulation modelling. 
The influence of the following generic factors on the FoA will be considered: 
 
The severity of the non-linearity of the input/output transformation function (see Sections 5.2 and 
5.3). 
The type of input distribution (normal, beta, etc.) (see Section 5.4). 
The standard deviation of the input distribution (see Section 5.5). 
The mean of the input distribution (see Section 5.6). 
The coefficient of skewness of the input distribution (see Section 5.7). 
Multiple stochastic input variables (see Section 5.8). 

5.1 The base line case 

A base line case will be used for reference and comparison purposes; its characteristics and 
parameter values are defined in Table 3. The base line case was designed to be as simple as possible, 
but still contain the basic components of a Monte Carlo simulation model intended to investigate 
the FoA. All the other experiments in Section 5 will be executed with the same experimental 
approach, sample size, characteristics, and parameter values as those used for the base line case, 
unless otherwise stipulated for the purpose of the specific experiment.  
 
The base line case is used to obtain an idea of the stochastic stability and the required sample size. 
Figures 8 and 9 indicate that a simulation run of 200 observations should be adequate from the 
viewpoints of both stochastic stability and confidence intervals. All the experiments in Section 5 will 
be conducted with a simulation run length of 200 observations, replicated 50 times, resulting in a 
total sample size of 10,000 observations. The summary results for the base line case are shown in 
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Table 4. The use of a replication approach is often required to provide independent observations for 
valid statistical analysis. This may not be necessary in this specific case, but will nevertheless be 
followed. 

Table 3: Definition of the base line case 

Table 4: Summary results for the base line case 

 

 

5.2 The non-linearity of the input/output transformation function  

The existence of non-linearity in the input/output transformation function (I/OTF) is a key 
requirement for the existence of the flaw-of-averages. Several I/OTFs with different non-linearities 
were chosen, as shown in Figure 10, with parameter values defined in Table 5.   
 
It is necessary to be able to quantify the severity of the non-linearity of a specific function. For the 
purposes of this paper, a coefficient of non-linearity (CONL) was defined, regarding Figure 1, as 
follows: 
 
CONL = (Area below the linear function – Area below the non-linear function) / (Area below the 
linear function). 
 

Input distribution 
Input/output 

transformation function 

Output distribution from simulation 
Results from one replication 

consisting of 200 observations 

Normal with: F(X) = aebc with: Minimum = 3.35 

Mean = 1 a = 400 Maximum = 97.08 

Standard deviation = 

0.2 
b = -3 Mean = E(F(X)) = 23.16 

Skewness = 0  Standard deviation = 15.16 

  Median = 20.15       Skewness = 1.82 

  

95% Confidence limits for E(F(X)) 

Lower limit = 21.66 

Upper limit = 25.87 

Summary output results from fifty replications consisting of 200 observations each 

Output Hypothesis test 

F(E(X)) = 19.91 

E(F(X)) = 23.67 

FoA% =18.87% 

Nul-hypothesis H0 :  E(F(X)) = F(E(X)) 

Alternative hypothesis : HA : E(F(X)) > F(E(X)) 

95% Confidence limits 

for E(F(X)) 

Lower limit = 21.87 
Upper limit = 25.47 

Test statistic z0 = 4.10 
P(Type one error) = α = 0.05 

Reject H0 if z0 > zα = 1.64 

Therefore reject H0 in favour of HA and conclude that E(F(X)) is significantly 
greater than F(E(X)) at a 5% level-of-significance 

P-Value = 0.000021 (less than 10-4) 

Figure 8: Stochastic 
stability of the base line 

case 

Figure 9: Confidence 
intervals for the base 

line case 
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Defined in this way, the value of the CONL will be between -1 and +1, with negative values indicating 
concavity, positive values convexity, and a value of zero indicating linearity. 

Table 5: Parameters of the input/output transformation functions 

 
Figure 11 illustrates the effect of the value of the CONL on E(F(X)) and FoA%, and Figure 12 shows 
the FoA% and CONL for the various functions. 

5.3 Discontinuous input/output transformation functions 

A discontinuous input/output transformation function is often found as part of industrial engineering 
and business models. It usually results from factors such as quantity discounts, tax breaks, moving 
from one technology to another, or as an inherent characteristic of the model logic such as that 
encountered in the newsvendor problem (see Figure 4). Furthermore, using computer programming 
nomenclature, whenever an IF-statement appears as part of the formulation of the model logic, it 
may cause a discontinuity and thus a flaw-of-averages (FoA), although all the functions may be 
piecewise linear. Figure 13 shows three arbitrarily-chosen, discontinuous, but piece-wise linear 
functions, and Table 6 provides the results. The FoA, even in this case, is obvious. 
 

 

 

Figure 13: Discontinuous input/output transformation functions 

 

 

 

Function 
number 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

Function aebx aebx aebx aebx ax2+ 

bx+c 

ax2+ 

bx+c 

ax2+ 

bx+c 

ax2+ 

bx+c 

ax2+ 

bx+c 

ax2+bx+c 

a = 400 400 400 400 100 0 -105 -200 -300 -450 

b = -5 -4 -3 -2 -400 -200 10 200 400 700 

c =     400 400 400 400 400 400 

Figure 10: Input/output 
transformation 

functions with different 
coefficients of non-

linearity 

Figure 11: E(F(X)) and 
FoA% for different 
coefficients of non-

linearity 

Figure 12: FoA% and 
CONL for the different 

input/output functions 
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Table 6: Summary output for discontinuous input/output transformation functions 

Input/output 

Transformation 
function 

FoA% E(F(X)) 

F1 38.45% 110.76 

F2 15.16% 172.74 

F3 -0.14% 299.59 

5.4 Different types of distributions 

Numerous well-known statistical distribution models are available to be used as input models to a 
stochastic model [27]. One of the difficult decisions that is part of any simulation modelling effort 
is the identification of the appropriate statistical distribution to be used for a specific stochastic 
input variable. If sufficient and applicable data is available, several statistical procedures [28] may 
be employed to make a motivated decision. Alternatively, possible knowledge of the underlying 
characteristics of the stochastic process under consideration may be contemplated. In Section 5, 
the triangular distribution will be used extensively, since it is an appropriate and convenient choice 
for purposes of experimentation for the following reasons: 
 
Firstly, the triangular distribution is flexible since it has three parameters the minimum, a, the 
mode, c, and the maximum, b. The triangular distribution is often used in simulation modelling when 
very little or no historical data is available, and because it may provide a reasonably good fit for 
many other distributions [4]. Estimating values of the parameters of, for example, a skewed gamma 
distribution when no data is available may prove difficult. However, estimates for the values of the 
parameters of a triangular distribution may often readily be obtained from some knowledge of the 
characteristics of the stochastic process of interest [4]. 
 
Secondly, since the triangular distribution has three parameters, it is possible to obtain values for 
these parameters by predefining required values for the mean, standard deviation, and coefficient 
of skewness. This neccessitates the solving of a set of non-linear simultaneous equations, which was 
achieved in this case by using the generalised revised gradient (GRG) optimisation algorithm that is 
part of the solver add-in available in MicroSoft Excel. 
 
Six distributions were chosen for the experiments in Section 5.4: The normal (base line case), beta, 
logistic, rectangular, triangular, and Laplace distributions. These are all symmetrical distributions, 
well-known and widely-used. The gamma and exponential distributions were not included since they 
are inherently skewed, and could influence the results (see Section 5.7). The chosen input 
distributions are shown in Figures 14 and 15. Table 7 shows the chosen constant values of the 
parameters, and Figures 16, 17, and 18 summarise the results obtained from the Monte Carlo 
simulation experiments. 
 

 
 
 

Figure 14: Normal, 
Beta, and Logistic 

distributions 

Figure 15: Normal, 
Laplace, Triangular and 

Rectangular 

distributions 
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Table 7: Parameter values for the various distributions 

 
Figures 16 and 17 seem to indicate that significant differences might exist between the various 
distributions. Furthermore, the Laplace distribution seems to be an outlier, as supported by the 
information provided by Figure 18. The reason that the Laplace distribution is different may be 
found in its excessive peakedness (Figure 15), a kurtosis excess value of 3 (Table 7), and the fact 
that it is leptokurtic together with the beta and logistic distributions. To prove a possible difference 
between the various distributions, a standard analysis of variance (ANOVA) test [28] was performed, 
the results of which are summarised in Table 8. These results indicate that there is a significant 
difference between the various distributions. However, this test does not identify which distributions 
are causing the difference. This may be resolved by employing a multiple comparison test, such as 
the Fisher least significant difference (LSD) test [28]. The results of the Fisher LSD test are 
summarised in Figure 19. 
 

 

Table 8: Analysis of variance test 

  The ANOVA hypothesis test 

Level of significance α 

= 
0.05 

Null-Hypothesis H0 : Means are all equal 

Alternative Hypothesis HA : Means are not all equal 

Critical value Fα = 1.95 
Decision criterion: 
Reject H0 if : F >= Fα 

Test statistic = F = 69.85 
Therefore reject H0 in favour of HA and conclude that the means are not 

equal 

  P-Value = less than 10-4 

 
 
 
 
 
 
 
 
 

 Distributions 

Parameter values Normal 
Trian- 

gular 
Logistic Beta 

Rectan-

gular 
Laplace 

Mean = 1.0 1.0 1.0 1.0 1.0 1.0 

Standard deviation 

= 
0.20 0.20 0.20 0.20 0.20 0.20 

Skewness = 0 0 0 0 0 0 

Kurtosis excess = 

0 

Symme-

trical 

-0.2 

Platy-

kurtic 

1.2 

Lepto-

kurtic 

0.7 

Lepto-

kurtic 

-1.2 

Platy-kurtic 

3 

Lepto-

kurtic 

Figure 16: E(F(X)) for 
the various 

distributions 

Figure 17: E(F(X)) and 
95% confidence 

intervals for the various 

distributions 

Figure 18: Grouping of 
the results obtained for 
E(F(X)) for the various 

distributions 
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 Distributions 
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Normal Yes Yes No No Yes 

 Triangular No No No No 

 Logistic No Yes Yes 

 Beta No Yes 

 Rectangular Yes 

Figure 19: Pair-wise comparison matrix from the Fisher LSD test indicating the significant 
differences 

Regarding Figure 19, there seems to be a significant difference (five percent level of significance) 
in the influence on the FoA between:  
 
The normal, triangular, logistic, and Laplace distributions; 
The logistic, rectangular, and Laplace distributions; 
The beta and Laplace distributions; and 
The rectangular and Laplace distributions. 

 
Although some of these differences are small (see Figures 16 and 17), the choice of the type of input 
distribution should be done with care and circumspection.  

5.5 Different standard deviations 

The different triangular input distributions used in this experiment are shown in Figure 20 and the 
parameter values defined in Table 9. The results are summarised in Figure 21. It seems that the 
standard deviation does have a significant influence on the FoA. 

 

Table 9: Triangular distributions with different standard deviations 

Parameters of the triangular distributions 

           Minimum : a = 0 0.25 0.5 0.625 0.75 

Mode : c = 1 1 1 1 1 

Maximum : b = 2 1.75 1.5 1.375 1.25 

Mean = 1.00 1.00 1.00 1.00 1.00 

Standard deviation = 0.41 0.31 0.20 0.15 0.10 

Coefficient of skewness = 0.00 0.00 0.00 0.00 0.00 

 

Figure 20: Input 
distributions with 
different standard 

deviations 

Figure 21: E(F(X)) and 
FoA% as a function of 
the standard deviation 
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5.6 Different means 

The different triangular input distributions used in this experiment are shown in Figure 22 and the 
parameter values defined in Table 10. The results are summarised in Figure 23. It seems that the 
mean does have a significant influence on the FoA, as measured by E(F(X)) but not by FoA%. This is 
probably due to the fact that the FoA% is also a function of the mean. 
 

 

Table 10: Triangular distributions with different means 

Parameters of the triangular distributions 

      Minimum : a = 0 0.25 0.5 0.75 1 

Mode : c = 0.5 0.75 1 1.25 1.5 

Maximum : b = 1 1.25 1.5 1.75 2 

Mean = 0.50 0.75 1.00 1.25 1.50 

Standard deviation  = 0.20 0.20 0.20 0.20 0.20 

Coefficient of skewness = 0.00 0.00 0.00 0.00 0.00 

5.7 Different skewness 

The different triangular input distributions used in this experiment are shown in Figure 24 and the 
parameter values defined in Table 11. The results are summarised in Figure 25. It seems that the 
skewness does have a significant influence on the FoA. Since the value of the coefficient of skewness 
for the triangular distribution is limited to a maximum of approximately 0.56, the exponential 
distribution with a coefficient of skewness of 2 was included. This resulted in an E(F(X) of 34.74 and 
an FoA% of 29.23%, further stressing the influence of the skewness on the FoA. The exponential 
distribution has only one parameter, the mean, which is equal to the standard deviation. It is 
therefore not very flexible, and it is impossible to define the mean and standard deviation 
independently. However, by introducing an off-set, as shown in Figure 24, it was possible to obtain 
the parameter values shown in Table 11, which are approximately equal to those required.  
 

 

Figure 22: Input 
distributions with 
different means 

Figure 23: E(F(X)) and 
FoA% as a function of 

the mean 

Figure 24: Input 
distributions with 
different skewness 

Figure 25: E(F(X)) and 
FoA% as a function of 

the skewness 
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Table 11: Triangular distributions with different skewness 

5.8 Multiple input 

Most stochastic models have two or more input variables subjected to uncertainty. If the output 
associated with each input is further transformed by an additional transformation, such as 
multiplication, it may amplify the FoA even further. Figure 26 displays two different input 
distributions, and Table 12 defines the distribution and input/output transformation function 
parameter values. Figure 27 shows the associated input/output transformation functions, and Table 
13 summarises the results. The simple secondary transformation of multiplying the two values to 
obtain the output amplifies the FoA severely. 
 

 

Table 12: Distribution and input/output function parameters 

f1(X) input and F1(X) 

transformation 

f2(X) input and F2(X) 

transformation 

Multiplying the two outputs 

Y = F(X) = F1(E(X)) x F2(E(X) 

F1(E(X)) = 42.52 
E(F1(X)) = 64.36 

FoA%1 = 51.29% 

F2(E(X)) = 49.59 
E(F2(X)) = 87.17 

FoA%2 = 75.78% 

F(E(X)) = 2108.61 
E(F(X)) = 5610.46 

FoA% = 166.07% 

Table 13: Summary output for multiple inputs 

Distribution parameters Function coefficients 

f1(X) 

Gamma 

f2(X) 

Normal 

F1(X) 

y = aebx 

F2(X) 

y = aebx 

b = 0.4 
c = 1.8 

Mean = 1.25 
Standard deviation = 0.3 

a = 300 
b = -2.5 

a = 1 
b = 3 

6 CONCLUSIONS AND CAVEATS  

This is not the end, it is not even the beginning of the end, but it is maybe the end of the 
beginning. Winston Leonard Spencer Churchill (1874-1965) 

 
The adage ‘On average we should be OK’, will be not OK on average! The all-too-common practice 
of blissfully disregarding uncertainty by substituting average values into a stochastic model with a 
non-linear input/output transformation function may result in a significant flaw-of-averages. As 
illustrated in this paper using a simple base line case and subsequent experiments, whenever the 
input/output transformation function of a model is in some way nonlinear, and at least one of the 
input variables is subjected to uncertainty, the flaw-of-averages will be present and may be severe. 

Parameters of the triangular distributions Exponential distribution 
parameters Minimum : a = 0.66 0.64 0.60 0.57 0.55 0.53 0.51 

Mode : c = 0.76 0.80 0.85 0.89 0.93 0.97 1.00 

Maximum : b = 1.56 1.56 1.55 1.53 1.52 1.51 1.49 

Mean = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 

Standard deviation = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 

Coefficient of 
skewness = 

0.55 0.50 0.40 0.30 0.20 0.10 0.00 2.00 

Figure 26: The gamma and 

normal input distributions 

Figure 27: The two 
input/output transformation 

functions 
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It was demonstrated that all the generic factors investigated may influence the extent to which the 
flaw-of-averages exists significantly. Ignoring the possible presence of the flaw-of-averages may 
result in dire future consequences for any organisation. The tools and techniques to investigate and 
manage the flaw-of-averages are available and should be applied, albeit with circumspection. 
 
Probability management and its future developments may provide a mind-shift for engineers and 
managers to move away from the paradigm of determinism and averages to the much-needed proper 
consideration of the characteristics and consequences of uncertainty. This may provide companies 
with improved decision-making and therefore higher profits. New techniques and approaches are 
continuously being developed at a rapid rate. 
 
The results and conclusions of Section 5 provide some insight into the characteristics of the flaw-of-
averages that may be of some value. However, these results should only be seen as guidelines, and 
only valid within the experimental frame defined by the assumed maximum and minimum values of 
the respective parameter and variable values. 
 
The Monte Carlo simulation approach may have some inherent disadvantages; and the same is true 
for spreadsheet software as a modelling platform [5]. Nevertheless, the Monte Carlo approach, using 
Microsoft Excel and possibly some appropriate and available add-ins, seems at present to be the 
most viable and accessible way of investigating the existence and extent of the flaw-of-averages 
with relative efficiency and ease. 
 
This paper employed a theoretical and experimental approach, without any practical examples. 
However, further research is being conducted that will investigate and discuss the possible influence 
of the flaw-of-averages on the calculation of compound interest and net present value. 
 
To teach how to live with uncertainty, yet without being paralysed by hesitation, is perhaps the 

chief thing that philosophy can do. Bertrand Arthur William Russell (1872–1970). 
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