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ABSTRACT 

This study constructs a practical fuzzy three-dimensional axial assignment model, and 
proposes two efficient algorithms to solve the model. In our case, the model is applied to 
team performance management in a company to promote the performance of all members 
in a team. Two algorithms, namely the index-based branch and bound (B&B) algorithm and 
the f-g trade-off algorithm, which is a hybrid of the trade-off and B&B concepts, are 
proposed. A numerical example is presented to illustrate these two algorithms. The 
computational results show that the proposed algorithms are sufficiently efficient and 
accurate. Two special cases are also discussed. 

OPSOMMING 

‘n Praktiese, wasige, driedimensionele aksialetoekenningsmodel word voorgehou en twee 
doeltreffende algoritmes om die model op te los word voorgestel. Die model word toegepas 
op die spanprestasiebestuur in ‘n maatskappy met die doel om die spanlede se vertoning te 
verbeter. Twee algoritmes, naamlik die indeksgebaseerde vertak-en-begrens algoritme en 
die f-g kompromie algoritme, word voorgestel. ‘n Numeriese voorbeeld word ter illustrasie 
van die twee algoritmes voorgehou. Die resultate toon dat die voorgestelde algoritmes 
doeltreffend en akkuraat is. Twee spesiale gevalle word ook bespreek. 

                                                      
* Corresponding author 
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1 INTRODUCTION 

The three-dimensional (3D) axial assignment problem is an extension of the linear 
assignment problem – i.e., the 2D assignment problem. The 3D axial assignment problem is 
actually NP-hard [1]. It is usually stated as follows: assign n workers to n jobs on n machines 
to minimise the total cost [2]. There should be one-to-one correspondences between 
workers and machines, workers and jobs, and machines and jobs. These correspondences 
make up a cubic assignment. The model can be formulated as the following 0-1 integer 
programming problem [1-5]: 
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where c

ijk
 is the cost of assigning worker i to job j on machine k, and all c

ijk
s construct a 

cubic matrix. If x
ijk

 = 1, then worker i is assigned to do job j  on machine k. If x
ijk

 = 0, then 
worker i is either not assigned to job j or not assigned to machine k. In a deterministic 
environment, the 3D axial assignment problem is important in operations research. 
Applications of the 3D axial assignment problem arise in many areas, such as scheduling 
capital investments, addressing a rolling mill, military troop assignment, and satellite 
coverage optimisation [1,6]. Algorithms for the 3D axial assignment have been developed. 
However, the coefficient matrix of Equation 1.1 is not totally unimodular to ensure an 
integer solution [7]; thus it cannot be treated as efficiently at continuous problem-solving 
for its optimum as in a 2D assignment problem. Hence, algorithms to search for the exact 
solution of a 3D axial are mostly implicit enumeration methods [8], such as the branch and 
bound (B&B) method [3,9]. Some papers have developed good bounds for the B&B method, 
especially the lower bound for minimising the problem [6,8,10]. Hung and Lim [11] 
proposed a local search genetic algorithm-based method to solve the 3D axial assignment 
problem, but they could not guarantee that an optimal solution could be obtained. 
 
Although all c

ijk
s are deterministic numbers in Equation 1.1, the cost of many real-world 

applications may not be deterministic numbers. Many researchers have begun to study the 
2D assignment problem in a fuzzy environment. These situations include various fuzzy 
assignment problem (FAP) models and algorithms [12-15], sensitivity analysis of FAP [16], 
quadratic FAPs [17], multi-criteria FAPs [18-20], traffic FAPs [21], two-objective FAPs 
[20,22], group decision-making [23], and multi-job FAPs [24]. Solution procedures of these 
2D FAPs all take advantage of the totally unimodular property for efficiency. However, no 
paper discusses the modelling and methods for a fuzzy 3D axial assignment problem. 
Therefore, this paper presents a fuzzy 3D axial assignment model, and proposes two B&B-
based algorithms to solve the model. The next section describes the related fuzzy theory 
and construction of the fuzzy 3D axial assignment model. Section 3 presents two algorithms 
for solving this model and a numerical example. Section 4 describes computational results, 
and Section 5 offers a conclusion to the paper. 
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2 MODEL CONSTRUCTION 

2.1 Basic concept of related fuzzy theory 

Fuzzy theory is useful for accessing many real situations of human life. In this section, we 
first recall several related definitions of fuzzy theory, which are used in this paper. 
 
Definition 2.1.1. A crisp set A is a proper subset of a universe of discourse X such that
⊆A X ; the membership function of A can be defined as [25]: 
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1, if 
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0, if A

x A
u x

x A
  where ∈x X . 

 

Definition 2.1.2. A fuzzy set A  is a subset of a universe of discourse X, which is 

characterised by a membership function ∈ ( ), 
A

u x x X , which maps x to a value within the 

range of [0,1] [26]. 
 

According to Definitions 2.1.1. and 2.1.2., x completely belongs to A  if the value of the 

membership function = ( ) 1
A

u x ; x does not belong to A  if = ( ) 0
A

u x . 

 

Definition 2.1.3. The λ-cut of A  of the universe of discourse X is defined as 

{ ( ) }
A

A x X u xλ λ= ∈ ≥
  [26]. 

Therefore, the λ-cut is a subset of the universe of discourse X, where ( )
A

u x λ≥ . 

 

Definition 2.1.4. The largest value of λ of the λ-cut of A , which is non-empty, is called 

the height of A , denoted as h( A ) [26]. 
 

Definition 2.1.5. A fuzzy set A  of the universe of discourse X is normal if h( A )=1; 

otherwise, a fuzzy set A  of the universe of discourse X is subnormal [15,26,27]. 
 

Definition 2.1.6. A fuzzy set A  of a universe of discourse X is convex if and only if 

( (1 ) ) min( ( ), ( )), [ , ],and [0,1]
A A A

u a b u a u b x a bµ µ µ+ − ≥ ∈ ∈    [26]. 

 

Definition 2.1.7. A fuzzy set A  of a universe of discourse X is a fuzzy number or fuzzy 

interval if A  is both normal and convex [26]. 
 

Definition 2.1.8. A fuzzy set A  of a universe of discourse X is a subnormal fuzzy number or 

subnormal fuzzy interval if A  is both subnormal and convex [27]. 
 
Definition 2.1.9. A subnormal fuzzy interval [15,27] is a subnormal fuzzy subset of the 
universe of discourse X, which is both subnormal and convex. 
 
Accordingly, a fuzzy number and fuzzy interval are a special case of subnormal fuzzy 
number and subnormal fuzzy interval, such that the maximal height of the membership 

function )(xu
A
~  is 1, respectively. 
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2.2 Model formulation 

Suppose a project team consists of n workers and a manager. The workers and the manager 
are responsible for performing n jobs and for minimising the total costs, respectively. Each 
worker is assigned to one and only one job to perform it. In many cases, the job quality 
achieved depends on the assigned worker’s skill, the machine used, and the input-cost of 
the job. Generally, a higher job quality indicates greater job cost. The job quality achieved 
is defined as the performance of the worker. Hence, workers desire high-input job costs 
and a suitable machine to perform the assigned job well. Thus the cost of worker i 
performing job j on machine k, which is denoted as ijkc~ , is positively related to the 

performance of worker i. 
 
Let q

ijk
 (0 <q

ijk
≤1) be the highest possible quality of job j performed by worker i on machine 

k. Generally, q
ijk

 should be between 0.5 and 1.0. The membership function of ijkc~  is then 

defined as the linear monotone increasing function in Equation 2.1 and Figure 1. In the 
function, α

ijk
 is the minimal cost for worker i to perform job j on machine k, and β

ijk
 is the 

minimal cost required to reach the maximal job quality q
ijk

. When the job input cost is 
between α

ijk
 and β

ijk
, the job cost is linearly and positively related to the job quality 

achieved. However, any expense exceeding β
ijk

 is wasteful because quality can no longer be 

enhanced. Without loss of generality, it is assumed that 0 <α
ijk

 <β
ijk

. Condition x
ijk

 = 1 is 
added to Equation 2.1 because there is no real expense if x

ijk
 = 0 in any feasible solution. 
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Figure 1: Membership function of ijkc~  

 
Notation <α

ijk, βijk
 > is used to denote ijkc~ . The cubic matrix [ ijkc~ ] is shown as 

[ ijkc~ ] = [<α
ijk

, β
ijk

 >]. 

Additionally, all α
ijk

s form cubic matrix [α
ijk

], all β
ijk

s form cubic matrix [β
ijk

], and all q
ijk

s 
form cubic matrix [q

ijk
]. Define the cubic matrix [γ
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] as 
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]=[
ijk

ijkijk

q

αβ −
]    for i, j, k=1, 2, …, n.  (2.2) 

where γ
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 is the slope of the membership function. 
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The manager’s duty is to keep the total cost ( Tc~ ) as low as possible. Numbers a and b are 
assumed to be constants chosen subjectively by the company. When the total cost is lower 
than a, the manager’s performance is 1, when the total cost is greater than b, the 
manager’s performance is 0, and when the total cost is between a and b, the total cost is 
linearly and negatively related to the manager’s performance. Thus, the membership 
function of total cost Tc~  is defined as the linear monotonically decreasing function in 

Equation 2.3), which is shown in Figure 2. Notation <a, b> denotes the fuzzy interval Tc~ . It 
is suggested that a should be a number less than or equal to the minimum of Equation 1.1, 
with α

ijk
 as its parameter, and b should be a number larger than or equal to the maximum 

of Equation 1.1, with β
ijk

 as its parameter. 
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Because the performance of worker i (π

i
) is the job quality achieved, then 
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Usually, the company takes the lowest performance of the team members, composed of all 
workers and the manager, as the team performance for promoting overall performance. 
Thus the performance of every team member must be equally emphasised. To maximise the 
team performance is then to maximise the minimal performance of all team members. 
Therefore, the study uses Bellman-Zadeh’s criterion [28], which maximises the minimum of 
all membership functions corresponding to that solution. The objective function is then 
defined as 
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Figure 2: Membership function of  
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where x
ijk

 is an element of feasible solution x of Equation 1.1. The fuzzy 3D axial 
assignment problem model is represented as follows: 
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Using the membership functions from Equation 2.1 and Equation 2.3, Equation 2.7 can be 
represented as the following equivalent model: 
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λ  is the corresponding total cost λ
Tc . In 

Equation 2.8, the x
ijk

’s, λ
ijkc ’s, and λ are all decision variables. Hence, Equation 2.8 is a 

mixed nonlinear programming model. 
 
In our case, Equation 2.8 is applied to team performance in human resource management 
that equally emphasises the performance of the manager and workers. However, Equation 
2.8 can also be used for situations that equally emphasise the quality and quantity, time 
and cost, humanity and technology, and so on. 

2.3 Model transformation 

Suppose ω = {( i, j, k) | x
ijk

 = 1} is the corresponding cubic assignment of the feasible 
solution x of (1.1) and the discussion is confined based on ω. Then, Equation 2.8 can be 
simplified as 
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Theorem 2.1. Let λx be the optimal objective function value of (2.9). Then, 
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Rewriting Equation 2.14 as 
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completes the proof.  
 
Because λx is the maximal value of Equation 2.9 by giving the feasible solution x of Equation 
1.1, the maximum of λx must be the optimal solution of Equation 2.8. Equation 2.8 is 
rewritten as 
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Obviously, Equation 2.16 is a special multi-fractional max-min 0-1 programming problem. 

3 SOLUTION ALGORITHM 

This section presents two efficient algorithms for solving the exact solution of Equation 
2.16. The constraint of Equation 2.16 is the same as that of Equation 1.1 – i.e., the lack of a 
totally unimodular property. The methods in the literature for solving FAP are difficult to 
implement for Equation 2.16. Hence, implicit enumeration methods are employed. One of 
the proposed algorithms is modified from the index-based B&B algorithm [8-9], which 
quickly solves Equation 1.1 [9]. The other is a hybrid of the efficient trade-off concept [29] 
and index-based B&B algorithm. A numerical example is shown to clarify these algorithms. 

3.1 The index-based B&B algorithm 

This algorithm performs implicit enumeration of all feasible solutions for solving Equation 
2.16. Figure 3 shows part of the tree graph of a 4×4×4 problem used to illustrate the 
algorithm. The proposed algorithm proceeds from tree nodes from top to bottom and from 
left to right until all nodes are checked or eliminated by a fathoming test. For each node (i, 
j, k) residing at level i, a path leads to it from the root node. The variables in the path are 
fixed at 1, and the other variables at level t (0≤ t≤ i) equal 0. Thus, each node is associated 
with a set of feasible solutions. For example, node (2, 3, 2) at level 2 in Figure 3 
corresponds to the feasible solutions x

124
 = x

232
= 1; other variables at level 1 and 2 are 0, 

while other variables are undetermined. 
 
Consider the following notations: 

iα = min (α
i11

, α
i12

, …, α
inn

)           for i =1, 2, …, n  (3.1) 

iγ = min (γ
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, …, γ
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)            for i =1, 2, …, n     (3.2) 

SLA(i) =∑
=

n

i

α = iα + 1+iα +…+ nα       for i =1, 2, …, n       (3.3) 

SLG(i) =∑
=

n

i

γ = iγ + 1+iγ +…+ nγ        for i =1, 2, …, n        (3.4) 

SLA(n+1) = SLG(n+1) =0                      (3.5) 
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Figure 3: Part of the tree graph of a 4×4×4 problem 

Assume that the algorithm has currently reached node (p, j
p
, k

p
) (p>0) and that nodes (1, 

j
1
, k

1
), (2, j

2
, k

2
),…,(p, j

p
, k

p
) compose the path — Path (p) — from the root node to the 

current node. In addition, let 
 

TA(0)=SLA(1)                                          (3.6) 
TG(0)=SLG(1)                                                 (3.7) 
TA(p)=TA(p −1) − SLA(p)+ 

ppkpjα + SLA(p +1)       (3.8) 

TG(p) =TG(p −1)− SLG(p)+ 
ppkpjγ + SLG(p +1)      (3.9) 

Theorem 3.1. Function UPV (p) =
TG(p)ab

TA(p)b
+−

−  provides an upper bound of the optimal 

objective value of Equation 2.16 corresponding to Path (p). 
 
Proof. Using Equations 3.3, 3.5, 3.6, and 3.8 yields 
 

TA(p)=
111 kjα +

222 kjα +...+
1-p1-p1 kjp−α + 1+pα + 2+pα + ...+ nα                    (3.10) 

Suppose nodes (p+1, j
p+1

, k
p+1

), (p+2, j
p+2

, k
p+2

),..., and (n, j
n
, k

n
) compose the 

optimal solution of Equation 2.16 corresponding to Path (p) and call it Path (n). Then, 
TA(n)= 

111 kjα +
222 kjα +...+

1-p1-p1 kjp−α +
111 +++ pkpjpα +

222 +++ pkpjpα + ...+ 
nknnjα   (3.11) 

 

Using Equation 3.1 produces 
111 +++ pkpjpα ≥ 1+pα , 

222 +++ pkpjpα ≥ 2+pα , ..., and 
nknnjα ≥ nα . Thus, 

 
TA(n) ≥ TA(p).                                                         (3.12) 
 

Similarly, it can be verified that 
   TG(n) ≥ TG(p).                                                         (3.13) 
 

Using Equation 3.12 and Equation 3.13 produces 

TG(p)ab
TA(p)b
+−

− ≥
TG(n)ab

TA(n)b
+−

−  

and completes the proof.  
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The following theorem is derived from Equation 2.16. 
 
Theorem 3.2 If (i, j, k) is a node of Path (p), then q

ijk
 gives an upper bound of the optimal 

objective function value of Equation 2.16 corresponding to Path (p). 
 
Let z* represent the largest known objective function value, which is associated with a 
feasible solution. Using Theorems 3.1 and 3.2, the solution procedure of the index-based 
B&B algorithm is described as follows: 

Step 1: Find iα  and iγ  for i =1, 2, …, n. 
Step 2: Compute SLA(i) and SLG(i) for i =1, 2, …, n+1. Let TA(0)= SLA(1) and TG(0)= SLG(1). 
Step 3: Use x

111
= x

222
= …= x

nnn
= 1 as the initial feasible solution and its objective function 

value as z*. 
Step 4: Let p= 1 and proceed downward to node (1, 1, 1) from the root node. 
Step 5: Suppose node (p, j

p
, k

p
) is reached. 

Let TA(p) = TA(p −1) − SLA(p)+ 
ppkpjα + SLA(p +1) and  

TG(p) = TG(p −1) − SLG(p)+ 
ppkpjγ + SLG(p +1). 

(1) If 
ppkpjq ≤ z* or UPV (p)≤ z*, then node (p, j

p
, k

p
) is fathomed and moves toward 

the immediate right node of (p, j
p
, k

p
) at level p. If node (p, j

p
, k

p
) is the last 

node of level p, then move upward to the first node right of (p−1, j
p—1

, k
p—1

) at 

level p−1 and update p ← p−1. 
(2) If 

ppkpjq > z*, UPV (p)> z*, and p≠ n, then move downward from (p, j
p
, k

p
) to the 

first node at level p+1 and update p ← p+1. 
(3) If 

ppkpjq > z*, UPV (p)> z*, and p= n, then replace z* with UPV (p). Move upward 

to the first node right of (p−1, j
p—1

, k
p—1

) at level p−1 and update p ← p−1. 
Step 6: If p= 0, then stop; otherwise, proceed to Step 5. 
 
The main concept of the index-based B&B algorithm is as follows. Whenever the algorithm 
reaches a new node (p, j

p
, k

p
), the two upper bounds (UPV (p) and 

ppkpjq ) are calculated 

for that path before proceeding forward to any branches leaving from node (p, j
p
, k

p
). If 

both UPV (p) and 
ppkpjq  are larger than z*, then a better feasible solution may be found by 

proceeding from node (p, j
p
, k

p
). However, if UPV (p) or 

ppkpjq  are less than or equal to z*, 

no better feasible solution can be obtained by proceeding forward from node (p, j
p
, k

p
). 

That is, (p, j
p
, k

p
) is fathomed. The algorithm locates the exact optimal solution. 

3.2 The f-g trade-off algorithm 

Because the performances of team members are equally emphasised to maximise the team 
performance, the f-g trade-off algorithm is proposed. The f-g trade-off algorithm balances 
the maximum of the manager's performance and minimum of the workers' performances to 
maximise team performance. In the algorithm, some procedures are repeated to solve 
updated problems with different parameters. In each solution, the maximum of the 
manager's performance decreases (or remains unchanged), and the minimum of the 
workers' performances simultaneously increases until the maximal team performance is 
reached.  
To obtain the maximal manager's performance, Equation 3.14 is solved. 

Max f(t) =

∑∑∑

∑∑∑

= = =

= = =

+−

−

n

i

n

j

n

k

ijkijk

n

i

n

j

n

k

ijk
t

ijk

xab

xb

1 1 1

1 1 1

γ

α )(

 

s.t. 

  

 the constraints of (1.1)                                               (3.14) 
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where t is an index of iteration and t = 0 indicates the original problem parameter. 
Equation 3.14 is a variant of the 3D axial fractional assignment problem. To solve Equation 
3.14 efficiently when t = 0, the concept of the fraction cost penalty method (FCPM) [30] is 

used to obtain a good initial feasible assignment. Cubic matrix [ψ
ijk

] = 
















+
−

−

ijkn
ab

ijkn
b

γ

α
 is 

defined as the cost coefficients of Equation 1.1, but its objective function is changed to the 
maximal case. An approach of the cubic FCPM is applied to [ψ

ijk
]. In [ψ

ijk
], the penalty for 

each row, column, and height was calculated, defined as the difference between the two 
largest elements of the row, column, and height. In the row, column, or height with the 
largest penalty, the largest ψ

ijk
 must be selected and its row, column, and height crossed 

out. The procedure is repeated to obtain a feasible assignment and its corresponding 
objective function value. The obtained objective function value and assignment are z* and 
ω*, respectively. Other than in the cubic FCPM, z* and ω* represent the largest known 
objective function value and associated assignment, respectively. 
 
To optimise Equation 3.14, the revised branch and bound (R-B&B) algorithm is defined. It is 
used repeatedly in the f-g trade-off algorithm. The R-B&B algorithm is reduced from the 
index-based B&B algorithm. 
 
The R-B&B algorithm: 
All steps of the R-B&B algorithm are the same as those in the index-based B&B algorithm, 
except that the condition 

ppkpjq ≤ z* is deleted from (1) of Step 5 and 
ppkpjq > z* is deleted 

from (2) and (3) of Step 5.  
 
Whenever the R-B&B algorithm is performed, it produces the optimal objective function 
value f(t) of Equation 3.14 and its associated assignment ω(t). Equation 3.15 is then used to 
compute g(t): 
 

g(t)= 
)(),,(

Min
tkji ω∈

( q
ijk

) (3.15) 

where g(t) is the  minimum of all workers’ performance at iteration t. The largest known 
performance of the team z* can then be updated by using f(t) and g(t). 
 
To promote z*, the cubic matrix [α

ijk
] in (3.14) is updated; the updated rule of [α

ijk
] is 

(1) if q
ijk

 > z*, α
ijk

 remains unchanged. 

(2) If q
ijk

 ≤ z*, α
ijk

 is replaced with M (M→∞) – i.e., fathom out that α
ijk

 is useless. 
 
The rule means that f(t) decreases (or remains unchanged) and g(t) increases at each 
iteration for z* to reach the maximum. Therefore, the flowchart in Figure 4 is used to 
depict the proposed f-g tradeoff algorithm. 

3.3 Numerical example  

The following numerical 3×3×3 fuzzy 3D axial assignment problem illustrates the two 
proposed algorithms. Table 1 shows the job costs and quality. 
 
According to Equation 2.16, the numerical example can be formulated as 
 

Max Min 







−−−−

+++
++−

333x0.69)(11  ...,  ,0.64)x(11  ,
26.09x...45.31x303

)104x...(101x612
111

333111

333111  

s.t.    ∑∑
= =

3

1

3

1

 
j k

ijkx 1=    for   i =1, 2, 3 
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∑∑
= =

3

1

3

1

 
i k

ijkx 1=    for   j=1, 2, 3 (3.16) 

∑∑
= =

3

1

3

1

 
i j

ijkx 1=    for   k=1, 2, 3 

x
ijk

 ∈{0, 1}    for i, j, k=1, 2, 3 
 

 

Figure 4: Flow chart of the f-g trade-off algorithm 

Using Equation 2.2, α
ijk

 and β
ijk

 are transformed into γ
ijk, as shown in Table 2, a = 309, and 

b = 612. The algorithms are then used to solve Equation 3.16. 
 
(I) The index-based B&B algorithm 
Iteration 0: 

Step 1: Find 1α = 101, 2α = 104, 3α = 104, 1γ = 28.17, 2γ =24, and 3γ =26.03. 
Step 2: Determine SLA(1) = 309, SLA(2) = 208, SLA(3) = 104, SLA(4) = 0, SLG(1) = 78.2, 

SLG(2) = 50.03, SLG(3) = 26.03, SLG(4) = 0, TA(0) = 309, and TG(0)= 78.2. 
Step 3: Use x

111
= x

222
= x

333
= 1 as the initial feasible solution and obtain z*= 0.60. 

Obtain ω(t), f(t), and g(t). 

Let z*=min(f(t),g(t)) and ω*=ω(t). 

No 

Yes 

No 

Let t=0. Use cubic FCPM to initialise (3.14) 

with [ ] and obtain z* and ω*. 

Use the R-B&B algorithm 

to solve (3.14) with [ ]. 

Start 

Let t=t+1 and 

update [ ]. 

Yes No 

Yes 
Is z*≥ f(t)? 

Stop 

Print ω* 

Any optimal 
solution? 

Is z*< f(t)? 
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Step 4: Let p = 1 and proceed downward to node (1, 1, 1) from the root node. 
Step 5: Identify TA(1) = 309 and TG(1) = 95.34. Because q

111
= 0.64 > 0.6 = z* and UPV(1) = 

0.76 > 0.6 = z*, proceed downward to node (2, 2, 2) and update p = 2. 
Step 6: Let p = 2 and proceed to Step 5. 
 
Iteration 1: 
Step 5: Because q

222
= 0.6 ≤ z*, node (2, 2, 2) is fathomed. Proceed toward node (2, 2, 3). 

Step 6: Let p = 2 and proceed to Step 5. 

Table 1: The cubic matrix of job costs and quality 

(101,130) 
0.64 

  (163,188) 
0.77 

  (126,153) 
0.59 

  

 (173,193) 
0.71 

  (152,173) 
0.61 

  (127,154) 
0.59 

 

  (168,196) 
0.64 

  (148,169) 
0.64 

  (169,194) 
0.69 

(186,212) 
0.65 

  (163,189) 
0.62 

  (177,201) 
0.59 

  

 (105,129) 
0.61 

  (137,157) 
0.60 

  (133,162) 
0.57 

 

  (178,196) 
0.75 

  (104,133) 
0.69 

  (171,190) 
0.68 

(142,164) 
0.65 

  (185,204) 
0.73 

  (169,190) 
0.75 

  

 (156,185) 
0.68 

  (147,174) 
0.61 

  (153,174) 
0.69 

 

  (126,147) 
0.57 

  (132,151) 
0.63 

  (104,122) 
0.69 

 
Table 2: The cubic matrix of γ

ijk
 

 45.31   32.47   45.76   

  28.17   34.43   36.23  

   43.75   32.81   45.76 

 40   41.94   40.68   

[γ
ijk

]=  39.34   33.33   50.88  

   24   42.03   27.94 

 33.85   26.03   28   

  42.65   44.26   30.43  

   36.84   30.16   26.09 

 
 
 
 

Legend: 
(α

ijk
, β

ijk
) 

qijk 
 
 
 

i 

j 

k 
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Iteration 2: 
Step 5: Determine q

223
 = 0.69 > 0.6 = z*, TA(2) = 309, and TG(2) = 113.37. Because UPV(2)= 

0.728 > 0.6= z*, proceed downward to node (3, 3, 2) and update p = 3. 
Step 6: Let p = 3 and proceed to Step 5. 
 
Iteration 3: 
Step 5: Determine q

332
= 0.69 > 0.6= z*, TA(3) = 358, and TG(3) = 118.04. Because UPV(3)= 

0.604> 0.6= z* and p= 3= n, replace z*= 0.604 and move upward to node (2, 3, 2) and 
to the first node right of (2, 2, 3) of level 2. Update p = 2. 

Step 6: Let p = 2 and proceed to Step 5. 
The remaining procedures repeat these iterations and obtain the optimal solution x

111
= x

223
 

= x
332

= 1 and optimal value z*= 0.604. 

 
(II) The f-g trade-off algorithm 
When t = 0: 
Equation 3.14 produces Equation 3.17. 
 

Max f = 
333111

333111

26.09x...45.31x303
)104x...(101x612

+++
++−

 

s.t.    the constraints of Equation 3.16 (3.17) 
 
After using the cubic FCPM and R-B&B program to solve Equation 3.17, ω(0) = (x

111
, x

222
, 

x
333

), f(0)=0.662, and g(0) = 0.6. Let ω*= ω(0) and z*= Min (0.662, 0.6)= 0.6 = g(0). 
 
When t = 1: 

Update [ (0)αijk ] by replacing α
131

, α
132

, α
222

, α
231

, α
232

, and α
313

 with M and obtain [ (1)αijk ]. 

Solving Equation 3.17 again by using [ (1)αijk ] produces ω(1) = (x
111

, x
223

, x
332

), f(1)=0.604, and 

g(1)= 0.64. Because f(1) = 0.604 > 0.6= z*, update ω*= ω(1) and z*= Min (f(1), g(1))= 0.604. 
 
When t = 2: 

Update [ (1)αijk ] by replacing α
131

, α
132

, α
222

, α
231

, α
232

, and α
313

 with M and obtain [ (2)αijk ]. 

Solving Equation 3.17 again by using [ (2)αijk ] produces ω(2)= (x
111

, x
223

, x
332

), f(2)= 0.604, and 

g(2) = 0.64. Because f(2)= 0.604 = z*, the algorithm stops. The current ω*= (x
111

, x
223

, x
332

) 
and z*= 0.604 are the optimal solution and optimal objective function value, respectively. 

4 COMPUTATIONAL RESULTS AND DISCUSSION 

The computational test verifies the efficiency of the proposed algorithms. Both proposed 
algorithms were coded in Visual Basic 6.0 and compared with the LINGO 11 package by 
using the global optimal function. They were all run on an Intel Pentium III-500 CPU. 
 
Problem sizes from 3×3×3 to 10×10×10 were tested. For each problem of N×N×N size, 
uniform distribution numbers between 10 and 10+20N were randomly generated as α

ijk
s, 

and uniform distribution numbers between 6N to 10N were randomly generated as the 
difference between β

ijk
s and α

ijk
s. Uniform distribution numbers between 0.6 and 1.0 were 

generated as q
ijk

s. For each problem size, 30 problems were generated. Table 3 shows the 
average computational times (in seconds) of the two proposed algorithms and the LINGO 
package. The results show that both proposed algorithms have shorter computational times 
than the LINGO package. 
 
 



68 

Table 3: Computational results when the quality interval is [0.6, 1] 

Problem size 

The index-based  
B&B algorithm 

The f-g  
trade-off algorithm LINGO 

Average time (s) Average time (s) Average time (s) 

3×3×3 
4×4×4 
5×5×5 
6×6×6 
7×7×7 
8×8×8 
9×9×9 
10×10×10 

3.33×10−4 
3.67×10−3 
9.71×10−3 
6.91×10−2 
0.396 
2.111 
14.788 
71.816 

2×10−3 
6×10−3 
1.47×10−2 
0.154 
1.117 
7.721 
65.314 
325.255 

33.192 
42.250 
85.830 
162.452 
544.152 
T. L.a 
T. L. 
T. L. 

a T. L. denotes the time limit exceeds 1,000 CPU seconds. 
 
In general cases, the manager or any worker may be the person with the lowest 
performance and may determine the team’s performance. Here, two special cases are 
presented. In the first case, the company is assumed to support the team with sufficient 
funds, e.g., 10 times of b. The computational results of the three approaches are shown in 
Table 4. The results show that the index-based B&B algorithm becomes more efficient. The 
time taken by the LINGO package also reduces. The f-g trade-off algorithm, on the 
contrary, becomes inefficient. This is because the optimal values f(t) of Equation 3.14 
approach 1, such that the fathom speed of α

ijk
 decreases. To discuss this further 

theoretically, b→∞ moves the membership function in Figure 2 close to the horizontal line 
μ

T
(c

T
) =1 and  

1
γ

α
 limit =

+−

−

∑∑∑

∑∑∑

= = =

= = =

∞→ n

i

n

j

n

k
ijkijk

n

i

n

j

n

k
ijkijk

b

xab

xb

1 1 1

1 1 1

)(

)(
,
 

 
i.e., the manager’s performance approaches 1. The manager’s performance is greater than 
the maximal of qijk. Thus the manager never determines the team performance; team 
performance is decided by a worker. The workers also obtain sufficient expense and reach 
the highest quality (performance). Therefore, Equation 2.16 is simplified to 
 

( )n1,2,...,kj,i,for   ))xq(1(1    MinMax ijkijk =−−  

s.t. the constraints of Equation 1.1. (4.1) 
 
Equation 4.1 is a variant of the 3D axial bottleneck assignment problem. Hence, a proper 
algorithm for the 3D axial bottleneck assignment problem will improve the efficiency if 
b→∞ is known in advance. 

Table 4: Computational results using 10b 

Problem size 

The index-based  
B&B algorithm 

The f-g  
trade-off algorithm LINGO 

Average time (s) Average time (s) Average time (s) 

3×3×3 
4×4×4 
5×5×5 
6×6×6 
7×7×7 
8×8×8 
9×9×9 
10×10×10 

3.33×10−4 
1.67×10−3 
3.33×10−3 
4.01×10−3 
1.37×10−2 
2.64×10−2 
6.88×10−2 
0.104 

3.33×10−3 
1.01×10−2 
3.81×10−2 
0.299 
2.065 
15.030 
106.987 
676.851 

29.067 
43.930 
65.052 
87.776 
159.977 
402.167 
T. L.a 
T. L. 

a T. L. denotes that the time limit exceeds 1,000 CPU seconds. 
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In the second case, b is small; that is, the team is underfinanced. For example, define the 
manager’s performance as 0 when the total cost is greater than (a+b)/2. The computational 
results of the three approaches are shown in Table 5. The results show that the f-g trade-
off algorithm is the most efficient. Theoretically, when 
 

b ≤ (Z[α]*−a×min(qijk))/(1−min(qijk)), 
 
where Z[α]* is the optimal value of the crisp 3D axial assignment problem (min) using [α

ijk
] 

as the cost coefficient, the b is too small for the manager’s performance to reach the 
minimum of qijk. Team performance is then determined mainly by the manager, despite the 
max-min objective function equalising the performance of the n workers and the manager. 
Thus Equation 2.16 is simplified to Equation 3.14 with t=0. Hence, a proper specific 
algorithm for the 3D axial fractional assignment problem will improve the efficiency. 

Table 5: Computational results using (a+b)/2 

Problem size 

The index-based  
B&B algorithm 

The f-g  
trade-off algorithm LINGO 

Average time (s) Average time (s) Average Time (s) 

3×3×3 
4×4×4 
5×5×5 
6×6×6 
7×7×7 
8×8×8 
9×9×9 
10×10×10 

7.00×10−4 
4.67×10−3 
9.00×10−3 
7.01×10−2 
0.430 
2.919 
22.442 
129.076 

4.00×10−3 
4.00×10−3 
2.04×10−2 
6.28×10−2 
0.424 
1.904 
15.663 
86.651 

8.459 
24.475 
48.587 
82.735 
262.198 
891.336 
T. L.a 
T. L. 

a T. L. denotes that the time limit exceeds 1,000 CPU seconds. 

5 CONCLUSIONS 

This paper first formulates a fuzzy 3D axial assignment problem model to overcome the 
actual uncertain environment, and then focuses on developing algorithms to obtain the 
exact solutions of the proposed model efficiently. The initially-constructed fuzzy 3D axial 
assignment problem is a mixed nonlinear programming problem. For simplicity, it is 
transformed into a special multi-fractional max-min 0-1 programming problem. An index-
based B&B algorithm and the f-g trade-off algorithm are developed. Computational results 
show that the proposed methods are both more efficient than LINGO in every test. In 
addition, two special cases are discussed. One is when the company amply supports the 
team with funds, while the other is when the team is underfunded. With respect to 
computational time, the index-based B&B algorithm is better for the former case. However, 
the f-g trade-off algorithm is better for the latter case. These two special cases are further 
considered from a theoretical view. For the case with unbounded funds, the model is 
reduced to a 3D axial bottleneck assignment problem; for the case with rare funds, the 
model is reduced to a 3D axial fractional assignment problem. Hence, the developments of 
algorithms for these two problems would be interesting and practical directions for future 
research. Moreover, a sensitivity analysis procedure for identifying the largest sensitivity 
range – one that maintains the current optimal assignment – is worth studying. 
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