MODELLING PRODUCTION UNCERTAINTIES USING THE ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping

Abstract


Production throughput measures the performance and behaviour of a production system. Production throughput modelling is complex because of uncertainties in the production line. This study examined the potential application of the adaptive neuro-fuzzy inference system (ANFIS) to modelling the throughput of production under five significant production uncertainties: scrap, setup time, break time, demand, and lead time of manufacturing. The effects of these uncertainties on the production of floor tiles were studied by performing 104 observations on the production uncertainties over 104 weeks, based on a weekly production plan in a tile manufacturing industry. The results of the ANFIS model were compared with the multiple linear regression (MLR) model. The results showed that the ANFIS model was capable of forecasting production throughput under uncertainty with higher accuracy than was the MLR model, indicated by an R-squared of 98 per cent.


Keywords


production throughput; Uncertainty; Neuro-Fuzzy

Full Text:

PDF


DOI: https://doi.org/10.7166/26-1-560

Refbacks

  • There are currently no refbacks.




Copyright (c) 2015 The South African Journal of Industrial Engineering


ISSN 2224-7890 (on-line) ; ISSN 1012-277X (print)


Powered by OJS and hosted by Stellenbosch University Library and Information Service since 2011.


Disclaimer:

This journal is hosted by the SU LIS on request of the journal owner/editor. The SU LIS takes no responsibility for the content published within this journal, and disclaim all liability arising out of the use of or inability to use the information contained herein. We assume no responsibility, and shall not be liable for any breaches of agreement with other publishers/hosts.

SUNJournals Help