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ABSTRACT 

In a process that manufactures polyurethane soles by casting, a number of problems lead to 
different types of defects on the sole, causing significant economic losses for the company. 
In order to improve the product quality and decrease the number of defects, this study 
conducts an experimental design in the context of robust design. Since the response 
variable is binary, the statistical analysis was performed using generalised linear models. 
The operational methodology reduced the percentage of defects, while combining the 
experimental technique and control systems to achieve superior quality and a consequent 
reduction in costs. 

OPSOMMING 

‘n Groot aantal probleme word in ‘n poliuretaansoolgietproses ervaar en dit lei tot 
verskillende defekte in die sool. Hierdie defekte veroorsaak noemenswaardige verliese vir 
die maatskappy. Om die produk gehalte te verbeter en die aantal defekte te verminder 
word ‘n eksperimentele robuuste ontwerp uitgevoer. Aangesien die reaksieveranderlike 
binêr is, is veralgemeende lineêre modelle vir die statistiese analise gebruik. Die 
operasionele metodiek het die persentasie defekte verminder en die eksperimentele 
tegniek en beheerstelsels gekombineer om sodoende ‘n hoër gehalte produk en ‘n 
vermindering in kostes te verkry. 
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1 INTRODUCTION 

The manufacturing process of polyurethane soles is carried out in rotary machines with 60 
moulds, into which a liquid mixture of isocyanate components and liquid Polyol resins is 
poured. In addition to the above components, a component is added that gives colour to 
the material. The polyurethane-forming reaction occurs between a polymer isocyanate and 
an alcohol, as shown in Equation 1: 
 

R − N = C = O + R′ − CH2 − OH    
      −∆  

    →          R− N
|
H

−

O
||
C − O − CH2 − R′  (1) 

             Isocyanate          Alcohol                                       Urethane 
 
The case study presented here is the sole model ‘Ucrania’, which has presented a 
significant number of defective parts since its introduction. To highlight the impact of the 
failure, the production data was analysed over a period of six months, during which 20,858 
pieces of a total of 47,872 were defective. This meant that 43.57 per cent of the 
production was defective, which at a cost of 74 Mexican pesos per piece accounts for a loss 
of approximately 1.5 million Mexican pesos. The vast majority of defects that occur on the 
sole are qualitative, and relate mainly to failures in its visual presentation. The literature 
provides a detailed list of defects that occur in the process of polyurethane, and their 
possible causes [1]. 
 
The process includes a noise factor, which is the environmental temperature during the 
morning and evening shifts. The response variable is binary because the quality inspectors 
rate the sole as either defective or not, based on pre-defined criteria. For this reason, the 
use of quality engineering methods under the Robust Parameter Design (RPD) is 
contemplated, allowing us to design experiments to make the process more efficient, 
improve quality, and reduce cost. Robinson et al. [2] provide a review of the application of 
the design RPD. 
 
Response surface methodology (RSM) is a technique used in experimental design to optimise 
a process. Model-building with RSM requires that the response has a normal probability 
distribution. One area of great interest is when this assumption is not fulfilled, in particular 
with the problem of making soles; the random response variable has a binomial or Bernoulli 
distribution. Given this scenario, it is appropriate to use generalised linear models (GLMs); 
a variety of examples can be found in Hamada and Nelder [3], Myers and Montgomery [4], 
and Myers et al. [5]. 
 
The purpose of this work is to develop the methodology to construct the response surface 
model for binomial response in the manufacturing process of polyurethane soles in the 
context of robust design and generalised linear models. Once the design had been 
completed, the statistical analysis was performed. Finally, improvements that were made 
to the process were also indicated. 

2 METHODOLOGY 

The main part of the sole in which occur defects in the process of the polyurethane sole is 
shown in Figure 1; this is very important because it represents the final view of the 
product. 
 
In research papers about improving the quality of polyurethane soles [6-8], it was observed 
that eight factors have a significant impact on product quality. These factors and their 
selected levels are shown in Table 1. 
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Figure 1: Part of the sole in which defects occur 

Table 1: Relevant control and noise factors for this case-study 

 Low High  
Air pressure 0.5 Bar 1 Bar Control 
Time drain fluid (Flow) 55 grams/second 70 grams/second Control 
Mould height 15 cm 14 cm Control 
Stroke 110 90 Control 
Polyol/Isocyanate ratio 0.9 0.92 Control 
Mould temperature 36°C 45°C Control 
Air pressure over flow  1.8 Bar 2 Bar Control 
Environmental temperature 22°C 33°C Noise 

 
The above factors are quantitative. Some of these are regulated by the operator from the 
control panel, such as time of fluid drain (flow), stroke, polyol/isocyanate ratio, and mould 
temperature. The air pressure and air pressure over the flow are part of the painting 
process. Mould height can be adjusted manually in each mould. The noise factor is the 
environmental temperature. 
 
Previous sampling in mould temperatures showed that it is a significant source of variation. 
By design, the machine model used in the company only has a pyrometer and 
thermocouple, which control the 60 moulds of the machine; this implies that the moulds 
handle an average temperature, and not the real temperature that is indicated in the 
pyrometer. Based on this analysis, it was determined that the variation of this element 
could be reduced through the application of an improved control system. One goal of the 
study is to generate information that may justify the investment in a control method based 
on individual pyrometers with a lower resolution, in order to allow a greater regulation of 
the temperature in the moulds, and therefore, a reduction of variation in temperature. 
 
The operational methodology, which relates to the statistical procedures to be used for the 
analysis of the information obtained in the experiment, is presented in Figure 2. The 
process begins with an engineering analysis to determine the factors that could have any 
effect on the response. Next, the combined orthogonal array selection arises [9], which 
includes the control and noise factors. The experiment is then performed with these 
factors. In this process, the response received is binary, due to the classification of each 
sole as being either defective or non-defective. The evaluation is performed with the 
classification criteria of the quality staff. At the end, the number of defective soles 
determines the percentage of defects counted. 
GLMs are appropriate to study the binary responses. The proposed plan was to build the 
model and obtain response models for the mean and variance. With these models, the goal 
is to obtain the best level combination from each factor in the process, which in turn 
produces the lowest number of defects. 
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Figure 2: Operational methodology 

2.1 Selection of the combined array: 

The scheme of the combined array includes the control and noise factors in one orthogonal 
array [9]. Wu and Hamada [10] provided another reference for selecting the designs that 
provided more information on the effect of each factor and the interactions among them. 
The general linear model is shown in Equation 2. 
 
𝑌𝑥𝑧 = 𝛽0 + 𝐱′𝛽 + 𝐱′𝐁𝐱 + 𝐳′𝛾 + 𝐱′𝚫𝐳 + ε         (2) 
 
where 𝐱′ = (x𝟏, … , x𝒌) with k control factors, 𝒛 = (𝑧1, … , 𝑧𝑞) q noise factors, 𝛽0 is the 
constant, 𝑎𝑛𝑑 𝛽′ = (𝛽1 , … ,𝛽𝑘) and 𝛾′ = (𝛼1, … ,𝛼𝑞) are vectors of parameters. 𝐁 =
(𝛽11 , …𝛽1𝑘 ,𝛽𝑘1, …𝛽𝑘𝑘) and 𝚫 = (𝛼11, … ,𝛼1𝑞 , … ,𝛼𝑘1, … ,𝛼𝑘𝑞) are the matrices of second order 
parameters, 𝜀~𝑁(0,𝜎𝜖2). For the mean and variance models, the conditional expectation 
and variance are calculated from Equation 2 as follows: 
 
𝐸(𝑌𝑥𝑧) = 𝛽0 + 𝐱′𝛽 + 𝐱′𝐁𝐱                               (3) 
 
𝑉𝑎𝑟(𝑌𝑥𝑧) = 𝜎𝑧2(𝛿 + 𝐱′𝚫)′(𝛿 + 𝐱′𝚫) + σ2            (4) 
 
In the process, the z noise terms are considered as random variables with zero mean and 
variance 𝜎𝑧2; the term σ2 is estimated with the mean square error of the regression model. 
The term is (𝛿 + 𝐱′𝚫)′ = 𝑰(𝐱), which is defined as the vector of partial derivatives of the 
response 𝑌𝑥𝑧, with respect to z, i.e., 𝑰(𝐱) = 𝜕𝑌𝑥𝑧/𝜕𝑧. 
 
The array selected for the experiment is a fractional factorial design 2𝐼𝑉8−4. To assign 
columns of the seven control factors and the noise factor, the design required 16 runs and 
had the following generators: E = BCD, F = ACD, G = ABC, and H = ABD. The design allowed 
the estimation of seven double-interactions. It is of particular interest to know the effect 
of noise control interactions that will serve for the time of optimisation. Because of this, 
care must be taken in how the assignment of the elements is given to the columns, which is 
according to Table 2. 
 
Because of the factorial design, 2𝐼𝑉8−4 is equivalent to Taguchi’s 𝐿16(215) design; the desired 
interactions can be obtained from the use of interaction tables [11]. According to the way 
in which the factors were assigned to the columns, it is possible to know four control-noise 
interactions that include the environmental temperature:  
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Table 2: Combined orthogonal array and allocation of factors to the columns: 
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Run 
order A     X1 B           

Z1 
C         
X2 

D      
X3 

E       
X4 F        X5 G     X7 H        X6 

1 -1 -1 -1 -1 -1 -1 -1 -1 
2 1 -1 -1 -1 -1 1 1 1 
3 -1 1 -1 -1 1 -1 1 1 
4 1 1 -1 -1 1 1 -1 -1 
5 -1 -1 1 -1 1 1 1 -1 
6 1 -1 1 -1 1 -1 -1 1 
7 -1 1 1 -1 -1 1 -1 1 
8 1 1 1 -1 -1 -1 1 -1 
9 -1 -1 -1 1 1 1 -1 1 
10 1 -1 -1 1 1 -1 1 -1 
11 -1 1 -1 1 -1 1 1 -1 
12 1 1 -1 1 -1 -1 -1 1 
13 -1 -1 1 1 -1 -1 1 1 
14 1 -1 1 1 -1 1 -1 -1 
15 -1 1 1 1 1 -1 -1 -1 
16 1 1 1 1 1 1 1 1 

 
1. Environmental temperature with mould temperature. 
2. Environmental temperature with polyol/isocyanate ratio. 
3. Environmental temperature with stroke. 
4. Environmental temperature with time drain fluid flow.  
 
The other three interactions are control-control interactions:  
 
5. Time drain fluid flow with mould temperature. 
6. Mould temperature with stroke. 
7. Air pressure with Air pressure overflow.  
 
The rationale for using a two-level arrangement is based on costs and resources; it should 
be noted that when experiments with binomial responses are performed, large runs must be 
made.  This implies that the process should be left to run, and if there is an inadequate 
level selection of the factors, this can cause an uncontrolled growth in the number of 
defects and the consequent cost of quality that this implies. 

2.2 Logistic regression models 

In order to find the best conditions to solve the problem of defects in polyurethane soles, 
we use the logistic regression model. Such models fall in the context of GLMs [12]. From the 
essential aspects of the manufacturing process, we need to raise the issue of robust design 
and control systems. We propose the features of the model, for which we propose that the 
response variable takes values from 0 to 1. In this framework, it is necessary to find 
equivalent equations to Equations 3 and 4. Supposing the model is: 
 
𝑦𝑖 = 𝒙𝒊′𝛽 + 𝜀𝑖                                   (5) 
 
where 𝐱𝑖′ = [1,𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘], 𝛽′ = [𝛽0 ,𝛽1 ,𝛽2, … ,𝛽𝑘] and the response variable 𝑦𝑖 takes the 
values from 0 to 1. It is assumed that the response variable 𝑦𝑖 is a Bernoulli random variable 
with probability distribution: 𝑃(𝑦𝑖 = 1) = 𝜋𝑖 if 𝑦𝑖 = 1, and 𝑃(𝑦𝑖 = 0) = 1 − 𝜋𝑖 if 𝑦𝑖 = 0. The 
expected value of 𝑦𝑖 is 𝐸(𝑦𝑖) = 1(𝜋𝑖) + 0(1 − 𝜋𝑖) = 𝜋𝑖, since 𝐸(𝜀𝑖) = 0. Thus from Equation 
5, it follows that 𝐸(𝑦𝑖) = 𝐱𝑖′𝛽 = 𝜋𝑖. 
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From this description, a variance of 𝑦𝑖 is obtained, i.e., 𝜎𝑦𝑖
2 = 𝜋𝑖(1 − 𝜋𝑖). It shows that the 

mean and variance of the response variable are related, which is a property of the logistic 
model [11].    
 
In summary, the logistic regression model is in the form of the Bernoulli distribution, and 
the variable 𝑦𝑖 is independent in each trial and expected value:  
 

𝜋 = 𝑒𝑥𝑝(𝛽0+𝐱′𝛽+𝐱′𝐁𝐱+𝐳′𝛾+𝐱′𝚫𝐳)
1+𝑒𝑥𝑝(𝛽0+𝐱′𝛽+𝐱′𝐁𝐱+𝐳′𝛾+𝐱′𝚫𝐳)  =  1

1+exp[−(𝛽0+𝐱′𝛽+𝐱′𝐁𝐱+𝐳′𝛾+𝐱′𝚫𝐳)]         (6) 

 
The model parameters in Equations 5 and 6 are estimated by the maximum likelihood 
method. Equation 6 is re-written as follows:  
 

𝑔(𝜋) = log � 𝜋
(1−𝜋)� = 𝛽0 + 𝐱′𝛽 + 𝐱′𝐁𝐱 + 𝐳′𝛾 + 𝐱′𝚫𝐳             (7) 

 
Thus the maximum likelihood function is expressed by:  

𝑙(𝛑; 𝐲) = �𝑦𝑖log �
𝜋𝑖

1 − 𝜋𝑖
� + 𝑚𝑖log(1 − 𝜋𝑖)

𝑛

𝑖=1

 

 
For estimation of the equivalent response surfaces from Equations 3 and 4, it is assumed 
that the noise factors vector has an expectation of 0, and this leads to: 
 
𝐸(𝑌𝑥𝑧)� = 1

1+𝑒𝑥𝑝�−�𝛽�0+𝐱′𝛽�+𝐱′𝐁𝐱��
                 (8) 

𝑉𝑎𝑟(𝑌𝑥𝑧)� = 1

1+𝑒𝑥𝑝�−�𝜎𝑧2�𝛿�+𝐱′𝚫�
′
�𝛿�+𝐱′𝚫�+σ2��

         (9) 

 

2.3 Optimisation schemes 

The schemes for optimising the RPD have evolved in various methods, such as mean square 
error minimisation, fuzzy optimisation, maximum likelihood function, simulation, and 
nonlinear programming methods such as the simplex method of Nelder-Mead, among others 
[13-14]. For the proposed problem, the objective function is the minimisation of the 
variance, while it is intended that the (desired) mean response is zero (the % defective). An 
optimisation method that meets these characteristics is based on constrained nonlinear 
programming: 
 

    𝑀𝑖𝑛 𝑉𝑎𝑟[𝑌𝑋𝑍]�  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝐸[𝑌𝑋𝑍]� = 0 

                    𝑥𝑖 > 0 
 
Furthermore, the scheme requires that it restrict the area of solutions within the levels at 
which the experiment is coded. The algorithm of Sequential Quadratic Programming (SQP) 
[15] adequately meets these objectives. The SQP algorithm starts from the problem of 
constrained equality: 

        min 𝑓(𝑥) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑐(𝑥) = 0 

 
The 𝑉𝑎𝑟[𝑌𝑋𝑍]�  function is used instead of 𝑓(𝑥), and the function 𝐸[𝑌𝑋𝑍]�  is used instead of the 
restriction function 𝑐(𝑥). The Interior Point algorithm [16] also suitably meets the 
optimisation approach for the optimisation problem from the objective function: 
 

min 𝑓(𝑥) 
𝑠. 𝑎    ℎ(𝑥) = 0 
𝑔(𝑥) ≤ 0 

 
𝑉𝑎𝑟[𝑌𝑋𝑍]�  is used instead of 𝑓(𝑥), and 𝐸[𝑌𝑋𝑍]�  is used instead of constraint function 𝑔(𝑥). 
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2.4 Modelling with control 

One of the latest trends in RPD research is the integration with control systems. Miller and 
Wu [17], Joseph [18], and Dasgupta et al. [19] have developed algorithms to analyse and 
optimise the systems that include the use of control systems for reducing variation in some 
quality characteristic if it is justified on a cost-benefit basis. 
 
Joseph [18] proposes the use of a performance measure from Taguchi’s dynamic signal-to-
noise ratio, dividing initially the Z noise into an online controlled noise Q and random noise 
R; the Taguchi’s signal-to-noise ratio will be a function of the control factors X, controlled 
noise R, and random noise Q: 
 

𝑆𝑅(𝐗,𝐐,𝐑) = 𝜷2(𝐗,𝐐,𝐑)
𝝈2(𝐗,𝐐,𝐑)

                      (10) 

 
The optimal solution for the levels of control variables X can be obtained by minimising the 
inverse of the expected value from the signal-to-noise ratio (10). 𝐸{1/𝑆𝑅(𝐗,𝐐)} terms in 
Equation 10 can be rewritten as:  

𝜷2(𝐗,𝐐,𝐑) = 𝐸2[𝜷(𝐗,𝐐,𝐑)] 
                                                         

𝝈2(𝐗,𝐐,𝐑) = 𝐸[𝑉(𝐗,𝐐,𝐑)] + 𝑉𝑎𝑟[𝜷(𝐗,𝐐,𝐑)] 
 
Therefore, signal-to-noise ratio in Equation 10 can be expressed as: 
 

𝑆𝑅(𝐗,𝐐,𝐑) = 𝜷2(𝐗,𝐐,𝐑)
𝝈2(𝐗,𝐐,𝐑)

= 𝐸2[𝜷(𝐗,𝐐,𝐑)]
𝐸[𝑉(𝐗,𝐐,𝐑)]+𝑉𝑎𝑟[𝜷(𝐗,𝐐,𝐑)]        (11) 

 
PM is the measure of system performance; the objective is to minimise the inverse of the 
signal-to-noise ratio in Equation 11, thereby minimising 
 

𝑃𝑀 = 𝐸 �𝐸[𝑉(𝐗,𝐐,𝐑)]+𝑉𝑎𝑟[𝜷(𝐗,𝐐,𝐑)]
𝐸2[𝜷(𝐗,𝐐,𝐑)] �         (12) 

 
The optimal values for the levels of the control factors (X) are obtained. 

3 RESULTS 

Experimental runs were conducted during work shifts in the company; the process was 
allowed to run normally while leaving the control factors fixed. For the noise 
(environmental temperature), runs were made during both the day shift and the night shift, 
where extreme temperatures occur. The results obtained are shown in Table 3. 
 
The last column shows the percentages obtained in the experiment, which is the response 
of a proportion binomial type; from these values, we proceed to obtain the logistic model. 

3.1 Obtaining the logistic regression model 

The regression model was obtained using Statgraphics Centurión software. The columns of 
the desired interactions were added to the orthogonal array 2𝐼𝑉8−4; the model estimates are 
obtained through the maximum likelihood method. Originally, 15 elements in the regression 
model were obtained: eight main elements (seven control and one noise), three control-by-
control interactions, and four noise-by-control interactions. There were elements that are 
not significant in the model, particularly the control-by-control interaction X2*X7. The 
selection of the significant elements was performed using the step-back algorithm of 
selection by elimination [20]. The reduced model is shown in Table 4, and the deviation 
analysis table is shown in Table 5. 
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Table 3: Orthogonal array and values obtained in the experiment  

 

Table 4: Reduced estimated regression model 

  Standard Odds Ratio 
Parameter Estimate Error Estimated 
CONSTANT -0.954439   
Z1 -0.190845 0.0380451 0.82626 
X3 -0.145302 0.0384132 0.864761 
X4 -0.221633 0.0375987 0.801209 
X5 -0.185119 0.0380134 0.831005 
X7 -0.341925 0.0380342 0.710402 
X6 -0.103138 0.0374876 0.902003 
X4*X7 0.131183 0.0383578 1.14018 
X5*Z1 -0.100796 0.0380655 0.904117 
X2*Z1 0.142873 0.0380923 1.15358 
X1*X6 -0.100534 0.0375118 0.904355 

Table 5: Analysis of deviance: Reduced estimated regression model 

Source Deviance Df P-Value 
Model 238.551 10 0.0000 
Residual 4.95749 5 0.4211 
Total (corr.) 243.508 15  

 
The deviation explained by the model is 97.9641 per cent, and the adjusted value is 
88.9295 per cent. The selection algorithm eliminated two major controlling factors (X1 and 
X2) and three interactions. Among the interactions that remained in the model are these 
two factors. The deviation percentages and adjusted percentages are high, as the P-value 
in the ‘analysis of deviance’ table is less than 0.05. There is a statistically significant 
relationship between the variables, with a confidence level of 95.0 per cent. 
 
Table 6 shows the likelihood ratio tests for the reduced model; it can be observed that all 
elements are significant with P values lower to 0.05, so it is not desirable to remove any 
more elements from the model. 
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Order Run A B C D E F G H Defects Totals % Def
1 1 -1 -1 -1 -1 -1 -1 -1 -1 119 212 0.56132
2 2 1 -1 -1 -1 -1 1 1 1 85 295 0.28814
3 3 -1 1 -1 -1 1 -1 1 1 39 192 0.20313
4 4 1 1 -1 -1 1 1 -1 -1 35 130 0.26923
5 5 -1 -1 1 -1 1 1 1 -1 61 286 0.21329
6 6 1 -1 1 -1 1 -1 -1 1 48 171 0.28070
7 7 -1 1 1 -1 -1 1 -1 1 67 174 0.38506
8 8 1 1 1 -1 -1 -1 1 -1 84 247 0.34008
9 9 -1 -1 -1 1 1 1 -1 1 76 266 0.28571

10 10 1 -1 -1 1 1 -1 1 -1 71 224 0.31696
11 11 -1 1 -1 1 -1 1 1 -1 34 295 0.11525
12 12 1 1 -1 1 -1 -1 -1 1 103 284 0.36268
13 13 -1 -1 1 1 -1 -1 1 1 68 306 0.22222
14 14 1 -1 1 1 -1 1 -1 -1 118 272 0.43382
15 15 -1 1 1 1 1 -1 -1 -1 59 203 0.29064
16 16 1 1 1 1 1 1 1 1 28 274 0.10219
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Table 6: Likelihood ratio tests for the reduced model 

Factor Chi-Squared Df P-Value 
Z1 25.5058 1 0.0000 
X3 14.2965 1 0.0002 
X4 35.2203 1 0.0000 
X5 23.9625 1 0.0000 
X7 81.3237 1 0.0000 
X6 7.5633 1 0.0060 
X4*X7 11.7184 1 0.0006 
X5*Z1 7.05806 1 0.0079 
X2*Z1 14.1347 1 0.0002 
X1*X6 7.19041 1 0.0073 

 
After obtaining the most suitable model for the analysis, the fit of the model is verified. In 
Figure 3, the subplot on the left shows that the residuals do not follow any apparent 
triangular shape, or funnel pattern; this indicates that there is no direct relationship 
between the predicted values and the residuals. Therefore, the residuals meet both 
independence and homoscedasticity. The subplot on the right shows the normality test. The 
normal probability plot shows that the points have an adequately fit around the straight 
line, and that there are no points particularly away at the ends; this shows that we have a 
good model fit. 
 

 

Figure 3: Residual analysis for the model 

3.2 Models for the mean and the variance 

Once the overall regression model is obtained, it is expressed generally as in Equation 2: 
 

𝑌𝑥𝑧 = 𝛽0 + 𝐱′𝛽 + 𝐱′𝐁𝐱 + 𝐳′𝛾 + 𝐱′𝚫𝐳 + ε 
 
𝑌�𝑥𝑧 = 1

1+exp �
−0.953217−0.145302𝑥3−0.221633𝑥4−0.185119𝑥5−0.103138𝑥6−0.341925𝑥7
−0.190845𝑧1+0.131183𝑥4𝑥7−0.100534𝑥1𝑥6−0.100796𝑥5𝑧1+0.142873𝑥2𝑧1

�
      (13) 

 
From the full model, the mean model is calculated from the expectation (Equation 3) and 
the variance (Equation 4): 
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Model for the mean 𝐸(𝑌𝑥𝑧) = 𝛽0 + 𝐱′𝛽 + 𝐱′𝐁𝐱 
 
𝐸�𝑌�𝑥𝑧� = 1

1+exp�−0.953217−0.145302𝑥3−0.221633𝑥4−0.185119𝑥5−0.103138𝑥6
−0.341925𝑥7+0.131183𝑥4𝑥7−0.100534𝑥1𝑥6

� 
       (14) 

 
Model for the variance  𝑉𝑎𝑟(𝑌𝑥𝑧) = 𝜎𝑧2(𝛿 + 𝐱′𝚫)′(𝛿 + 𝐱′𝚫) + σ2 
 
𝑉𝑎𝑟�𝑌�𝑥𝑧� = 1

1+exp[(−0.190845+0.142873𝑥2−0.100796𝑥5)2+1.00484]                 (15) 

 
Note: To estimate the value of 𝜎2, the MSE value was used in the ANOVA table by the 
weighted least squares method. 

3.3 Parameter optimisation 

The parameters were optimised with the use of the optimisation toolbox in the MATLAB 
software. Once the functions were declared, limits were proposed for the case; these were 
defined as -1 and 1. The results obtained are: 

Table 7: Parameter estimation results 

Variable Level 
x1 1.00000 
x2 -1.00000 
x3 -1.00000 
x4 -1.00000 
x5 -1.00000  
x6 -1.00000 
x7 -1.00000 

 
The algorithm converges to an infeasible point in the tenth iteration, with a function value 
of 0.25748; the behaviour of the iterations in the algorithm is shown in Figure 4. 
 
The next step is optimised by the interior point algorithm, with the results converging to an 
infeasible point. The run for the algorithm yields the following results: 

Table 8: Interior point algorithm results 

Variable Level 
x1 1.00000 
x2 -0.02600 
x3 -1.00000 
x4 -1.00000 
x5 -1.00000 
x6 -1.00000 
x7 -1.00000 

 
The value of the function the interior point algorithm generates a result of 0.26627, which 
is similar to the result of SQP. The values are consistent on the levels in all the factors 
except factor X2 (i.e., flow). Figure 5 shows the behaviour of the iterations. Given that the 
two optimisation schemes presented infeasible solutions, no verification runs were 
conducted with those levels. Instead, we proceeded to perform the optimisation through 
the analysis with the PM approach. 
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Figure 4: Optimisation plots for the SQP algorithm 

 

Figure 5: Optimisation plots for the interior point algorithm 
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3.4 Modelling without and with control by the PM scheme 

One way to reduce the existing variation in the moulds’ temperature is by implementing 
various thermocouples and pyrometers. This is done in order to make continuous 
corrections to the values of temperature, and this way to reduce the variation. The 
selected factor for the reduction in variation is X7 (i.e., mould temperature); the X5 factor 
(i.e., Polyol/isocyanate ratio) is also a factor that presents a significant variation in the 
model, and can be considered to be a random noise factor. According to Equation 10, the 

performance measure used is 𝑃𝑀 = 𝐸 �𝐸[𝑉(𝐗,𝐐,𝐑)]+𝑉𝑎𝑟[𝜷(𝐗,𝐐,𝐑)]
𝐸2[𝜷(𝐗,𝐐,𝐑)] �, where the elements are 

defined as: 
 

𝐸[𝑉(𝐗,𝐐,𝐑)] = 𝑉𝑎𝑟�𝑌�𝑥𝑧� =
1

1 + exp[(−0.190845 + 0.142873𝑥2 − 0.100796𝑥5)2 + 1.00484] 

 
For the mean model, an artificial variable is added (𝑞7) to the elements containing the 
controlled variable X7: 
𝐸2[𝜷(𝐗,𝐐,𝐑)] = 𝐸2�𝑌�𝑥𝑧�

= �
1

1 + exp �−0.953217 − 0.145302𝑥3 − 0.221633𝑥4 − 0.185119𝑥5 − 0.103138𝑥6
−0.341925(𝑥7 + 𝑞3) + 0.131183𝑥4(𝑥7 + 𝑞7) − 0.100534𝑥1𝑥6

�  
�

2

 

 
The expected variance of the regression model takes the values of the constants in the 
regression model, corresponding to the element to be controlled (X7) and its interactions 
multiplied by a variance of 𝜎72, which can be found in practice. 
 

𝑉𝑎𝑟[𝜷(𝐗,𝐐,𝐑)] =
1

1 + exp[(−0.341925)2𝜎72 + (0.131183𝑥4)2𝜎72] 

 
The complete model for measuring performance is: 
 

𝑃𝑀 =
� 1
1+exp�(−0.190845+0.142873𝑥2−0.100796𝑥5)2+1.00484�

�+� 1
1+exp�(−0.341925)2𝜎7

2+(0.131183𝑥4)2𝜎7
2�
�

� 1

1+exp�
−0.953217−0.145302𝑥3−0.221633𝑥4−0.185119𝑥5−0.103138𝑥6

−0.341925(𝑥7+𝑞7)+0.131183𝑥4(𝑥7+𝑞7)−0.100534𝑥1𝑥6
� 
�

2                   (16) 

 
Assuming that (𝑞7) is normally distributed with zero mean and variance 𝜎72 = 1, and 
minimising Equation 14, the following levels are obtained for the factors: 

Table 9: Results from Equation (14) 

Variable Level 
x1 1.00000 
x2 -1.00000 
x3 1.00000 
x4 -1.00000 
x5 1.00000 
x6 1.00000 
x7 1.00000 

 
With a function value of 0.709406, a minimum was found that satisfies the constraints in 
iteration 23. This was found from the model: 
 
𝑌 = 𝜷(𝐗,𝐐,𝐑)𝐶/𝐶0                        (17) 
 
The control law can be obtained for the model; by substituting the values in the model, we 
have 
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𝑌 = �
1

1 + exp �
−0.953217− 0.145302(1) − 0.221633(−1)− 0.185119(1) − 0.103138(1)

−0.341925((1) + 𝑞7) + 0.131183𝑥4(1 + 𝑞7) − 0.100534(1)(1)𝑥6
�  
�
𝐶
𝐶0

 

= �
1

1 + exp[−1.476419− 0.210742𝑞7] �
𝐶
𝐶0

 

 
The control law is given by: 
 
𝐶 = 𝑇𝐶0 (1 + exp(−1.476419− 0.210742𝑞7)           (18) 
 
where T is the target value of the temperature. Without control, the performance measure 
is: 

𝑃𝑀 =
� 1
1+exp�(−0.190845+0.142873𝑥2−0.100796𝑥5)2+1.00484�

�+� 1
1+exp�(−0.185119)2𝜎5

2+(−0.341925)2𝜎7
2+(0.131183𝑥4)2𝜎7

2�
�

� 1

1+exp�
−0.953217−0.145302𝑥3−0.221633𝑥4−0.185119𝑥5−0.103138𝑥6

−0.341925𝑥7+0.131183𝑥4𝑥7−0.100534𝑥1𝑥6
� 
�

2             (19)  

 
By optimising Equation 19 with the same levels as the control equation, a reduction in the 
variation of 20.12 per cent with the use of control can be estimated. These were the levels 
used for the verification runs.  

3.5 Verification runs 

For the verification runs, the results of the PM method were used. The main objective of 
the study was to reduce the percentage of defects generated in the process. The 
verification runs were made with optimal levels obtained according to the process 
optimisation. The first run was performed during the morning shift with a production of 214 
pieces; of these, 39 were defective, or 18.22 per cent. The second verification run was 
performed durnig the night shift with a production of 204 pieces; of these, 43 were 
defective, or 21.08 per cent. Compared with the initial ratio, which was 43.57 per cent of 
the pieces being defective, this was a reduction in the defective ratio of about 21.00 per 
cent after applying the methodology. This reduction resulted in significant cost savings, due 
to better quality. The methodology showed a marked improvement in the quality of the 
soles. 

4 DISCUSSION AND CONCLUSION 

The proposed methodology had a positive impact on the manufacturing process of the sole 
through a significant reduction of the proportion of defective pieces, and an improvement 
in their quality. It is important to emphasise that the experiment was conducted online – a  
novel situation that allowed the production of one shift in each treatment. The results were 
analysed using GLMs. The analysis and statistical optimisation of the process allowed the 
reduction of flaws in the process, thereby achieving better production. This strategy 
integrated a control system. 
 
The flow works best at a low level; so it is desirable that the liquid is emptied at a rate of 
55 grams/sec in order for the material to expand appropriately in the mould and so that no 
material splashes out of the mould. The mould’s height works best at 16 cm, which allows 
the material to be distributed, especially at the front of the sole. The stroke should be 110 
mm, and 70 per cent of the material should be poured at the front of the sole for better 
distribution of the material in the mould. The ideal polyol/isocyanate ratio for the job is 
0.92; this favours the physical properties of the material and the expansion reaction of the 
gas molecules in forming the foam. The mould temperature should preferably be 45°C to 
promote the adequate curing process of the material. As noted in the experimental phase, 
the implementation of an improved control system should reduce the variation of the 
temperature in the moulds, thus improving control of the process and the quality of the 
polyurethane sole. The factors of air pressure and air pressure overflow which are used in 
the painting process, will work best at its high levels; a higher air pressure favours a 
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uniform painting, which improves the appearance of the sole and its presentation to the 
consumer. 
 
The results of the levels in the optimisation show congruence with those observed during 
the process. An increase in defects, such as a rigid sole, was observed when the moulds 
were handled at low temperatures. When the height of the mould is set at high levels, it 
tends to leave parts with ‘bites’. When a short stroke is handled when pouring the mixture, 
it can mark the sole because the material does not fit adequately. Although the pouring can 
be done more quickly, it can cause the material to splash, which results in some weight 
being lost and thus in poor quality soles with marks. 
 
In industry, many processes require the use of control systems. In this project, a control 
system was applied in order to obtain a higher quality and better productivity in the 
process based on a reduction in variation. This strategy entailed obtaining a lower 
production cost and a reduced re-work due to poor quality. Here, the control was applied 
to the temperature of the moulds; this is a critical factor in the process, due to the large 
volume of production. When implementing the analysis and optimisation strategy, the 
objectives were achieved. Finally, we conclude that the impact on the economic state of 
the company included reduced of costs and fewer defects. 
 
Reports on the Ucrania model’s quality over a period of six months from its introduction 
were based on a production of 47,872 pieces with a total of 20,858 defective pieces – that 
is, 43.57 per cent. The approximate cost of the sole is 74 Mexican pesos, representing an 
estimated loss of 1,543,492 Mexican pesos. According to the results of the confirmatory 
tests, if the production of the first six months were projected on to the scale of the 
defective percentage from the confirmatory runs, the savings would be projected to be 
898,038.13 Mexican pesos, while savings from the confirmatory runs during the night shift 
were projected to be 796,721.03 Mexican pesos. The resulting levels of defects in the 
process adopted for all models like the Ucrania sole remained low in subsequent 
production. 
 
Statgraphics Centurion was the software used to obtain the algorithms for the maximum 
likelihood method of GLMs, and MATLAB software was used for the optimisation algorithms. 
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