
DEVELOPING A TOOL FOR PROJECT CONTINGENCY ESTIMATION IN A LARGE PORTFOLIO 
OF CONSTRUCTION PROJECTS 

M. van Niekerk1 & J. Bekker2* 

1Eskom Holdings Ltd 
South Africa 

nelmt@eskom.co.za 
 

2Department of Industrial Engineering 
Stellenbosch University, South Africa 

jb2@sun.ac.za 

ABSTRACT 

To enable the management of project-related risk on a portfolio level in an owner 
organisation, project contingency estimation should be performed consistently and 
objectively. This article discusses the development of a contingency estimation tool for a 
large portfolio that contains similar construction projects. The purpose of developing this 
tool is to decrease the influence of subjectivity on contingency estimation methods 
throughout the project life cycle, thereby enabling consistent reflection on project risk at 
the portfolio level. Our research contribution is the delivery of a hybrid tool that 
incorporates both neural network modelling of systemic risks and expected value analysis of 
project-specific risks. The neural network is trained using historical project data, supported 
by data obtained from interviews with project managers. Expected value analysis is 
achieved in a risk register format employing a binomial distribution to estimate the number 
of risks expected. By following this approach, the contingency estimation tool can be used 
without expert knowledge of project risk management. In addition, this approach can 
provide contingency cost and duration output on a project level, and it contains both 
systemic and project-specific risks in a single tool. 

OPSOMMING 

Projek-gebeurlikheidsreserwes moet konsekwent en objektief beraam word ten einde die 
bestuur van projek-verwante risiko op portefeuljevlak in eienaar-organisasies moontlik te 
maak. Hierdie artikel bespreek die ontwikkeling van ’n gebeurlikheidsreserwe-beramer vir 
’n portefeulje met baie konstruksieprojekte wat almal ’n soortgelyke aard het. Die doel 
met die ontwikkeling van hierdie funksie is om die invloed van subjektiwiteit op 
gebeurlikheidsreserwe-beramingmetodes deur die volledige projeklewensiklus te verminder 
en daardeur projekrisiko konsekwent op portefeuljevlak te weerspieël. Die 
navorsingsbydrae is die lewering van ’n hibriede funksie wat beide neurale netwerk 
modellering van sistemiese risiko en die verwagte waarde-ontleding van projek-spesifieke 
risikos insluit. Die neurale netwerk word geleer deur historiese projekdata te gebruik, 
tesame met ondersteunende data wat deur onderhoude met projekbestuurders verkry is. 
Die verwagte waarde-ontleding word deur ’n risiko-register formaat bewerkstellig, wat die 
aantal verwagte risikos met ’n binomiaalverdeling beraam. Deur hierdie benadering te volg 
kan die gebeurlikheidsreserwe-beramingfunksie gebruik word sonder diepte-kennis van 
risikobestuur in projekte. Dit verskaf gebeurlikheidkoste en –tydsduur beramings op 
projekvlak, en bevat beide sistemiese risiko en projek-spesifieke risiko in ’n enkele funksie. 
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1 INTRODUCTION 

The effective management of project-related risk on a portfolio level is often restricted by 
contingency estimation methods that are not consistent and objective throughout the 
portfolio. This is especially detrimental in a large portfolio of projects, where a 
knowledgeable portfolio manager would need to maintain a portfolio-level risk analysis of 
all ongoing projects, so as to be able to monitor the risks and vulnerabilities of the entire 
portfolio. Construction projects comprising a portfolio are risky by nature, as many 
variables affect their outcome. It is therefore important that contingency cost and duration 
are allocated to the budget and duration of each project, in order to provide for the 
possible impact of risks. 
 
Project risks not only include risks that could materialise due to project execution, but also 
risk conditions inherent to the project or the environment of the organisation. By this logic, 
project risks can be broadly classified into two categories: systemic and project-specific 
risks [1]: 
 
• ‘Systemic’ refers to the fact that the risk is a product of the project ‘system’, culture, 

politics, business strategy, process system complexity, technology, and so forth. 
• ‘Project-specific’ refers to the fact that the risk is specific to the project – for 

example, the possibility of rain on a specific project site during a certain time of year. 
 
The link between systemic risks and the impact on cost and duration is stochastic in nature. 
This poses a challenge during risk identification, as teams find it difficult to understand and 
estimate the impact of systemic risks on particular cost items or schedule activities. 
Different project teams estimate the impact of these risks in different ways, leading to 
subjective results. 
 
The aim of this paper is to discuss the development of a project contingency estimation 
tool for a large portfolio of similar construction projects. The requirements of this type of 
tool in such an environment are taken to be as follows: 
 
• it must be applicable at all levels of project definition to address the impact of both 

systemic and project-specific risks; and 
• it must be usable without expert knowledge of project risk management, as 

knowledge of this kind is often not readily available on smaller projects. 
 

An effective contingency estimation tool should address the parameters driving systemic 
risk (systemic risk drivers) using empirical knowledge to produce stochastic models that link 
these drivers to bottom-line project cost or duration growth. The tool should also include a 
deterministic approach to the estimation of contingency requirements linked to project-
specific risks [2]. The chosen approach is therefore a hybrid contingency estimation tool 
that incorporates both the artificial neural network (ANN) modelling of systemic risks and 
the expected value analysis of project-specific risks. Currently, there is no commercial 
contingency estimation tool that incorporates a hybrid approach to a neural network model 
of systemic risk analysis and expected value model for project-specific risk analysis. 
Furthermore, no academic paper has been published on the practical development of such 
a tool. This paper aims to address this gap by discussing the method employed to develop 
such a tool in the study environment. 
 
The remaining sections of the paper are organised around the following topics: 
 
1. Background of the study in terms of project risk, project contingency, and the study 

environment. 
 

2. Methods used for contingency estimation: 
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• Neural network modelling as achieved through a neural network that is trained using 
historical project data supported by interviews with project managers. 

• Expected value analysis as achieved in a risk register format employing a binomial 
distribution to estimate the number of risks that are expected to materialise. 

• Practical integration of the two methods. 
 
3. Results: 
• Results of the interviews with project managers. 
• ANN model results. 

 
4. Conclusions. 

2 BACKGROUND 

This section provides background on project risk, project contingency, and the study 
environment. 

2.1 Project risk 

Everyday life is full of intuitive decisions that are made without consciously attributing 
either quantitative or qualitative values to the risks involved. However, in some settings 
decisions need to be more objectively informed. A project is an example of such an 
environment. 
 
The Project Management Body of Knowledge (PMBOK) [2] defines project risk as “an 
uncertain event or condition that, if it occurs, has an effect on at least one project 
objective (e.g., scope, schedule, cost and/or quality).” 
 
Project risks not only include risks that could materialise due to project execution, but also 
risk conditions that are inherent to the environment of the project or organisation. For 
example, immature project management practices in an organisation would be a risk that 
applies to all projects in that organisation.  
 
As mentioned before, project risks can be broadly classified into systemic risks and project-
specific risks [4]. Systemic risks are stochastic in nature, and can also be called inherent 
risks [5]. In comparison with systemic risks, project-specific risks have a more deterministic 
link to their impact on cost and/or duration. 
 
Hollmann et al. [6] state that, from an owner’s perspective, systemic risks are especially 
important as they normally pertain to definitions, planning, technology, and decisions 
prevalent early in the project that cannot later be transferred to the contractors executing 
the project. Another important classification of risks involves the difference between 
internal and external risks [7]: 
 
• internal risks are those found within the project – they are often controllable risks; 
• external risks are generated outside the project, and often cannot be controlled. 
 
Many other terms related to project risk could be discussed, but these are the ones most 
pertinent to the background of the contingency estimation study in question. 

2.2 Project contingency 

Adherence to project budget (cost) and schedule (duration) are two of the most important 
measures of project success. Estimations related to project budget and duration should 
therefore account for the presence of risks. The term ‘contingency’ refers to the 
quantification of an estimate with regard to project costs or duration, so as to cover some 
element of risk or uncertainty. Cost contingencies account for a probable increase in cost 
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above target estimates, while duration contingencies account for a probable increase in 
duration above target estimates (i.e., the project will take longer than estimated). 
 
Specialists have different opinions of the exact definition and application of project 
contingency. In this article, the term will be used as prescribed by Noor and Tichacek [8], 
according to whom the contingency should be sufficient to cover the cost or time required 
for the chosen risk response, whether this involves avoiding, transferring, mitigating, or 
bearing the realisation of risks. 

2.3 Study environment 

The contingency estimation tool discussed in this article was developed for a department in 
the distribution division of the Southern African power utility, Eskom Holdings SOC Ltd – 
specifically, the Project Execution Department of the Eskom Distribution Western Cape 
Operating Unit. The Department has a portfolio of more than 700 standard and repeatable 
network asset construction projects. Repeatable projects are those that are repeated 
regularly, such as the construction of small substations. Standard projects refer to those 
that are not repeated in their entirety, but do follow a standard process. These differ from 
mega-projects, which are large one-off projects, such as the construction of a power 
station. Mega-projects are not executed by the distribution environment.  
 
Standard and repeatable network asset construction projects can be classified into one of 
four business categories: 
 
1. Electrification: Projects that are initiated to provide electricity to an area that is 

not yet electrified. 
2. Direct customer: Projects that are initiated due to a customer’s application for a new 

service. 
3. Strengthening: Projects that involve the expansion or upgrading of networks. 
4. Refurbishment: Projects that involve modifications of an asset so as to extend its 

useful life (without upgrading the asset). 
 
In addition to the business category, a project is classified in terms of its voltage category 
and its job category. Voltage category refers to the voltage level at which the work is 
executed (subtransmission, distribution, or reticulation), whereas the job category 
indicates whether the project involves a line, a cable, or a substation. Throughout the 
project management process in such an environment, there is no formal method for 
determining or allocating project contingencies, as is the case with many other established 
organisations [9]. In the past, contingency cost was often applied as a single percentage of 
base cost (most often between 5 and 15 per cent of the project cost), determined 
according to the previous experience of the project manager in question, on similar 
projects. No breakdown of this contingency percentage was required. At present, 
investment committees demand that the contingency cost requested alongside the project 
budget be fully broken down into an itemised list; but as far as duration is concerned, no 
estimate is required. No standard project risk analysis template exists, and no analysis of 
data concerning cost or duration growth has been conducted to serve as a guideline for 
quantifying contingency. Thus the accuracy of the estimated contingency impact is based 
solely on expert opinion. 
 
The problem with this modus operandi is the assumption that all project managers are 
experts in their field, while in fact some are relatively inexperienced. Even if one were to 
assume that all project managers are indeed experts, the expert opinion method of 
contingency estimation is hampered by the fact that the wide variation in the skills, 
knowledge, and motivation of different individuals leads to subjectivity. This is evident 
from the fact that contingency estimates produced currently by project managers, for 
different projects under similar circumstances, vary widely. 
 
The next section deals with the methods employed to estimate contingency in this study. 
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3 METHODS 

To be able to address both systemic and project-specific risks, a hybrid contingency 
estimation method in line with the one suggested by Hollmann [10] is proposed. This 
method incorporates both a neural network and an expected value analysis tool. The logic 
behind this approach is as follows: 
 
• neural network modelling is used on data from past projects to evaluate the 

impact of systemic risks that are not readily quantifiable by traditional risk analysis; 
• the expected value method is used to evaluate the impact of project-specific risks 

suitable for traditional risk analysis; and 
• the simultaneous use of the two methods leverages their respective strengths. 

 
The expected value analysis is performed in Microsoft Excel, and the neural network is 
programmed in Visual Basic, to enable automated interaction between the two contingency 
estimation methods. The next section will provide a brief description of neural networks. 
This includes subsections outlining neural network model architecture and training. 

3.1 Artificial neural network modelling 

Chen and Hartman [11] define an artificial neural network (ANN) as follows: “an ANN is an 
information processing technology that simulates the human brain and nervous system”. 
When presented with input and output data (called the training set), the network has the 
ability to find the function that describes the relationship between them. When new input 
data is fed in, output data can be obtained according to the approximation function. 
A typical ANN comprises a group of processing elements organised into a sequence of 
layers. Successive layers are connected by means of connection weights. Different layers 
contain different types of nodes: input, output, and hidden nodes. Input nodes accept data 
presented to the network, output nodes produce network outputs, and hidden nodes 
represent the relationships in the data. One or more hidden layers are found between the 
input and output layers. All nodes ‘communicate’ through connections with certain assigned 
weights. When the ANN is presented with a data set, ‘training’ occurs through continuous 
adjustment of the connection weights using a training algorithm. This mimics the nature of 
the human brain, where neurons are organised in layers and connected by synapses [12]. 
Figure 1 [13] illustrates the components of a simple three-layer, single-output neural 
network. 

 

Figure 1: Schematic diagram of a neural network 

In project contingency estimation, ANNs can be used to develop models for assessing and 
quantifying risk by identifying the parameters driving risk on a project and correlating them 
with the risks encountered. The values assigned to these parameters (qualitative or 
quantitative) should describe a pattern that can be linked easily to the risks encountered in 
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projects. Project input data patterns and the associated level of risk (cost or duration 
growth) can then be used to train a neural network. The input-output mapping obtained in 
this manner is similar to the result of a regression analysis between input and response 
variables. 
 
Neural network analysis is, however, favoured above regression analysis. Research 
conducted by Chen and Hartman [11] demonstrates the superior performance of neural 
networks compared with that of regression analysis in the project management 
environment. Also, the lack of upfront knowledge on the nature of the relationships 
between inputs (risk drivers) and outputs (project cost growth or duration growth) opens up 
the possibility that regression analysis might not be successful, as the method requires the 
cost or duration function to adhere to a defined mathematical form. 
 
The next three subsections explain how the architecture of the neural network was 
determined, which method and algorithm(s) were selected for training, and how training 
data was obtained. 

3.2 ANN architecture 

Six systemic risk drivers were identified as input variables for the study environment in 
question: 
 
1. Project definition level. 
2. Latest approved project cost. 
3. Latest approved project duration. 
4. Business category. 
5. Voltage category. 
6. Job category. 

 
Project definition level refers to the required level of definition at the project stage in 
question, and is represented by a number between 0 and 1, where 1 denotes complete 
definition. It is assumed that the level of definition required at each project stage 
represents the actual level of project definition at the relevant stage gate with reasonable 
accuracy. The terms ‘latest approved project cost’ and ‘latest approved project duration’ 
refer to the approved cost and duration. Project duration is calculated from the date of 
concept release approval (at which point the concept becomes a project) to the date of 
commissioning/energising the asset. Business category, voltage category, and job category 
refer to the relevant project categories, as discussed earlier (see Section 2). 
 
Burroughs and Juntima [14] propose the following drivers for use in neural network 
modelling: project definition level, process complexity, contracting strategy, equipment 
percentage, and use of new technology. With reference to the input variables identified 
above, the project definition level is represented by the variable of the same name, and all 
variables, save project definition level, combine to describe process complexity. 
Contracting strategy is not added as an input variable, as all projects under consideration 
follow a similar strategy. Equipment percentage is represented by the combination of the 
last three variables (similar project types are assumed to have similar equipment budgets). 
As none of the network asset construction projects used in the study were the first of their 
kind (being standard and repeatable projects), a variable representing use of new 
technology was not included. 
 
To be able to use neural network modelling for contingency estimation at different phases 
in a project’s lifecycle, estimate computations should be based on dynamic evaluations of 
input drivers at each project phase [15]. For this reason, data regarding three project 
lifecycle points was obtained for ANN training (end of pre-project planning stage, end of 
concept stage, and end of definition stage). Thus three input patterns were available per 
project, each containing the value of all input variables at the relevant point in the project 
lifecycle. 
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Three of the input variables are categorical variables, where ‘categorical’ refers to a 
variable denoting a decision between different categories/levels. One level should not be 
seen as superior to another; they cannot be organised sequentially along a numerical scale, 
as this would suggest a relative importance that does not exist. As with all function-
mapping techniques, ANN models cannot interpret categorical variables that cannot be put 
in a progressive order as single input variables [16]. Categorical input variables were 
therefore incorporated through indicator variables, where a categorical variable with h 
levels can be modelled by h − 1 indicator variables, as illustrated in Table 1. In this case, 
the voltage category was used as an example. 𝐼5𝑖 denotes the ith indicator variable 
representing the fifth neural network input risk driver (voltage category). 

Table 1: Values of indicator variables representing different voltage categories 

𝑰𝟓𝟏𝟏 𝑰𝟓𝟐 Represented voltage category 

1 0 Subtransmission 

0 1 Distribution 

0 0 Reticulation 

 
With this approach, eight input nodes would be required to represent all six systemic input 
variables (risk drivers). Two output nodes were used to represent the two independent 
output variables: 
 
1. required contingency cost percentage due to systemic risks; and 
2. required contingency duration percentage due to systemic risks. 

 
With regard to the hidden layer of the neural network, two choices needed to be made: 
 
1. How many hidden layers would be used? 
2. How many hidden nodes would there be in each layer? 

 
A multilayer feed-forward neural network with one hidden layer was employed because 
problems that require more than one hidden layer are rare [17]. The selection of the 
number of hidden nodes in this layer is very important. Using too few nodes could result in 
‘underfitting’, in which case there would be too few nodes to detect the signals in a 
complicated data set adequately. On the other hand, using too many nodes could result in 
‘overfitting’, in which case the training set would not be sufficient to train all the nodes in 
the hidden layer [17, 18], resulting in the network overfitting itself to the available 
content. This would lead to bad generalisation when the network is confronted with new 
input data. Even in the case where there are enough training patterns, too many hidden 
nodes could still increase the training time to an extent that makes it difficult to train the 
neural network adequately. 
 
As heuristics suggested by Heaton [17] indicate that between two and 16 hidden nodes 
needed to be used in this study, our approach was to select the number of nodes (ranging 
between these values) based on the accuracy of the model obtained from independent 
model runs. This will be discussed further in the section on the ANN results. 
 
The contingency cost and duration percentages to be computed by the neural network in 
this study were anticipated to be positive additions to the project budget or duration. 
However, there were cases in the training set of historical data where projects were 
finished under budget or earlier than planned. In order for the backpropagation method 
(see Section 3.3) to be applied, the activation function used in the hidden and output layers 
must be continuous and differentiable. The sigmoid function is by far the most frequently 
applied method, as it exhibits a balance between linear and nonlinear behaviour [19], and 
was therefore the activation function type applied to the hidden and output layer nodes in 
the ANN model of this study. The hyperbolic tangent function is a form of the sigmoid 
function returning both positive and negative numbers. The contingency cost and duration 
percentages to be computed by the neural network in this study were anticipated to be 
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positive additions to the project budget or duration. However, there were cases in the 
training set of historical data where projects were finished under budget or earlier than 
planned. To enable the network to approximate these ‘negative’ (in terms of the ANN) 
outcomes alongside the positive outcomes, the hyperbolic tangent function was applied as 
an activation function. 

3.3 ANN training method and algorithm 

There are many ways in which neural networks can be trained. Most of these fall into the 
categories of supervised, unsupervised, or hybrid training methods [17]. Supervised training 
occurs by presenting the network with a set of input data and corresponding anticipated 
output data regarding an environment that is unknown to the neural network of interest. 
Unsupervised training occurs when only input data is presented to the network. Hybrid 
methods of supervised and unsupervised training also exist. 
 
The learning task that the neural network in this study is required to perform can be 
classified as function approximation: the purpose of the neural network design is to 
approximate an unknown nonlinear input-output mapping function. This type of learning 
task is a perfect candidate for supervised training [19]. 
 
Several learning algorithms were considered for use in this study, including 
backpropagation, simulated annealing, and genetic algorithms. Backpropagation (BP) is a 
gradient descent method that is popularly applied to search for the ANN connection weights 
at which the difference between actual and desired ANN outputs are minimised. To 
overcome the weaknesses encountered with gradient descent algorithms, global search 
algorithms can be applied to adjust the weights of a neural network. When applied in this 
way, Sexton et al. [20] show that simulated annealing (SA) and genetic algorithms both 
outperform backpropagation as a training algorithm by allowing the solution vector to 
escape local minima and seek an improved global solution. Note that in such an application, 
the values of the weights are only updated at the end of each epoch – i.e., when all 
training patterns have been considered. This is referred to as batch learning, as opposed to 
per-example learning where weights are adjusted after each training pattern, as in the case 
of traditional backpropagation [18]. 
 
The SA algorithm was therefore applied alongside the backpropagation algorithm in the 
neural network model used in this study. A method similar to the one proposed by Ludermir 
et al. [21] was used. Re-annealing (an increase of the temperature parameter in the SA 
algorithm) was periodically performed when the SA algorithm started to converge, to 
ensure that the entire solution space was searched and a local minimum was not passed off 
as a global minimum [22]. The main steps in the overall logical structure of this model, 
including the parameters that needed to be defined, are outlined in Figure 2. 
 
As the training algorithm applied in this study aimed to minimise two objective functions, 
namely the error function of each of the two output variables, a multi-objective SA 
algorithm was applied. Suman and Kumar [23] discuss several techniques to modify the 
single-objective SA algorithm for application in multi-objective problems. For the purpose 
of this study, multi-objective SA using a Pareto-domination-based acceptance criterion 
(PDMOSA) was selected. 

3.4 ANN training data 

To enable training of the neural network model, a set of training patterns was obtained 
from historical data and semi-structured interviews with project managers concerning 
projects completed in the 2010/2011 and 2011/2012 financial years. Each training pattern 
comprises multiple input values that ‘feed’ the corresponding input nodes of the neural 
network, and two output values that will be compared with the values generated by the 
neural network’s two output nodes during training. 
 
Data regarding model input variables could be obtained directly from historical project 
data, whereas the impact of systemic risks on cost and duration growth, as required for the 
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two response variables, was not explicitly available. The main objective of the interviews 
with the project managers was therefore to gather data for neural network training by 
uncovering causes for project cost and duration growth of completed projects, in order to 
distinguish between the impacts of systemic and project-specific risks in these areas. 
 
A list of categorised causes and corresponding primary causes contributing to project cost 
and duration growth was compiled for use during the interview process. Interviewees did 
not need to state whether the selected causes were systemic or not; the causes chosen by 
them were used to indicate this, as the researchers studied the list of causes beforehand, 
so as to categorise them as either systemic or project specific. 
 
After showing the project manager the data relating to the cost and duration of the project 
concerned, and the list of causes linked to project cost and duration growth, the following 
questions were posed with regard to each project: 
 
1. Which primary/root cause contributed to project cost growth and schedule delay from 

the date of concept release approval to the date of definition release approval? If 
more than one cause is applicable, to what extent did each primary/root cause 
contribute? 

2. Which primary/root cause contributed to project cost growth and schedule delay from 
the date of definition release approval to the date of execution release approval? If 
more than one cause is applicable, to what extent did each primary/root cause 
contribute? 

3. Which primary/root cause contributed to project cost growth and schedule delay from 
the date of execution release approval to the date of finalisation release approval 
(with all revisions taken into account)? If more than one cause is applicable, to what 
extent did each primary/root cause contribute? 

4. Is there anything we have not touched on that you feel is important regarding the 
project in question?. 

 
In this manner, three training patterns were obtained for each project, each one associated 
with a different point in the project lifecycle (end of pre-project planning stage, end of 
concept stage, and end of definition stage). Outputs from 22 interviews provided three data 
patterns for each of the 89 completed refurbishment, strengthening, and direct customer 
projects. Electrification projects were excluded from the data set due to the high level of 
political influence involved in these projects. The environment in which these projects are 
executed is fairly isolated when compared with other network asset construction projects. 
In essence, these projects form a system of their own. After interview data had been 
gathered and processed to remove project-specific and other impacts, further data 
preparation had to be performed before model training could begin. These preparatory 
steps included the scaling of non-categorical variables, the use of indicator variables to 
represent categorical variables, and the removal of outlier training patterns. After data 
preparation had been completed, 135 training patterns relating to 85 projects remained for 
ANN training, validation, and testing. The next section describes how the expected value 
analysis of project-specific risks was incorporated into the contingency estimation tool. 
 

4 EXPECTED VALUE (EV) ANALYSIS 

The expected value (EV) analysis method for contingency estimation directly estimates the 
cost or duration impact(s) of each significant identified risk [4]. The EV is obtained by 
multiplying the cost or duration risk impact by the probability of occurrence. If no Monte 
Carlo or similar simulation is run, the project contingency can be determined at this stage 
as the sum of the expected cost or duration values (probability × impact) of the individual 
risks. 
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Figure 2: Overview of neural network model logic 

In the developed model, a Microsoft Excel risk register acts as a departure point for the EV 
analysis to estimate project contingency for project-specific risks. The project manager 
selects the cause category and primary cause for each identified risk, after which 
anticipated pre- and post-mitigation delay, cost, and likelihood are populated. 
 
Hereafter, the EV contingency amount is determined as the sum of the EVs (probability × 
impact) for all risks. To ensure that the project-specific contingency value estimated in this 
fashion is not overly conservative, the method proposed by Khamooshi and Cioffi [9] is 
applied, employing the binomial distribution to estimate how many of these risks will 
occur. The calculation steps performed by the tool to determine Contingency PS 
(contingency due to project-specific risks) are as follows: 
 
1. Determine binomial distribution parameters: 
• p (probability of ‘success’ in each trial) calculated as the average of the probabilities 

of all identified risks. 
• n (number of trials) being equal to the number of identified risks. 
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2. Use the binomial distribution to determine the number of risks expected to occur (a), 
for which the contingency budget/duration should account.  

3. Sort risks according to risk rating (largest to smallest). 
4. Calculate the contingency for both cost and duration as the sum of the EVs of 

the a largest risks using 

 
(1) 

 where mi is the impact that occurs with probability pi. 
 
Note that in the Excel-based tool, the integer quantity a is determined using an equation 
provided by Khamooshi and Cioffi [9] for cases where 20 or more risks are being considered 
at a 99 per cent confidence level (the probabilistic maximum number of risks, a, will be 
exceeded only 1 per cent of the time). The assumption is therefore made that 20 or more 
risks will be identified for each project. This assumption holds when considering outputs of 
risk workshop sessions on previous projects in the study environment. If fewer than 20 risks 
are identified, the equation will cause a larger number of anticipated risks, a, to be 
reflected than would have been read directly from the corresponding cumulative 
probability distribution at a 99 per cent confidence level. This is a desirable effect, as the 
identification of a smaller number of risks might indicate that the project team in question 
is inexperienced in risk identification. A more conservative reflection of the contingency 
amount therefore makes sense. 
 
Finally, the total cost distribution is approximated by the assumption of a normal 
distribution with a standard deviation that is equal to the contingency value, as proposed 
by Rothwell [24]. The budgeted project cost plus the estimated contingency amount for 
systemic and project-specific risks represent the mean total project cost, which, in the 
case of normally-distributed data, is equivalent to the median value (the point at which 
project cost overrun or underrun is equally likely) [6]. 

5 INTEGRATION OF ANN AND EV ANALYSIS 

While the neural network is trained, the set of connection weights linked to the lowest 
training errors (TE) and validation errors (VE) is stored for application in the contingency 
estimation tool. Upon opening the contingency estimation tool, the following steps are 
followed/executed: 
 
1. The user enters/selects values for neural network input variables (definition 

level, cost, duration, voltage category, job category) in a user form. 
2. These values are sent as input to the trained neural network, which returns 

contingency cost and duration percentages representing systemic risk impact. 
3. Generated percentages are multiplied by project cost and duration (as per 

user input) respectively to obtain the monetary value of the cost impact and the 
duration impact in days. 

4. These calculated Contingency SY (contingency due to systemic risks) cost and 
duration values are automatically entered as a ‘one-liner’ (representing 
systemic risks) with 100 per cent probability in the risk register. 

5. Contingency
T (total contingency) is determined with 

 
ContingencyT = ContingencyPS + ContingencySY,  (2) 

 
 Contingency𝑇 = Contingency𝑃𝑆 + Contingency𝑆𝑌for both cost and duration. 
 
The results of the study will be discussed in the next section.  
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6 RESULTS 

6.1 Interview results 

Before beginning training, further analysis was conducted on data gathered during the 
interview process by applying Benford’s Law [25] to ensure data integrity. A nonzero base 
ten integer starts with some digit other than zero (a digit from one to nine). It might be 
expected that, in a random data set, it would be equally probable that a data element’s 
leading digit would be one or five or any other number. This would amount to an equal 
probability of roughly 11 per cent of a given data element starting with any one of the 
possible nine leading digits. Benford’s Law states that this is not the case, and that in a 
random data set, about 30 per cent of the random numbers would start with a one, 18 per 
cent of the numbers would begin with a two, and so forth, down to less than 5 per cent of 
numbers starting with nine. This law can be applied to test whether data provided by 
human input is truly random, or whether the data is skewed intentionally towards 
‘seemingly average’ values that are perceived to ‘sound good’. Leading digit frequencies of 
the training data gathered corresponded strongly to values expected for a random data set 
according to Benford’s Law, as confirmed by a chi-squared goodness-of-fit test, providing 
confidence that training could proceed. Thus about 30 per cent of the values in the training 
data set start with a one, about 18 per cent with a two, and so on. 
 
Although the main objective of the 22 interviews was to gather neural network training 
data, the format of the interviews enabled the researchers to distinguish between systemic 
and project-specific risk impacts on the cost and duration growth of completed projects. 
Another outcome of the interviews was therefore the frequency of identified project-
specific causes relevant to the 89 interview projects, as well as the extent to which events 
linked to these causes had an impact on each project. To ensure that the knowledge 
obtained during these interviews is not lost, results regarding project-specific risks 
concerning previously completed projects will be populated in a ‘lessons learned’ database. 
The database will be made available to aid future project-specific risk identification and 
analysis. 

6.2 ANN results 

Investigation of initial model runs showed that data relating to the pre-project planning 
stage of the project lifecycle contained high levels of noise due to large changes in the 
project cost estimation process during the study period, and flexibility in the project scope 
in that part of the project lifecycle. This made the application of the model in the pre-
project planning stage of the project lifecycle impractical. For this reason, only data from 
the concept, definition, and execution stages were used as project input. 
 
As discussed, there were eight possible input nodes representing the six chosen input 
variables (risk drivers). More input variables require more training examples to reach a 
given accuracy. To ensure that the model was not unnecessarily complex, different 
scenarios using varying combinations of the six risk drivers for model input were tested, as 
shown in Table 2. 
 
For each of the five scenarios, the varying number of input variables presented to the 
model required a correspondingly varied number of hidden nodes to be considered. Guided 
by several heuristics proposed by Heaton [17], each scenario was evaluated at three to four 
‘levels’ of hidden nodes. By comparing the results obtained for different numbers of hidden 
nodes within the input scenario of each risk driver, the best output for each scenario could 
be obtained, as shown in Table 3. The neural network scenario models were trained using 
99 patterns relating to 67 projects, and were applied to a validation data set including nine 
projects composed of 18 data patterns. The validation set results were used to compare 
different model scenarios, and the chosen model was tested using the testing data set (18 
patterns relating to nine projects). This was modelled on the approach adopted by Pewdum 
et al. [26]. 
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Table 2: Possible systemic risk driver combinations 

Scenario Definition 
level Cost Duration Business 

category 
Voltage 

category 
Job 

category 

1 × × × × × × 

2 × × × × ×  

3 × × ×  × × 

4 × × × ×  × 

5 × × ×    

 
The exclusion of the business category risk driver and its two corresponding indicator input 
variables (leaving six input nodes of the possible eight remaining while representing five 
input risk drivers of the possible six) with the use of nine hidden nodes was identified as the 
best scenario, as shown in Table 3. Validation error levels are rivalled by only one other 
scenario (exclusion of job category) and the training error levels were used as a 
‘tiebreaker’ to motivate the choice of scenario. 

Table 3: Neural network results: Best output for each scenario 

Scenario Risk driver excluded Hidden nodes TEcost (%) TEtime (%) VEcost (%) VEtime (%) 

1 No exclusion 12 7.9 13.0 7.8 15.8 

2 Job category 14 9.2 15.4 6.2 13.9 

3 Business category 9 7.6 14.2 6.2 13.9 

4 Voltage category 12 9.1 13.8 6.3 13.9 

5 All categorical 6 8.3 15.2 6.3 13.9 

 
It should be noted that the error levels were still reasonable in the case of the scenario 
presented in Table 3, in which all of the categorical inputs were excluded (the network 
viewed all project types as being similar). This was not the case in a similar study 
conducted by Lhee et al. [16], where categorical variables were not included as neural 
network input, but rather used as a means to split data into groups, and a separate network 
was trained for each type of project. Chen and Hartman [11] also report improved results 
with regard to contingency estimation using a neural network, when project data is grouped 
into two or more disjoint sets based on, for example, project cost range, and each set is 
used with a separate neural network. This difference in results could be attributed to the 
fact that while Lhee et al. [16] and Chen and Hartman [11] were searching for networks to 
model all project risks and estimate total contingency, the ANN model in this study aims to 
approximate only the impact of systemic risks, which are more likely to follow a pattern 
throughout all types of projects, as they apply to all projects within the system. 
 
To enable the neural network to be objectively evaluated against a competing method, its 
performance was compared with that of a multiple linear regression (MLR) model using the 
chosen scenario (exclusion of the business category as a model input scenario with nine 
hidden nodes). Table 4 summarises MLR coefficients for the intercept and model input 
variables. 
 
As with the ANN, the MLR model was trained using the training set and then applied to the 
validation set. The corresponding results for both the ANN and the MLR model are 
presented in Table 5. 
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Table 4: Multiple linear regression (MLR) coefficients 

Coefficients Project cost growth Project duration growth 

Intercept -0.00342 0,15382 

Definition level -0.02079 -0,03148 

Cost -0.04428 0,04142 

Duration 0.00206 0.01716 

Voltage category 1 0.03417 0.10441 

Voltage category 2 0.04264 -0.08073 

Job category -0.00680 -0.03225 

Table 5: Comparison of ANN and MLR 

Method R2
cost R2

time VEcost(%) VEtime(%) 

MLR 0.189 0.126 8.3 16.4 
ANN 0.222 0.135 6.2 13.9 

 
The values predicted by the ANN show improved validation error levels and ‘fit’ (R2) when 
compared with those of the MLR, as can be seen from the increased R2 values and the 
reduced error levels. However, the difference (especially with respect to R2) is not as 
significant as was anticipated. This could be attributed to the fact that the neural network 
does not yet have enough training patterns to address all possible scenarios, and results are 
expected to outperform those of the MLR further as additional training patterns become 
available. Also, as Chen and Hartman [11] and Lhee et al. [16] report R2 values between 
0.23 and 0.55 for similar neural network applications estimating total project contingency, 
the results are not seen as abnormally low. 
 
The validation errors of the chosen scenario are considered reasonably acceptable, as the 
average validation error across the two output nodes (contingency cost percentage due to 
systemic risks and contingency duration percentage due to systemic risks) is 10.1 per cent, 
and an average batch validation error level of 10 per cent across all output nodes is 
generally considered good during network validation [17]. Also, the error levels are 
comparable to those found in similar studies in the project management field: the accuracy 
is not as high as in other fields of application due to high variability inherent in data related 
to the management of projects. For cost and duration, the corresponding variances of the 
errors for the chosen scenario were determined as 8.296 × 10−3 and 2.103 × 10−2 

respectively, and the corresponding testing errors were determined as 6.0 per cent and 
11.1 per cent respectively. 
 
The next section will conclude the paper with an overview of possible future research and a 
discussion of benefits linked to the use of the hybrid method. 

7 CONCLUSIONS 

7.1 Benefits of hybrid method 

The tool developed in this study is a clear improvement on the subjective ‘expert opinion’ 
approach that is currently applied during contingency estimation in the study environment. 
The input drivers for systemic contingency estimation do not leave room for subjectivity, as 
is the case in some other neural network modelling applications for the estimation of 
project contingency. As neural network model outputs are based on actual data, expert 
knowledge is brought to the contingency estimation process while simultaneously 
decreasing subjectivity and man hours required. Also, as the trained neural network 
estimates contingency cost and duration due to systemic risks separately from the EV 
analysis of project-specific risks, there is no need for the project team to attempt to 

109 



analyse systemic risks which, due to their stochastic nature, are not easy to predict or 
understand. 
 
Another advantage of the proposed model, as opposed to a model where the contingency is 
calculated as a direct output and the user does not analyse any risks, is that the necessity 
of user involvement prompts thought and debating processes that will be more likely to 
provide a full view of possible risks on a project. The phenomenon described as ‘when 
models turn on, brains turn off’ is avoided. 
 
The tool is applicable to all levels of project definition, save the pre-project planning 
stage. This is not seen as an extreme disadvantage, as the risk management process for 
standard and repeatable projects used within the study environment does not require the 
estimation of contingency before the concept stage is reached. It is, however, possible to 
apply the EV portion of the model in isolation during the pre-project planning stage, if a 
rough indication of required contingency is deemed necessary. 
 
Although the assignment of contingency to each project-specific risk is transparent, the 
same cannot be said for the assignment of contingency for systemic risks using the neural 
network. Neural networks are essentially ‘black boxes’, and their output cannot be 
explained. However, in the proposed tool the neural network is only applied to address risks 
that, by their nature, are hard to relate to specific budget or schedule items and are 
therefore difficult to describe in a risk register format. The disadvantage is therefore not 
seen as an impediment to the successful application of the tool. 
 
By following the proposed approach, the contingency estimation tool can be used without 
expert knowledge of project risk management. It also provides contingency cost and 
duration output on project level, and covers both systemic and project-specific risks in a 
single tool. The decreased subjectivity facilitated by this approach thereby enables risks 
related to different projects to be reflected on portfolio level more consistently. 

7.2 Future research 

Although the ANN developed in this study was shown to outperform MLR, it was not 
compared with any other regression function types such as polynomial or exponential 
functions, due to the lack of information on the input-output mapping function, if a 
defined mathematical form exists at all. If an appropriate regression function were to be 
found for the data set by conducting a more exhaustive search on possible function formats, 
this approach would benefit from the transparency of the input-output mapping 
relationship. This could be a possible topic for future research. 
 
A basic version of the developed EV risk register (excluding the expected number of risks to 
occur and the total cost distribution) is being rolled out nationally on Eskom’s standard and 
repeatable projects as a risk analysis and contingency estimation tool. The improved hybrid 
tool that was the final output of this study is currently only applicable to the Distribution 
Western Cape Operating Unit due to the boundaries of the development data set. It has 
been proposed that data from other operating units be gathered, using questionnaires to 
determine whether expanding the neural network training data set in this way would make 
the developed contingency estimation tool applicable for use on all standard and 
repeatable projects in Eskom. 
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