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ABSTRACT 

Price volatility of stocks is an important issue in stock markets. It should also be taken into 
account that the stochastic nature of volatility affects decision-makers’ minds to a great 
extent. Therefore, predicting price volatility could help them make proper decisions. In this 
paper, a new multivariate fractionally integrated generalised autoregressive conditional 
heteroscedasticity (MFIGARCH) model is proposed to handle the price volatility in stocks. In 
this model, a long-term parameter is considered and estimated along with other 
parameters. In estimating the parameters of this nonlinear model, the maximum likelihood 
estimation method, which could be solved by standard econometric packages, is applied. 
However, these packages are no longer efficient when the size of the model increases. Thus 
meta-heuristic approaches, which stochastically seek optimal or near-optimal solutions, 
were used. In this paper, the well-known Particle Swarm Optimisation (PSO) meta-heuristic 
method is used for solving the suggested multivariate FIGARCH model. Hence the main 
objective of this paper is to introduce a new model for addressing the stock price volatility 
(i.e., the development of FIGARCH to create the MFIGARCH model) and to apply an 
efficient estimation method (i.e. PSO) for finding the parameters of the problem.   

OPSOMMING 

Die wisselvalligheid van die aandeelprys is ‘n belangrike kwessie vir aandelemarkte. Die 
stogastiese aard van dié wisselvalligheid beïnvloed besluitnemers op ‘n groot skaal en die 
voorspelling van die wisselvalligheid kan die besluitneming verbeter. ‘n Nuwe, 
meerveranderlike gedeeltelik geïntegreerde veralgemeende outoregressiewe 
voorwaardelike heteroskedastisiteit (MFIGARCH) model word voorgestel om die 
wisselvalligheid in aandeelpryse te hanteer. In hierdie model word, onder andere, ‘n 
langtermyn parameter oorweeg en beraam. Vir die beraming van parameters in hierdie nie-
lineêre model word die maksimum waarskynlikheidsmetode (wat opgelos kan word deur 
middel van standaard ekonometriese pakkette) toegepas. Hierdie pakkette is egter 
oneffektief wanneer die model vergroot. Dus word meta-heuristiese, wat optimale of byna-
optimale oplossings stogasties soek, ingespan. Die welbekende partikel swerm optimering 
metode word gebruik vir die oplos van die voorgestelde meerveranderlike model. Die hoof 
doel van hierdie studie is om die nuwe meerveranderlike model om die wisselvalligheid in 
aandeelprys aan te spreek, bekend te stel en om effektiewe parameter beraming deur 
middel van partikel swerm optimering toe te pas. 
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1 INTRODUCTION 

Studying price volatility in stock markets indicates that the volatility of a stock depends 
greatly on both the volatility of other stocks and that of the same stock in previous periods. 
It has been shown that autoregressive conditional heteroscedasticity (ARCH) and the 
generalised ARCH (GARCH) models are reliable work horses in modelling time-varying 
variances of economic time series data in univariate cases. Most authors have attempted to 
develop these models for multivariate dimensions. Multivariate volatility models have many 
excellent financial applications in portfolio selection, asset allocation, and calculation of 
the value at risk for the case of multiple assets [1]. In recent decades, international 
financial markets have been syndicated due to globalisation. This has made financial 
market stakeholders aware of how volatility affects the markets over time. Some typical 
applications of the multivariate GARCH (MGARCH) model are in optimising portfolios [2], 
pricing assets and derivatives [3], computing the value at risk [4,5], hedging futures [6], 
transmitting volatility and allocating asset [7], estimating systemic risk in banking [8], 
determining leverage effect [9], estimating volatility momentum function [3,10,11], 
nonlinear programming [12], avoiding currency exposure risk [13,14], calculating property 
portfolio minimum capital risk [15], ascertaining incorrect tests of MGARCH models [16], 
modelling changing variance in an exchange rate structure [17], and analysing individual 
financial markets [18].  
 
To analyse the volatility spillover system between different exchange rates in the European 
monetary system, Kearney and Patton [19] applied a multivariate GARCH model. The 
volatility spillover among large and small capitalisation stocks was analysed by the 
multivariate GARCH model’s BEKK (Baba, Engle, Kraft, and Kroner) parameterisation [20]. 
Moreover, volatility and shock transmission mechanisms were studied in US equity, Gulf 
equity, and global crude oil markets [21], in which the trend of volatility was from the oil 
market to Gulf equity markets. The opposite trend was identified only in the case of Saudi 
Arabia. 
 
In this paper, a multivariate fractionally integrated GARCH (FIGARCH) model was applied to 
estimate simultaneously the mean and conditional variance of daily returns of three 
indices: the automotive and parts manufacturing industry, financial intermediations 
(leasing), and the machinery and equipment index (Tehran Stock Exchange). In this study, a 
multivariate FIGARCH model was employed specifically because it allows the simultaneous 
study of volatility transmission in three different indices. 
 
The parameters of the aforementioned models are most often estimated using a maximum 
likelihood estimation method in standard econometric software. However, as the problem 
increases in size, this software may not be able to handle the model and find a solution. 
Therefore, heuristic or meta-heuristic approaches are used to resolve this difficulty. Among 
the existing studies, Malik and Hammoudeh [21] employed the simulated annealing meta-
heuristic method for finding the parameters of the GARCH model. Later, Winker and 
Maringer [23] applied a threshold accepting method and demonstrated the superiority of 
this method over standard numerical econometric packages. These studies provided the 
motivation for the present investigation to apply a particle swarm optimisation (PSO) meta-
heuristic approach to estimate the parameters of the proposed multivariate FIGARCH 
model.  
 
The rest of this paper is organised as follows: In Section 2, an overview of the existing 
models in the literature is presented, including univariate and multivariate GARCH, 
univariate FIGARCH, and BEKK models. In Section 3, the proposed model is introduced, and 
Section 4 includes an estimation of the parameters of the proposed multivariate FIGARCH 
model. Implementation of the proposed FIGARCH in the Iranian stock market is presented in 
Section 5, and a summary of the paper’s key findings and its conclusion are provided in 
Section 6. 
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2 REVIEW OF BASE MODELS  
Generally, a time series analysis of economic data is based on observations, and is obtained 
from procedures such as the behaviour of short- and long-term interest rates, the inflation 
rate, stock prices, etc. Typically, a ‘time series’ is defined as a random process in which 
stochastic variables (one-dimensional or multi-dimensional) are determined on some state 
spaceϕ . One-dimensional variables usually lead to univariate econometric models, and 
multi-dimensional variables often result in multi-dimensional econometric models. 
Moreover, since these random variables are indicated by time, and since the observations 
are recorded at regular intervals, time indices can only take integer values [24,25]. This 
process is indicated as follows: 
 

(1) ) ,( TtRR t ∈=  
 
where T set index denotes the positive integers set or natural numbers set. In this paper, 
an auto-regressive process is considered for the returns of the stock index in which the past 
value of random variables signifies their behaviour: 
 

(2) tmtmtttt RRRRR εθθθθθ ++++++= −−−− ...3322110  

 
In what follows, an overview is provided on Auto Regressive Moving Average(ARMA), 
univariate and multivariate GARCH, and fractionally integrated GARCH (FIGARCH) models. 
 

2.1 Univariate and multivariate GARCH models 

2.1.1 Univariate form 
An important tool for estimating model parameters is the technique of maximum likelihood 
evaluation. Assuming normal distribution for tR  and based on past observations, the 
maximum likelihood technique can be applied in the GARCH (p,q) model, which is indicated 
in the following problem [25]: 
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In the above equations, th is a conditional variance where )( 11 −− = ttt Iεε  shows the vector 

of past values. Modelling financial time series ( tR ) is important, as empirical evidence does 
not show any characteristic of time dependence for level process ( tR ). It reveals instead a 
particular characteristic of time dependence for the volatility process. Modelling the 
volatility of the series might occasionally be more important for risk quantifying, which 
involves a specific trading strategy. This paper therefore does not consider the conditional 

variance of the noise, i.e. )( 1
2

−= tt IE ε  as time dependent, but assumes time dependence 

through an autoregressive equation for the squared error terms, as shown below: 
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studying time series is the stationarity of the properties of the time series, which helps its 
predictability. A very important part of modelling is to impose the stationarity constraint. 
With enough long-term averages, one can estimate mean, variance, and autocorrelations, if 
( tR ) is stationary. Covariance (or second-order) stationarity is a stochastic process with a 
finite mean and variance, i.e., if, for all t, t − s, 
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In the above equations, µ , 2
Rσ , and sγ  are constants. Simply, a time series is covariance 

stationarity if its mean and all auto-covariances are not time varying. Finally, parameters

0α ,α , and β  are all considered to have positive values; i.e., α  and β  belong to the 
space of q- and p-dimensional real vectors with positive components. 
2.1.2 Multivariate form 
Several multivariate extensions of univariate GARCH, with practical applications, have been 
proposed in the literature (as can be seen in [24]). Here, a brief description is presented of 
the Vech and BEKK models as MGARCH models. 
 
When the term ‘error’ is a multivariate process, 𝜀𝑡 must be defined as a 1×n  vector. 

Hence, we have 0)( 11 == −− ttt Iεε  and ttttt HI =′= −− )( 11 εεε ; where conditional covariance 

matrix tH  is a non-trivial function of the information set and tH  and ttεε ′  are symmetric 
matrices by denoting Vech operator. In this model, Vech is the operator that includes 
stacking up the lower triangular and diagonal portions of the columns of a symmetric matrix 
into a vector. 
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In the above equation, the matrices iA  and jB  are of size 
2
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× n symmetric matrix. The discussed model is a general extension of the univariate GARCH 
(p, q) model to a multivariate framework model [25]. Since ensuring the positive 

definiteness of tH  in a Vech model is difficult without imposing rigid restrictions, Engle 

and Kroner [25] proposed the BEKK model. In the BEKK parameterisation, tH  is defined as 
a positive semi-definite matrix, which reduces the number of parameters to be estimated. 
Since the goal of this paper is to adapt the perception of long term memory and fractional 
differencing in a multivariate framework, the parameterisation and logic followed in the 
BEKK specification is the main point of attraction. 
 
Also, considering that BEKK is a popular and well-known model used in the volatility 
modelling of finance, the conditional variance-covariance matrices in the BEKK (1, 1, K) 
model can be expressed as: 
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In the above equation *A , *G , and *C  are n×n matrices, which are not necessarily 
symmetric. Comparing the BEKK model and Vech specification (13) from a numerical 
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optimisation point of view, the BEKK model with application of higher order polynomial 
representation increases the constraints’ nonlinearity. 

2.2 Univariate and multivariate FIGARCH 

2.2.1 Univariate form 
In terms of squared residuals, the GARCH (1, 1) model can be written as an ARMA (1, 1) 
model. In the same sense, the GARCH (p, q) model can be simply rewritten as  
 

(15) tt uLbaL )()( 2 +=εφ  
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assuming m = max (p, q) and iii ba +=ϕ . Obviously, Equation (15) indicates an ARMA (m, q) 

process in terms of squared residuals, 2
tε  where tu  is the Martingale Difference Sequence 

(MDS) disturbance term. GARCH models with high persistence and polynomial φ(z) =0 (unit 
root) are called the Integrated GARCH (IGARCH) model [26], for which unconditional 
variance does not exist. If we impose high persistence and long term memory in the 
conditional variance, the IGARCH models will get too complicated. In order to avoid this, 
the ARMA (m, q) process in (15) can be extended to an ARFIMA (m, d, q) process as follows: 
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where all roots of 0)( =zφ  and 0)( =zb  lie outside the unit circle. When 0=d , the ARFIMA 

model is reduced to the usual GARCH model; when 1=d , the ARFIMA model turns into an 
IGARCH model. Also, when we have 10 << d , fractionally differenced squared residuals, 
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in terms of conditional variance 2
tσ  can be rewritten as follows: 
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The above model is referred to as a FIGARCH (m, d, q) model, which was introduced by 
Baillie et al. [27]. Comparing the parameter d as interval (0, 1) with that of fractional 
difference, it can be concluded that the former is to model the short-run dynamics of 
volatility, while the latter captures the long-run characteristics of volatility. The operator 

dL)1( − can be rewritten as follows:  
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In that case, when k is large enough, we have 
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Equation (22) indicates that the effect of shocks on conditional volatility is reduced by a 
hyperbolic rate. This means that shocks have long-term memory [5, 10, 25]. 
2.2.2 Multivariate form 
To extend the univariate FIGARCH model to a multivariate framework – in other words, to 
introduce fractionality into a multivariate GARCH model – it is better to recall the variance 
equations of the GARCH(1,1) and FIGARCH(1,d,1), and the characteristics of the 
multivariate diagonal GARCH(1,1). Using a simplified and more convenient notation, they 
can be expressed as: 
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Considering tH  and t
ttεε  as symmetric matrices indicates that ijij  ,αω  and ijβ  should be 

symmetric as well. This leads to a total of 
2

)1( 3 +nn
 free parameters for the multivariate 

model. One way of developing a FIGARCH model into a multivariate framework would be to 
write the FIGARCH equations for each element of the conditional covariance equation as 
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The above equation is a direct generalisation form of the bivariate to multivariate 
framework introduced by Teyssière [28]. Unfortunately, the probability function of this 

specification is very sensitive to the number of parameters. There are
2

)1( +nn  parameters in 

the model, and it appears that for 3=n , the probability function has already become so 
flat that it causes serious difficulties in estimating the model.  
 
Therefore, a more frugal specification of the long term memory component was proposed. 
Development of the FIGARCH model to the multivariate framework is analogous to 

development of the GARCH, but the fractionality operator dL)1( −  is kept a scalar. Thus in 

Equation (26), only )1( , , Lββω −  and )1( Lφ−  are generalised to a matrix form; 
accordingly, a variance equation for the suggested model is [5,10,28]: 
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Obviously, this specification can be obtained from the previous one by applying ddij = and 

considering a common structure in the long term memory components. There are several 
reasons for upgrading this specification. First, for similar empirical financial series, it is 
theoretically reasonable to assume a common long term memory structure. Second, it has 
been found that the degrees of long term memory are close to each other in the volatility 
of similar empirical financial series. For example, using semi-parametric estimation 
techniques, Teyssière [28] considered a common degree of long term memory for the 
volatility of daily exchange rates of the German Mark and the British pound against the U.S. 
dollar. Similar results were obtained in a bivariate FIGARCH framework. For further details, 
the reader may refer to [29].  

3 THE PROPOSED MODEL  

To develop a multivariate fractional BEKK, consider the BEKK (1,1) model introduced in 
Equation (14). As mentioned previously, in order to extend the GARCH (1,1) to FIGARCH 
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(1,d,1), the term jtitij ,1,1 −− εεα must be replaced by jtit
d

ijij
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can be rewritten as follows: 
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As a result, the following model is obtained: 
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This multivariate developed model is derived from the BEKK model, in which the long-term 
parameter (d) is taken into account. Furthermore, in order to consider the long-term 
memory parameter, the developed model estimates this parameter through the modelling 

process. The long term memory term dL)1( −  should be converted into its Maclaurin 
expansion: 
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The complexity of the problem arises from the fact that the estimation of the parameters is 
in contrast to trivariate models (with an increased number of equations) and bivariate 
models. 

4 ESTIMATION METHOD 

Since the most common approach for estimating the GARCH models is based on the 
maximum likelihood principle (see [24] or [30]), this approach is adopted for estimating the 
proposed multivariate FIGARCH model. The maximum likelihood estimator for the 
parameterθ  of the model can be obtained by maximising the likelihood function for the 
given sample ),...,2,1;( Tt ∀ε . 
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where tH  is obtained by iterating the variance equation of the model. This relates tH  to 

jt−ε and perhaps jtH − . In other words, the structure of Equation (30) is used in the log-

likelihood function of Equation (31). 
 
To begin programming, all parameters to be estimated are defined. These parameters 

include all components of matrices *A , *G , *C , and also the fractional difference 
parameter (d). As the size of the problem increases, the number of the parameters to be 
estimated increases as well. Therefore, estimating the parameters via econometric 
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software becomes difficult. To tackle this problem, the PSO described in the following 
subsection is used.  

4.1 Particle Swarm Optimisation (PSO) 

PSO is a computational approach, initially proposed by Eberhart and Kennedy [31]. It is 
inspired by the social behaviour of birds flocking or fish schooling to find a rich source of 
food. In this approach, a swarm consisted of a number of particles flying around in an N 
dimensional search space. In the case of the considered log-likelihood maximisation, each 
particle plays the role of a solution, including the model parameters that need to be 
estimated. At first, a univariate GARCH (1,1) model is estimated for each time series. Then, 
the derived estimation results are used to define the initial values of the diagonal matrices,

*A , *G , *C , and the time series residuals of ttt 321 ,, εεε .  
 
To move from one solution to a new one, PSO uses a velocity vector that simultaneously 
determines the direction of the fly and the steps of the move. The position of each particle 
is updated through Equation (33). Following [30] and [32], the modified velocity update 
presented in Equation (34) was used, which had a better performance and convergence rate 
than the original PSO.   
 

)1()()1( ++=+ tvtXtX ijijij  (33) 

ij ij ij ij
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Figure 1 summarises the main steps of the PSO method. 
 
Procedure1 PSO () 
Begin 
1. Randomly generate a set of initial points of the size popsize; 
3. for t=1 to maxiteration do 

1. Evaluate the particles; 
2. Update personal best position of each particle (pbest); 
3. Update global best position (gbest); 
4. Velocity_Update(); 
5. Position_Update(); 

6. Update χ ; 
7. end(for) 

End. 

Figure 1: Main steps of the PSO method 

5 THE EXPERIMENTAL RESULTS 

To investigate the performance of the proposed multivariate FIGARCH model estimated by 
PSO, three stock indices – those of the automobile industry, leasing, and machinery and 
equipment – were considered. In this research, the price index of the three groups in the 
Tehran Stock Exchange was used for experimental modelling. These indices included the 
automotive and parts manufacturing industry index, the financial intermediations (leasing) 
index, and the machinery and equipment index. Also, daily data for this case study were 
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gathered in the period from 20 August 2006 to 14 May 2012. For each index, the market 
value is given in Table 1. 

Table 1: Value market per selected parameter 

Selected index Average value (Million Dollars) 
Automotive & parts manufacturing industry 1256 
Financial intermediations (leasing) 125 
Machinery & equipment  218 

 
The following cases were taken into account while choosing the three mentioned indices: 
 
A: There were at least three companies in each related group. There were also groups 
with only one or two companies in the Tehran Stock Exchange. The low number of 
companies in a group caused the index to be severely affected by the return and volatility 
changes of those companies. 
 
B: They were size-sorted. This means that these indices were selected and sorted 
according to the size of their own subsidiaries. In other words, these indices included, 
respectively, large, medium, and small companies. According to the studies referred to, the 
volatility first enters the larger stock and then influences the smaller stock.  

5.1 Statistical features of the data (return of indices) 

Before return modelling, the statistical properties of return distribution should be 
examined. For this purpose, the statistical properties of the return distribution for the 
studied indices are presented in Table 2. As observed in this Table, the daily average return 
of the automotive and parts manufacturing industry index and its standard deviation were 
0.001408 and 0.00785 respectively from 20 August 2006 to 14 May 2012. 

Table 2: Statistical features of the data (daily return of indices) 

Kurtosis Skewness Standard deviation Average Index 
36.42158 1.64587 0.00785 0.001408 Automotive & parts manufacturing industry 
21.18723 -0.084654 0.01705 0.002025 Financial intermediations (leasing) 
84.15871 1.75846 0.008427 0.000458 Machinery & equipment  

 
By comparing the standard deviation value and the average, one may realise that this 
variable did not have a high volatility during the study period. Distribution of this time 
series had a skewness of 1.645, showing a skewness to the right. Furthermore, kurtosis of 
the return distribution was 36.42, which was much higher than the kurtosis of a normal 
density function: its diagram had a fat tail and high peak. Figures 2, 3, and 4 show return 
distribution diagrams that correspond to the automotive and parts manufacturing industry, 
financial intermediations (leasing), and machinery and equipment indices, respectively. 
 

   

Figure 2: Distribution of 
return automotive & parts 

manufacturing industry 
index 

Figure 3: Distribution of 
return financial 
intermediations 
(leasing) index 

Figure 4: Distribution 
of return machinery & 

equipment index 
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5.2 The long-term memory test 

Rescaled range (R/S) statistics and the test based on the GPH estimator by Geweke and 
Porter-Hudak, were used in order to test the long term memory property in three time 
series. Under GPH test and R/S statistics, the null hypotheses indicate the absence of long 
term memory, and the opposite hypothesis shows the existence of long term memory in 
time series. So, if the test statistics do not have a significant difference from zero, the null 
hypothesis or absence of long term memory cannot be rejected. Derived results from each 
of the two mentioned tests are presented in Table 3. 

Table 3: GPH test for determining the long-term memory parameter 

Test for Long term memory: GPH Test 
Test for Long term memory: Modified R/S Test 

Significant 
Level 

Index (return) R/S 
Test 

GPH 
Test d 95% 99% 

Automotive & parts manufacturing 
industry 2.4518** 3.5491** 0.3481 * ** 

Financial intermediations (leasing) 2.1284* 3.4584** 0.4218 * ** 
Machinery & equipment 2.7684** 2.7139* 0.3179 * ** 

 
According to the results in Table (3), existence of long term memory was confirmed at a 99 
per cent confidence level for the return index of the automotive and parts manufacturing 
industry and financial intermediations (leasing). According to the test results, existence of 
long term memory was confirmed at a 95 per cent confidence level for the machinery and 
equipment index instead of a 99 per cent confidence level. Considering the positive value 
lower than 0.5 that was obtained for the long term memory parameter (d), it is obvious 
that all three of the studied time series were stationary. As can be seen in Table 3, 
according to R/S statistics, two time series of the automotive and parts manufacturing 
industry and the machinery and equipment, which has a confidence level of 99 per cent, 
and the financial intermediations (leasing), which has a confidence level of 95 per cent, 
possess long term memory.  

5.3 Implementing the multivariate nonlinear model 

The parameters of the proposed fractional BEKK (FBEKK) and BEKK models were obtained by 
implementing the PSO method. In this study, three time series – those of of the automobile 
industry, financial intermediations (leasing), and machinery and equipment, were 
considered. According to Table 4, the estimated parameter value of long term memory (d) 

is equal to 0.281. When
2
1

>d , the time series is non-stationary; when we have
2
10 << d , 

the time series are stationary and possesses long term memory. In the case of 0
2
1

<<− d , 

the time series are stationary with short memory that, in some texts, is called anti-
persistent. It should be mentioned that this term was also classified in long term memory 
scope [34]. The difference in the estimated values of d for various models also indicates 
that the models' various explanations of different shocks affect the persistency rate in the 
process of mean logarithmic time series [35]. In the FBEKK model, iiα shows ARCH effect 

and ijα represents the volatility transmission of variable i in the previous period to variable 

j in the current period.  
 
This volatility transmission is measured by square residuals in return estimation models. iiβ  

shows the GARCH effect and the stationarity of volatility in each of the series. Also, ijβ  

represents the variances’ volatility transmission of the variable i in the previous period to 
variable j in the current period. It should be mentioned that both ijα and ijβ may represent 

volatility transmission between the indices. Table 4 includes the estimation results of the 
BEKK and FBEKK models. 
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Table 4: Comparison of estimated parameters of BEKK and FBEKK models 

Status of estimated 
parameters 

FBEKK 
BEKK 

(Without consideration of long term 
memory effect) 

 

Value Pr(>|t|) Value Pr(>|t|) Coef.. 
 0.281 0.0000 - - d 

Significant in BEKK 
model 0.142794 0.1085 0.88790 0.0000 11α  

Significant in FBEKK 
model 0.047349 0.0000 0.019941 7.257e-001 12α  

Insignificant in both 
models 0.053692 0.7320 -0.05843 6.586e-001 13α  

Significant in both 
models 0.788325 0.0000 0.038746 0.0000 21α  

Significant in both 
models 0.384752 0.0000 0.723048 0.0000 22α  

Significant in both 
models 0.473762 0.0000 0.074937 0.0000 23α  

Significant in FBEKK 
model 

-
0.083579 0.0008 0.031846 6.453e-001 31α  

Significant in FBEKK 
model 0.086361 0.0000 0.04659 3.564e-001 32α  

Significant in both 
models 0.457286 0.0000 0.64539 0.0000 33α  

Significant in BEKK 
model 0.781333 0.3475 0.519027 0.0000 11β  
Insignificant in both 
models 

-
0.058389 0.7859 -0.04637 4.578e-001 12β  

Insignificant in both 
models 0.184730 0.3572 0.03789 6.374e-001 13β  

Insignificant in both 
models 0.047383 0.1638 0.00184 4.657e-001 21β  
Significant in both 
models 0.602647 0.0000 0.845931 0.0000 22β  
Significant in both 
models 0.463829 0.0000 -0.27483 3.573e-002 23β  
Insignificant in both 
models 0.017493 0.06374 0.47382 6.366e-001 31β  

Significant in FBEKK 
model 

-
0.053286 0.0000 -0.54638 3.528e-001 32β  

Significant in both 
models 0.68457 0.0000 0.75937 0.0000 33β  

 
The FBEKK model converged after 86 iterations, and the log-likelihood estimator maximised 
by the  Berndt–Hall–Hall–Hausman method (BHHH) was equal to 10643. Also, the BEKK model 
converged after 51 iterations, and the log-likelihood estimator was equal to 9054. 
According to Table 4, iiα and iiβ , which were estimated by the BEKK model, indicate that 
the amount of shocks transmission and stationarity in conditional volatility for the three 
surveyed indices was also significant.  
 
In the FBEKK model, the amount of shocks transmission and stationarity in conditional 
volatility was significant only for the financial intermediations (leasing) and machinery and 
equipment indices. Furthermore, the estimation results of the BEKK model revealed that 
the volatility transmission only existed from the financial intermediations (leasing) index to 
the automobile industry index ( 0.03874621 =α ). However, in the FBEKK model, there were 
volatility transmissions from the financial intermediations (leasing) index to the automobile 
industry index ( 0.78832521 =α ), and also from the automobile industry index to the 

financial intermediations (leasing) index ( 0.04734912 =α ).  
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Also, 32α  and 32β , which indicated volatility transmission from the machinery and 
equipment index to the financial intermediations (leasing) index, were not significant in the 
BEKK model.  
 
However, in the FBEKK model, these parameters were significant ( 0.08636132 =α ,

-0.05328632 =β ). Coefficients 23α and 23β  were significant in the BEKK and FBEKK models, 
meaning that in both models there was transmission volatility from the financial 
intermediations (leasing) to the machinery and equipment indices. It should be mentioned 
that there was no volatility transmission from the automobile industry to the machinery and 
equipment indices.  
 
The BEKK model showed that volatility was significant in each index, but in the modelling 
of the volatility transmission, only the coefficients 21α , 23α , and 23β  were significant. 
These results, which were derived from the BEKK model, were in the same direction as 
those derived from the FBEKK model. Furthermore, since the FBEKK model included the 
long term memory parameter (d) in its formulation and estimated it, this model showed 
that 12α , 31α , 32α , and 32β  were significant. 
 
Moreover, transmission (lead–lag effect) was completely observed in the daily return. Lead-
lag effect is observable in many of the world's financial markets. A part of this effect, the 
specificity which is observed in daily efficiencies, could be due to the market's micro-
structure (such as non-simultaneous transactions and information flow). This is because 
larger stocks, due to their high volume of trades, usually represent the impact of recent 
news earlier. Another explanation of such phenomena is the more rapid response of large 
stocks to recent news that that of small stocks. This idea was introduced by [36].           

6 CONCLUSION  

Although GARCH approaches are theoretically preferred for estimating the variance and 
covariance matrix, the FIGARCH model needs many parameters. The necessity to estimate 
these parameters in the FIGARCH model restricts the ability to manage this approach in 
large-scale problems. The FIGARCH model also compensates for estimating convergence 
issues, which raise the problem of obtaining reliable estimations of all parameters. One 
result of such incidents is that multivariate FIGARCH systems are unrestricted and the 
results are only true in cases which comparatively small number of time series are 
provided. On the other hand, by establishing limits on parameters, their number can be 
reduced; however, these limitations themselves may cause new problems. 
 
The results of the GPH test and R/S statistical test confirmed the existence of long term 
memory in three studied time series. According to all three financial time series with the 
long term memory feature, modelling should be done with a nonlinear method. 
 
Volatility transmission was observed from the automotive and parts manufacturing industry 
index to the financial intermediations (leasing) index, and vice versa. However, 
transmission from the automotive and parts manufacturing industry index to the leasing 
index was more considerable, confirming the lead-lag effect in these two time series. 
Studying financial information related to those affiliated automotive and parts 
manufacturing companies also confirmed the obtained results, since the sale of only two 
subsidiaries of the automotive industry index (Iran Khodro Industrial Group and Saipa 
Group) was about 23 billion US$. On the other hand, more than 40 percent of the 
automotive products were sold by leasing, which further confirmed the transmission of 
volatility from the automotive and parts manufacturing industry index to the leasing index.   
 
Volatility transmission was also observed from the machinery and equipment index to the 
leasing index, and vice versa. It should however be noted that transmission from the 
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machinery and equipment index to the leasing index was more considerable, confirming the 
lead-lag effect in these two time series. A transmission effect from the automotive and 
parts manufacturing industry index to the machinery and equipment index were observed as 
well. Considering the extensive and high volume of transactions in the automotive and parts 
manufacturing industry, its volatility transmission to the machinery and equipment index 
seemed to be natural. On the other hand, a two-way (bilateral) transmission between 
leasing and machinery originated in leasing operations and caused an indirect increase in 
demand that led investments toward this sector. Volatility transmission from the machinery 
and equipment sector and its categories – i.e., piece-makers and parts-manufacturers of 
raw materials – to leasing was also confirmed, based on the information flow theory in 
market and asynchronous transactions. 
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