Oliver Baier, Gerd Witt


In fuel cell technology, certain components are used that are responsible for guiding liquid media. When these components are produced by conventional manufacturing, there are often sealing issues, and trouble- and maintenance-free deployment cannot be ensured. Against this background, a new process combination has been developed in a joint project between the University of Duisburg-Essen, the Center for Fuel Cell Technology (ZBT), and the company Galvano-T electroplating forming GmbH. The approach is to combine multi-jet modelling (MJM), electroforming and milling in order to produce a defined external geometry. The wax models are generated on copper base plates and copper-coated to a desirable thickness. Following this, the undefined electroplated surfaces are machined to achieve the desired measurement, and the wax is melted out. This paper presents, first, how this process is technically feasible, then describes how the MJM on a 3-D Systems ThermoJet was adapted to stabilise the process.In the AiF-sponsored ZIM project, existing limits and possibilities are shown and different approaches of electroplating are investigated. This paper explores whether or not activation of the wax structure by a conductive initial layer is required. Using the described process chain, different parts were built: a heat exchanger, a vaporiser, and a reformer (in which pellets were integrated in an intermediate step). In addition, multiple-layer parts with different functions were built by repeating the process combination several times. 


Additive Manufacturing, Rapid Tooling, Multi-jet modeling (MJM), electroforming, fuel cell technology

Full Text:




  • There are currently no refbacks.

Copyright (c) 2015 The South African Journal of Industrial Engineering

ISSN 2224-7890 (on-line)

Powered by OJS and hosted by Stellenbosch University Library and Information Service since 2011.


This journal is hosted by the SU LIS on request of the journal owner/editor. The SU LIS takes no responsibility for the content published within this journal, and disclaim all liability arising out of the use of or inability to use the information contained herein. We assume no responsibility, and shall not be liable for any breaches of agreement with other publishers/hosts.

SUNJournals Help