AN INTELLIGENT RTP-BASED HOUSEHOLD ELECTRICITY SCHEDULING BY A GENETIC ALGORITHM IN SMART GRID
DOI:
https://doi.org/10.7166/29-2-1813Keywords:
Demand management, Distributed decision making, Fairness, Stackelberg game, Power grid.Abstract
Electricity scheduling for households based on real-time pricing (RTP) allows flexible and efficient consumption planning. However, this creates errors in predicted costs. Therefore this study used a genetic algorithm (GA) to reduce the error in predicted costs and suggested a model that offered better consumption planning. This model comprises a provider that supplies electricity and a subscriber that consumes electricity. Each subscriber has an energy management controller (EMC) that selects the optimal electricity scheduling. The provider and subscriber exchange real-time predicted costs and consumption plans to achieve an appropriate balance. During this process, the aforementioned prediction error — i.e., the difference between the predicted cost for each time slot and the final actual cost — occurs. This was addressed in this study using a GA. As a result, the presented model produced consumption plans with costs that were 22.60 per cent lower than the non-scheduled case, and 3.34 per cent lower than the model from a previous study. Furthermore, the fairness for each subscriber was improved by 15.96 per cent compared with the non-scheduled case, and by 0.62 per cent compared with the previous study model.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.