
DEVELOPMENT OF A STEREOLITHOGRAPHY (STL) INPUT AND COMPUTER NUMERICAL
CONTROL (CNC) OUTPUT ALGORITHM FOR AN ENTRY-LEVEL 3-D PRINTER#

A.C. Brown1∗, D. de Beer2 & P. Conradie3

1,3Vaal University of Technology
South Africa

1andrewb@vut.ac.za, 3pieterc@vut.ac.za

2North West University
South Africa

Deon.DeBeer@nwu.ac.za,

ABSTRACT

This paper presents a prototype Stereolithography (STL) file format slicing and tool-path
generation algorithm, which serves as a data front-end for a Rapid Prototyping (RP) entry-
level three-dimensional (3-D) printer. Used mainly in Additive Manufacturing (AM), 3-D
printers are devices that apply plastic, ceramic, and metal, layer by layer, in all three
dimensions on a flat surface (X, Y, and Z axis). 3-D printers, unfortunately, cannot print an
object without a special algorithm that is required to create the Computer Numerical
Control (CNC) instructions for printing. An STL algorithm therefore forms a critical
component for Layered Manufacturing (LM), also referred to as RP. The purpose of this
study was to develop an algorithm that is capable of processing and slicing an STL file or
multiple files, resulting in a tool-path, and finally compiling a CNC file for an entry-level 3-
D printer. The prototype algorithm was implemented for an entry-level 3-D printer that
utilises the Fused Deposition Modelling (FDM) process or Solid Freeform Fabrication (SFF)
process; an AM technology. Following an experimental method, the full data flow path for
the prototype algorithm was developed, starting with STL data files, and then processing
the STL data file into a G-code file format by slicing the model and creating a tool-path.
This layering method is used by most 3-D printers to turn a 2-D object into a 3-D object.
The STL algorithm developed in this study presents innovative opportunities for LM, since it
allows engineers and architects to transform their ideas easily into a solid model in a fast,
simple, and cheap way. This is accomplished by allowing STL models to be sliced rapidly,
effectively, and without error, and finally to be processed and prepared into a G-code print
file.

OPSOMMING

‘n Prototipe stereolitografie (STL) dokument ontvou en instrumenttrajek generasie
algoritme vir ‘n intreevlak driedimensionele drukker word in dié studie bekendgestel.
Driedimensionele drukkers word hoofsaaklik in toevoegingsvervaardiging gebruik deur lae
plastiek, keramiek of metaal in al drie rigtings (x, y en z) op ‘n plat oppervlak te deponeer.
Rekenaar numeriese beheer word egter benodig om die driedimensionele drukker te
begelei. Die STL algoritme vorm dus ‘n integrale deel vir laag-op-laag vervaardiging. Die
doel van hierdie studie is om ‘n algoritme te ontwikkel wat die vermoë het om een of meer
STL dokumente te prosesseer en te ontvou en ‘n gepaste instrumenttrajek te formuleer en
daaruit beheerinstruksies vir die drukker te genereer. Die STL lêer is geprosesseer tot ‘n G-
kode lêer deur middel van die algoritme. Die ontwikkelde algoritme hou innoverende
geleenthede in vir laag-op-laag vervaardiging, aangesien dit aan ingenieurs en argitekte
toelaat om vinnig en maklik hul idees in driedimensionele soliede voorwerpe te omskep. Dit
is moontlik deur die STL modelle vinnig en sonder foute te ontvou en te prosesseer tot ‘n G-
kode beheerlêer.

This article is an extended version of an article presented at the 2012 RAPDASA conference
∗ Corresponding author

South African Journal of Industrial Engineering August 2014 Vol 25(2), pp 39-47

1 INTRODUCTION

In recent years, three-dimensional (3-D) printing, also known as Additive Manufacturing
(AM), Solid Freeform Fabrication (SFF), Layered Manufacturing (LM), or Rapid Prototyping
(RP), has been identified as an innovative manufacturing technology of functional parts that
involves slicing a 3-D model into two-dimensional (2-D) layers, which are then reproduced
physically, layer-by-layer, to create the prototype. The 3-D model is first modelled in a
Computer-Aided-Design (CAD) system, producing a Stereolithography (STL) file – a
tessellated (triangulated) surface model. STL is synonymous to the tessellated standard
triangular language model. Even though many other formats have been created for RP,
none has been universally adopted in the same way as STL by the various makers of CAD
packages [1]. The STL file is then processed by a slicing procedure that results in the
creation of a tool-path from the slice’s information. The information produced by the
slicing process is saved as Computer Numerical Control (CNC) instructions that are used by a
3-D printer to produce the prototype. G-code is the term used to describe a text file that
contains commands to run a CNC machine.

The issue of slicing plays a crucial role in the AM process. Several researchers have
developed and presented papers that focus on slicing algorithms. Tata et al. [8] discussed
an adaptive slicing algorithm that can vary the slice thickness depending on the geometry
of the object to be prototyped, in an attempt to minimise layering error and improve
surface quality.

Jin et al. [2] developed an adaptive tool-path generation algorithm that aimed to optimise
both the surface quality and fabrication efficiency in RP systems. The algorithm can
generate contour tool-paths for the boundary of each RP sliced layer to reduce the surface
errors of the model, and zigzag tool-paths for the internal area of the layer to speed up the
fabrication process.

The objectives of this research are:

• Read the STL file/s and determine their orientation.
• Slicing. This is the process of transferring an STL file to a series of layers. The result of

the slicing process is the tool-path, also known as machine path.
• Tool-path generation. The tool-path is the movement of the 3-D printers’ extrusion

nozzle head during the printing process to fill the interior (fill) of each layer.
• G-code file. This is the CNC file containing all the slicing and tool-path information. It

is also the input file, containing all the commands for the entry-level 3-D printer.

This research focuses on the development of an STL slicing and tool-path generation
algorithm for an entry-level 3-D printer. The major technical challenges in the RP process
are the slicing approach and tool-path generation technique.

The organisation of this paper is as follows: In section 2, a literature review of the structure
of the proposed slicing and tool-path generation algorithm is provided, and previous work
conducted by other researchers is summarised. Section 3 describes the research
methodology of the experiment and discusses sections of the adopted algorithm. Section 4
presents the preliminary research results obtained from the research experiment. Section
6, the conclusion, discusses the implications for research and practice.

2 RELATED WORK

In 2011, Professor Deon De Beer, Executive Director of the Technology Transfer and
Innovation (TTI) Centre and Directorate at the Vaal University of Technology (VUT),
developed and launched the first South African IDEA 2 PRODUCT (i2p) lab, with the
objective of empowering clients (students, staff, and the wider community) to develop
their ideas into physical prototypes. The i2p lab has a dual purpose, starting with the

40

generation, refinement, and improvement of the initial idea, and ending in a physical
prototype. A client will thus experience both value-added services with respect to the
initial idea, and relevant skills enhancement.

The i2p lab is still in its initial design stages, but it already consists of 20 AM platforms. The
printers consist of the RAPMAN, BFB 3000, and the fairly new 3-D printer called the UP!.
These 3-D printers have two things in common: the FDM technology, and the ability to input
a 3-D model and fabricate a prototype.

The STL file format is the most widely-accepted file format in the RP industry. The reasons
for its popularity are its simplicity and its ease of file generation without involving very
complicated CAD software [3]. Different build orientations for a CAD model will affect the
surface quality, the build time, the complexity of the support structure, and the total
number of slice layers. The build orientation is usually determined based on the height and
surface quality requirement of the STL model [2].

The slicing process is very important in LM. It greatly influences the surface roughness
form, error preparation time, and actual machine build time. Slicing is the process of
transferring an STL file to a series of layers. This procedure, for FDM machines using LM
technology, involves vector generation by intersecting an XY plane at a particular height to
create the model layers (slices). The result of the slicing process is the tool-path, also
known as a machine path. Currently, the developed slicing processes can be divided into
uniform slicing and adaptive slicing. In uniform slicing, the distance between two
consecutive layers is the same, while in adaptive slicing the distance between two layers
varies depending on the surface curvatures of the CAD model. Most of the RP systems use
uniform slicing, while research is still being done to explore adaptive slicing [2]. Pandey et
al. [6] proposed a slicing procedure for Fused Deposition Modelling based on real-time edge
profiles of a deposited layer.

The work by Chang [4] slices a 3-D model designed in PowerSHARE into N sections with the
aid of a special macro. The resulting section at each Z level consists of curves such as lines,
conic arcs, and Bezier spans. These entities that form a contour are then coded and saved
into a custom, pre-defined file for generating a tool-path by using computer-aided
manufacturing software presented by the same company, PowerSHARE [5].

The tool-path creation procedure requires information from the slicing method to generate
the information required for the G-code file. Normally this procedure is conducted by
reading entire facets into the computer’s memory; then the facets are sliced and generated
vectors are sorted. This method demands a considerable amount of computer memory, and
encounters difficulties in processing very large and complex STL files, thus affecting the
final physical models’ quality and build time. Hayasi and Asiabanpour [5] proposed a new
tool-path generation algorithm that solves the computer bottleneck in tool-path generation
for very large STL files. Tata et al. [8] demonstrated that the productivity of the LM
processes can be significantly improved by upgrading the slicing software.

Various types of tool-path patterns and algorithms have been developed. These include
contour, zigzag (also known as crisscross), spiral, and partition patterns with different
considerations of the build time, surface quality, warpage, cost, stiffness, and strength of
RP prototypes.

3 METHODOLOGY

The research presented in this paper has been implemented using the C++ programming
language on an OpenGL CASCADE platform. The OpenGL platform is an open-source CAD
kernel system that includes C++ components for 3-D surface and solid modelling,
visualisation, and rapid application development. The OpenGL library can return either
filled polygons or polygons’ oriented boundary contours, which are appropriate inputs for 3-
D printing and FDM. The OpenGL functions were used to gain access to STL files and for

41

display purposes. A user interface form facilitated the data entries (e.g., layer thickness,
fill distance, cutting plane, 3-D printer’s minimum and maximum X, Y, and Z speed,
extrusion rate, and raft options). Figure 1 illustrates the user interface form. The Fast Light
Toolkit (FLTK), which is also an open source, cross-platform Graphical User Interface library
written in C++, is used to create the user interface of the algorithm for flexibility with
multiple operating systems.

Figure 1: Facet intersection on cutting (slicing) plane

The goal of the algorithm is to create a G-code file for an AM entry-level 3-D printer. The
G-code section of the algorithm uses the standard G-code instructions (presented in Table
1), but it is not limited to only these variables; more G-code variables can be added. It is
called a ‘G-code’ because the lines of code that control the 3-D printer start with a G
command such as G1, G21, etc. Each command has a different function. CNC also consists
of M codes that control other aspects of the machine, and F codes that control the 3-D
printers’ extruder speed.

Table 1: The CNC variables used for G-code file

CNC Variable Description
G0 Rapid positioning
G1 Linear interpolation
G21 Set units to mm
G28 Return to home position (0,0,0)
G90 Absolute coordinates
G92 Position register
X Absolute or incremental position of X axis
Y Absolute or incremental position of Y axis
Z Absolute or incremental position of Z axis
F Define feed rate
M101 Extruder ON
M103 Extruder OFF
M104 S Set extruder temperature

The following is a brief description of how G-code is generated by the algorithm. The first
step is reading an STL file or multiple STL files. The STL model is made up of discrete
triangles. The algorithm uses the orientation of a triangle to determine which side of the
triangle represents the inside of the object to be created, and which side borders empty
space. This concept of ‘vertex order dictating’ is important, and is used throughout the
algorithm. When a slice is made at some height (Z step value), the algorithm checks every
triangle in the STL model to verify that it intersects the cutting plane. If a triangle
intersects the cutting plane, two of the vectors of the triangle will have one end above the
cutting plane and one end below. The algorithm simply calculates where those vectors
intersect the plane, and those vertices become part of the output as polygons. Since the
two vertices come from the same triangle, they are linked.

If a facet does intersect the cutting plane, two of the vertices of the facet will have one
end above the cutting plane and the opposite or other end below the cutting plane (see

42

Figure 1). This particular positioning relationship between the cutting plane and the
corresponding facet is denoted as:

((V1 > Z) & ((V2 < Z) & (V3 < Z))

There are other cases of facet intersections. According to the cutting plane’s z-axis value,
Z, there are ten kinds of different positional relationships between the cutting plane and
the corresponding facet (F), as shown in Figure 2 and listed below:

Figure 2: Facet and cutting plane positional relationships

I. (V1 > Z) & ((V2 < Z) & (V3 <Z))
II. (V1 < Z) & ((V2 > Z) & (V3 > Z))
III. V1 = Z & ((V2 < Z) & (V3 > Z))
IV. V1 = Z & ((V2 > Z) & (V3 > Z))
V. V1 = Z & ((V2 < Z) & (V3 < Z))
VI. ((V1 = Z) & (V2 = Z)) & (V3 > Z)
VII. ((V1 = Z) & (V2 = Z)) & (V3 < Z)
VIII. ((V1 > Z) & (V2 > Z) & (V3 > Z))
IX. ((V1 < Z) & (V2 < Z) & (V3 < Z))
X. ((V1 = Z) & (V2 = Z) & (V3 = Z))

In Case I, none of the facet’s (F) vertices contact the cutting plane, but one of the vertices
(v1) is on the opposite side of the cutting plane when viewed from the y-axis or the x-axis.
This creates two intersection points, point 1 (p1) and point 2 (p2), as displayed in Figure 1.
These vertices’ points become part of the output as polygons or line groupings that form a
closed loop, which represents a layer of the STL model. The dot product of two vectors,
also known as the scalar product, is a number obtained by performing a specific procedure
on the vector components. The dot product is required to calculate the angle between the
two vectors that intersect the cutting plane, thus determining the location of the facet’s
intersection with the cutting plane.

Case II is identical to Case I; the only difference is the location of the F’s vertices, but the
same concept is applicable. In Case III, one of the F’s vertices contacts the cutting plane.
The other intersection point must be determined using the common equation of a straight
line, also known as the ‘slope-intercept form’:

 y = mx + c (1)

This is called the slope-intercept form because ‘m’ is the slope and ‘c’ is the y-axis
intercept. Also in Case III, the z values of the intersection points are both recorded. This
coding allows the algorithm to recognise the acquired line data in other parts of the code.
In Case IV, the F contacts the cutting plane at a single point, which results in unnecessary
information for the rest of the code. The same applies for Case V, which also results in
redundant information, since the F also touches the cutting plane at only one point.

43

In Case VII, the F contacts the cutting plane with its two vertices, which are directly on the
cutting plane, and these two points are the intersection locations. The recorded
information is the values of these vertices and the z value of the other vertex, which is
used to determine whether to keep or delete the data.

In Case VIII and Case IX, the F does not intersect the cutting plane, so the algorithm ignores
these facets and proceeds to the next value of the cutting plane on the z-axis. In Case X, F
is parallel to either the base or the summit, and there is no need to calculate the
intersection points because all the vertices of the F symbolise the intersection points. The
outputs of the F intersection point discovery algorithm are all the pairs of intersection
points that are situated on the cutting plane. These pairs of vertices are linked because
they come from the same F. Once all of the facets have been checked or flagged, the
resulting points represent lines that are sorted in a start-to-end fashion to create polygons.

At this point, polygons that represent a particular layer have been identified. Since the 3-D
printer extruder head has a thickness, and we cannot just randomly fill in this geometry
with a perfect layer of extrusion material, it is almost impossible to fill in the layer exactly.
Instead, the goal is to generate a path that gives us the best possible fill to fit this set of
polygons. The algorithm does not fill the inside of a model with solid material, since this
uses more material and creates a heavier object that is not actually any more useful or
stronger than one with a lot of empty spaces inside. The in-fill of an object’s interior is
produced by creating parallel lines at a certain angle. These lines are then rotated in
successive layers.

If the 3-D printer extruder head followed the outer edge of the created polygon (Polygon 1)
during the fabrication process, half the material would end up outside the polygon,
resulting in an object larger than the STL model. To compensate for the width of the
extruded material, we shrink the polygons so that we end up with another polygon (Polygon
2) that is slightly smaller than our target. If the extruder follows our polygon (Polygon 2),
then the outer edge of the extruded material will match the edge of the original target
polygon, and we shall create an object of the correct size. This tracing of the outside of the
polygon is called a wall (or shell, or skin). If we want multiple skin layers, we shrink the
polygons again, this time by the full thickness of the extruded material, instead of half, and
the extruder can follow that polygon for an additional wall.

The shrinking algorithm of polygons works by selecting each vertex of the polygon and
moving it inward, depending on the width of the print material (filament): Acrylonitrile
Butadiene Styrene (ABS) or Polylactic Acid (PLA). The two adjacent vertices are used to
decide where the point should be moved. If the vertex is pointing out of the polygon, the
point needs to be moved inward more than the amount being shrunk, and the angle of the
adjoining edges is used to find that point. The outside (‘fill’) polygons are shrunk and the
inside (‘hole’) polygon is enlarged by a certain size.

After the generation of the skin or wall polygons, the fill polygons must be created.
Crisscross or zigzag lines are used to fill the inside of a layer. The crisscross lines can be
changed by selecting the angle of the lines. Basically, the whole plane is filled with parallel
lines, and then the print material is extruded along any of those lines that are within the
fill polygons. For every layer or slice, the fill distance is always the same, and the direction
of the crisscross lines is changed by a fixed angle between successive layers (see Figure 5)
.A number of STL files have been tested for feasibility studies, and they have proved that
the reliability of the developed algorithm is satisfactory.

4 PRELIMINARY RESULTS AND DISCUSSION

The data and results obtained are described in the following section. The main user
interface for displaying the STL files, settings, and options for G-code generation is shown
in Figure 3.

44

Figure 3: Main graphic user interface

The main graphic user interface (GUI) of the system is very important. It must be user-
friendly and easy to understand. Providing the user with options for viewing the models to
be printed is a priority. There are several benefits for visualising a print job:

• Positioning STL models in the desired orientations.
• Positioning models economically: avoiding, as much as possible, voids in the job

volume not occupied by models. The algorithm automatically separates objects by 5
mm.

• Positioning models so that they do not intersect each other.
• Changing options and settings for the G-code file, such as extruder speed, layer

height, print material width, fill distance, rotation per layer, and so on.
• Previewing generated G-code before fabrication.

Two case studies were presented and successfully tested with the algorithm. The properties
of these STL files are shown in Table 2. Several other STL files were tested and successfully
printed from the generated G-code files.

Table 2: Case study STL properties

Case Study Triangles Endpoints Volume (mm^3) Processing Time / 0.5 mm
1 12 8 4000 2 sec
2 114510 57245 42528.930 2 min 59 sec

 (a) Layer height = 0.5 mm (b) Layer height = 1 mm

Figure 4: 20 mm x 10 mm cube (case study 1)

45

(a) Fill rotation = 45° (b) Fill rotation = 90° (c) Fill rotation = 180°

Figure 5: Case study 1’s fill rotation options (in degrees)

The comparison of layer heights is shown in Figure 4. The layer height is the step value of
the selected layer height (the Z-step increment value). The rotation of the fill lines is
shown in Figure 5. The rotation options are not limited to these, but a user can select
between 0° and 180°. A sample of the G-code generated by the algorithm for case study 1
is shown in Figure 6.

Figure 6: Case study 1 sample G-code

Figure 7: Replicator crank (case study 2) Figure 8: Case study 2 sample G-code

Even though the generated G-codes are saved into one file with the “.gcode” extension,
the algorithm output can be demonstrated layer by layer. The processing time for parts is
determined by the selected options (i.e., the processing time for a model with a layer
height of 0.235mm will take more time than the same model with a layer height of 0.5mm).
The schematic illustration of the sample G-code obtained from case study 1 is shown in
Figure 6, and the G-code from case study 2 is shown in Figure 8.

The following parts have been successfully printed with the G-code generated by the
algorithm and the BFB 3000 entry-level 3-D printer, using ABS plastic material:

46

 (a) (b) (c) (d)

Figure 9: (a) 20 mm x 10 mm cube (b) 3-D knot (c) Hollow cube with lid (d) Rocket base

5 CONCLUSION

This paper proposed a slicing and tool-path generation algorithm for STL files, with the goal
of creating a G-code machine path file. The proposed algorithm’s objectives were to read
STL files and slice them into layers, and then finally generate a G-code file for an entry-
level 3-D printer. The algorithm reported in this paper has been successfully tested on
several STL files. This algorithm is customised for entry-level 3-D printers, utilising the FDM
technology or SFF. The use of screenshots in this research provides a clear view of how the
slicing plane thickness, fill distance, and orientation can affect the generated G-code file,
which ultimately influences the build time and quality of the final fabricated prototype.

The results should be interpreted with caution because of the following limitations of our
research. The generated G-code file has not been tested using multiple entry-level 3-D
printers, but has been successfully tested with the BFB 3000 3-D printer. Multiple STL
models with different settings were also successfully printed from this generated G-code
file.

Future work can be done to improve the algorithm. To meet the demand for increasingly
intricate and detailed prototypes, it is necessary to include a computational technique in
the generation of support geometry. The inclusion of a support structure for STL files with
overhangs is necessary as parts become more complex. A time estimate is also necessary to
know how long a slicing job will take, instead of relying on a progress bar. Since the
research has proven that the slice layer’s thickness will influence the final slicing total time
and the physical build time, it is necessary to know the time estimate of a slicing job. The
new STL file format that contains colour information could also be adapted into the
algorithm for future research.

REFERENCES

[1] Fadel, G.M. & Kirschman, C. 1996. Accuracy issues in CAD to RP translations. Rapid Prototyping
Journal, 2(2), pp. 4-17.

[2] Jin, G.Q., Li, W.D., Tsai, C.F. & Wang, L.H. 2011. Adaptive tool-path generation of rapid
prototyping for complex product models. Journal of Manufacturing Systems, 30, pp. 154-164.

[3] Choi, S.H. & Kwok, K.T. 2002. A tolerant slicing algorithm for layered manufacturing. Rapid
Prototyping Journal, 8, pp. 161-179.

[4] Chang, C.C. 2004. Direct slicing and G-code contour. International Journal of Advanced
Manufacturing Technologies, 23, pp. 358-365.

[5] Hayasi, M.T. & Asiabanpour, B. 2009. Machine path generation using direct slicing from design-
by-feature solid model for rapid prototyping. The International Journal of Advanced
Manufacturing Technology, 45, pp. 170-180.

[6] Pandey, P.M., Reddy, N.V. & Dhande, S.G. 2003. Real time adaptive slicing for fused deposition
modeling. International Journal of Machine Tools & Manufacture, 43, pp. 61-71.

[7] Rock, S.J. & Wozny, M.J. 1991. A flexible format for solid freeform fabrication. Proceedings
from the Solid Freeform Fabrication Symposium. Austin: The University of Texas, pp. 1-12.

[8] Tata, K., Fadel, G., Bagchi, A. & Aziz, N. 1998. Efficient slicing for layered manufacturing.
Rapid Prototyping Journal, 4(4), pp. 151-67.

47

	DEVELOPMENT OF A STEREOLITHOGRAPHY (STL) INPUT AND COMPUTER NUMERICAL CONTROL (CNC) OUTPUT ALGORITHM FOR AN ENTRY-LEVEL 3-D Printer0F(
	A.C. Brown11F(, D. de Beer2 & P. Conradie3

	ABSTRACT
	opsomming
	1 INTRODUCTION
	2 RELATED WORK
	3 METHODOLOGY
	4 PRELIMINARY RESULTS AND DISCUSSION
	5 CONCLUSION
	REFERENCES

