MAX-EWMA CHART FOR AUTOCORRELATED PROCESSES (MEWMAP CHART)
DOI:
https://doi.org/10.7166/18-2-123Abstract
ENGLISH ABSTRACT: This paper proposes an exponentially weighted moving average (EWMA) control chart that is capable of detecting changes in both process mean and standard deviation for autocorrelated data (referred to as the Maximum Exponentially Weighted Moving Average Chart for Autocorrelated Process, or MEWMAP chart). This chart is based on fitting a time series model to the data, and then calculating the residuals. The observations are represented as a first-order autoregressive process plus a random error term. The Average Run Lengths (ARLs) for fixed decision intervals and reference values (h, k) are calculated. The proposed chart is compared with the Max-CUSUM chart for autocorrelated data proposed by Thaga (2003). Comparisons are based on the out-of-control ARLs. The MEWMAP chart detects moderate to large shifts in the mean and/or standard deviation at both low and high levels of autocorrelations more quickly than the Max-CUSUM chart for autocorrelated processes.
AFRIKAANSE OPSOMMING: Die navorsing stel voor dat 'n eksponensiaal geweegde bewegende gemiddelde kontrolekaart gebruik word om verandering van prosesgemiddelde en
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in the Journal agree to the following terms:- Authors retain copyright and grant the Journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Journal.