FORECASTING MODELING AND SIMULATION ANALYSIS OF A POWER SYSTEM IN CHINA, BASED ON A CLASS OF SEMI-PARAMETRIC REGRESSION APPROACH

Xiaojia Wang, Zhiqiang Chen, Shanlin Yang

Abstract


Forecasting electricity consumption is one of the most important challenges in electricity system planning. This paper presents an improved semi-parametric regression model using the Student distribution function of residual to replace the nonparametric component of the traditional semi-parametric model, thus eliminating the effects of the residual disturbance term. Compared with general linear models, the models make statistical inferences and can automatically regulate the boundary effect, which gives the forecast result a higher accuracy. A case study using data from China is presented to demonstrate the effectiveness of the approach.


Full Text:

PDF


DOI: https://doi.org/10.7166/23-3-518

Refbacks

  • There are currently no refbacks.




Copyright (c) 2015 The South African Journal of Industrial Engineering


ISSN 2224-7890 (on-line) ; ISSN 1012-277X (print)


Powered by OJS and hosted by Stellenbosch University Library and Information Service since 2011.


Disclaimer:

This journal is hosted by the SU LIS on request of the journal owner/editor. The SU LIS takes no responsibility for the content published within this journal, and disclaim all liability arising out of the use of or inability to use the information contained herein. We assume no responsibility, and shall not be liable for any breaches of agreement with other publishers/hosts.

SUNJournals Help