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ABSTRACT 

This paper presents a prototype Stereolithography (STL) file format slicing and tool-path 
generation algorithm, which serves as a data front-end for a Rapid Prototyping (RP) entry-
level three-dimensional (3-D) printer. Used mainly in Additive Manufacturing (AM), 3-D 
printers are devices that apply plastic, ceramic, and metal, layer by layer, in all three 
dimensions on a flat surface (X, Y, and Z axis). 3-D printers, unfortunately, cannot print an 
object without a special algorithm that is required to create the Computer Numerical 
Control (CNC) instructions for printing. An STL algorithm therefore forms a critical 
component for Layered Manufacturing (LM), also referred to as RP. The purpose of this 
study was to develop an algorithm that is capable of processing and slicing an STL file or 
multiple files, resulting in a tool-path, and finally compiling a CNC file for an entry-level 3-
D printer. The prototype algorithm was implemented for an entry-level 3-D printer that 
utilises the Fused Deposition Modelling (FDM) process or Solid Freeform Fabrication (SFF) 
process; an AM technology. Following an experimental method, the full data flow path for 
the prototype algorithm was developed, starting with STL data files, and then processing 
the STL data file into a G-code file format by slicing the model and creating a tool-path. 
This layering method is used by most 3-D printers to turn a 2-D object into a 3-D object. 
The STL algorithm developed in this study presents innovative opportunities for LM, since it 
allows engineers and architects to transform their ideas easily into a solid model in a fast, 
simple, and cheap way. This is accomplished by allowing STL models to be sliced rapidly, 
effectively, and without error, and finally to be processed and prepared into a G-code print 
file. 

OPSOMMING 

‘n Prototipe stereolitografie (STL) dokument ontvou en instrumenttrajek generasie 
algoritme vir ‘n intreevlak driedimensionele drukker word in dié studie bekendgestel. 
Driedimensionele drukkers word hoofsaaklik in toevoegingsvervaardiging gebruik deur lae 
plastiek, keramiek of metaal in al drie rigtings (x, y en z) op ‘n plat oppervlak te deponeer. 
Rekenaar numeriese beheer word egter benodig om die driedimensionele drukker te 
begelei. Die STL algoritme vorm dus ‘n integrale deel vir laag-op-laag vervaardiging. Die 
doel van hierdie studie is om ‘n algoritme te ontwikkel wat die vermoë het om een of meer 
STL dokumente te prosesseer en te ontvou en ‘n gepaste instrumenttrajek te formuleer en 
daaruit beheerinstruksies vir die drukker te genereer. Die STL lêer is geprosesseer tot ‘n G-
kode lêer deur middel van die algoritme. Die ontwikkelde algoritme hou innoverende 
geleenthede in vir laag-op-laag vervaardiging, aangesien dit aan ingenieurs en argitekte 
toelaat om vinnig en maklik hul idees in driedimensionele soliede voorwerpe te omskep. Dit 
is moontlik deur die STL modelle vinnig en sonder foute te ontvou en te prosesseer tot ‘n G-
kode beheerlêer. 
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1 INTRODUCTION 

In recent years, three-dimensional (3-D) printing, also known as Additive Manufacturing 
(AM), Solid Freeform Fabrication (SFF), Layered Manufacturing (LM), or Rapid Prototyping 
(RP), has been identified as an innovative manufacturing technology of functional parts that 
involves slicing a 3-D model into two-dimensional (2-D) layers, which are then reproduced 
physically, layer-by-layer, to create the prototype. The 3-D model is first modelled in a 
Computer-Aided-Design (CAD) system, producing a Stereolithography (STL) file – a 
tessellated (triangulated) surface model. STL is synonymous to the tessellated standard 
triangular language model. Even though many other formats have been created for RP, 
none has been universally adopted in the same way as STL by the various makers of CAD 
packages [1]. The STL file is then processed by a slicing procedure that results in the 
creation of a tool-path from the slice’s information. The information produced by the 
slicing process is saved as Computer Numerical Control (CNC) instructions that are used by a 
3-D printer to produce the prototype. G-code is the term used to describe a text file that 
contains commands to run a CNC machine. 
 
The issue of slicing plays a crucial role in the AM process. Several researchers have 
developed and presented papers that focus on slicing algorithms. Tata et al. [8] discussed 
an adaptive slicing algorithm that can vary the slice thickness depending on the geometry 
of the object to be prototyped, in an attempt to minimise layering error and improve 
surface quality.  
 
Jin et al. [2] developed an adaptive tool-path generation algorithm that aimed to optimise 
both the surface quality and fabrication efficiency in RP systems. The algorithm can 
generate contour tool-paths for the boundary of each RP sliced layer to reduce the surface 
errors of the model, and zigzag tool-paths for the internal area of the layer to speed up the 
fabrication process. 
 
The objectives of this research are: 
 
• Read the STL file/s and determine their orientation. 
• Slicing. This is the process of transferring an STL file to a series of layers. The result of 

the slicing process is the tool-path, also known as machine path. 
• Tool-path generation. The tool-path is the movement of the 3-D printers’ extrusion 

nozzle head during the printing process to fill the interior (fill) of each layer. 
• G-code file. This is the CNC file containing all the slicing and tool-path information. It 

is also the input file, containing all the commands for the entry-level 3-D printer. 
 
This research focuses on the development of an STL slicing and tool-path generation 
algorithm for an entry-level 3-D printer. The major technical challenges in the RP process 
are the slicing approach and tool-path generation technique.  
 
The organisation of this paper is as follows: In section 2, a literature review of the structure 
of the proposed slicing and tool-path generation algorithm is provided, and previous work 
conducted by other researchers is summarised. Section 3 describes the research 
methodology of the experiment and discusses sections of the adopted algorithm. Section 4 
presents the preliminary research results obtained from the research experiment. Section 
6, the conclusion, discusses the implications for research and practice. 

2 RELATED WORK 

In 2011, Professor Deon De Beer, Executive Director of the Technology Transfer and 
Innovation (TTI) Centre and Directorate at the Vaal University of Technology (VUT), 
developed and launched the first South African IDEA 2 PRODUCT (i2p) lab, with the 
objective of empowering clients (students, staff, and the wider community) to develop 
their ideas into physical prototypes. The i2p lab has a dual purpose, starting with the 
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generation, refinement, and improvement of the initial idea, and ending in a physical 
prototype. A client will thus experience both value-added services with respect to the 
initial idea, and relevant skills enhancement. 
 
The i2p lab is still in its initial design stages, but it already consists of 20 AM platforms. The 
printers consist of the RAPMAN, BFB 3000, and the fairly new 3-D printer called the UP!. 
These 3-D printers have two things in common: the FDM technology, and the ability to input 
a 3-D model and fabricate a prototype.  
 
The STL file format is the most widely-accepted file format in the RP industry. The reasons 
for its popularity are its simplicity and its ease of file generation without involving very 
complicated CAD software [3]. Different build orientations for a CAD model will affect the 
surface quality, the build time, the complexity of the support structure, and the total 
number of slice layers. The build orientation is usually determined based on the height and 
surface quality requirement of the STL model [2].  
 
The slicing process is very important in LM. It greatly influences the surface roughness 
form, error preparation time, and actual machine build time. Slicing is the process of 
transferring an STL file to a series of layers. This procedure, for FDM machines using LM 
technology, involves vector generation by intersecting an XY plane at a particular height to 
create the model layers (slices). The result of the slicing process is the tool-path, also 
known as a machine path. Currently, the developed slicing processes can be divided into 
uniform slicing and adaptive slicing. In uniform slicing, the distance between two 
consecutive layers is the same, while in adaptive slicing the distance between two layers 
varies depending on the surface curvatures of the CAD model. Most of the RP systems use 
uniform slicing, while research is still being done to explore adaptive slicing [2]. Pandey et 
al. [6] proposed a slicing procedure for Fused Deposition Modelling based on real-time edge 
profiles of a deposited layer. 
 
The work by Chang [4] slices a 3-D model designed in PowerSHARE into N sections with the 
aid of a special macro. The resulting section at each Z level consists of curves such as lines, 
conic arcs, and Bezier spans. These entities that form a contour are then coded and saved 
into a custom, pre-defined file for generating a tool-path by using computer-aided 
manufacturing software presented by the same company, PowerSHARE [5]. 
 
The tool-path creation procedure requires information from the slicing method to generate 
the information required for the G-code file. Normally this procedure is conducted by 
reading entire facets into the computer’s memory; then the facets are sliced and generated 
vectors are sorted. This method demands a considerable amount of computer memory, and 
encounters difficulties in processing very large and complex STL files, thus affecting the 
final physical models’ quality and build time. Hayasi and Asiabanpour [5] proposed a new 
tool-path generation algorithm that solves the computer bottleneck in tool-path generation 
for very large STL files. Tata et al. [8] demonstrated that the productivity of the LM 
processes can be significantly improved by upgrading the slicing software.  
 
Various types of tool-path patterns and algorithms have been developed. These include 
contour, zigzag (also known as crisscross), spiral, and partition patterns with different 
considerations of the build time, surface quality, warpage, cost, stiffness, and strength of 
RP prototypes. 

3 METHODOLOGY 

The research presented in this paper has been implemented using the C++ programming 
language on an OpenGL CASCADE platform. The OpenGL platform is an open-source CAD 
kernel system that includes C++ components for 3-D surface and solid modelling, 
visualisation, and rapid application development. The OpenGL library can return either 
filled polygons or polygons’ oriented boundary contours, which are appropriate inputs for 3-
D printing and FDM. The OpenGL functions were used to gain access to STL files and for 
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display purposes. A user interface form facilitated the data entries (e.g., layer thickness, 
fill distance, cutting plane, 3-D printer’s minimum and maximum X, Y, and Z speed, 
extrusion rate, and raft options). Figure 1 illustrates the user interface form. The Fast Light 
Toolkit (FLTK), which is also an open source, cross-platform Graphical User Interface library 
written in C++, is used to create the user interface of the algorithm for flexibility with 
multiple operating systems.    
 

 

Figure 1: Facet intersection on cutting (slicing) plane 

The goal of the algorithm is to create a G-code file for an AM entry-level 3-D printer. The 
G-code section of the algorithm uses the standard G-code instructions (presented in Table 
1), but it is not limited to only these variables; more G-code variables can be added. It is 
called a ‘G-code’ because the lines of code that control the 3-D printer start with a G 
command such as G1, G21, etc. Each command has a different function. CNC also consists 
of M codes that control other aspects of the machine, and F codes that control the 3-D 
printers’ extruder speed. 

Table 1: The CNC variables used for G-code file 

CNC Variable Description 
G0 Rapid positioning 
G1 Linear interpolation 
G21 Set units to mm 
G28 Return to home position (0,0,0) 
G90 Absolute coordinates 
G92 Position register 
X Absolute or incremental position of X axis 
Y Absolute or incremental position of Y axis 
Z Absolute or incremental position of Z axis 
F Define feed rate 
M101 Extruder ON 
M103 Extruder OFF 
M104 S Set extruder temperature 

 
The following is a brief description of how G-code is generated by the algorithm. The first 
step is reading an STL file or multiple STL files. The STL model is made up of discrete 
triangles. The algorithm uses the orientation of a triangle to determine which side of the 
triangle represents the inside of the object to be created, and which side borders empty 
space. This concept of ‘vertex order dictating’ is important, and is used throughout the 
algorithm. When a slice is made at some height (Z step value), the algorithm checks every 
triangle in the STL model to verify that it intersects the cutting plane. If a triangle 
intersects the cutting plane, two of the vectors of the triangle will have one end above the 
cutting plane and one end below. The algorithm simply calculates where those vectors 
intersect the plane, and those vertices become part of the output as polygons. Since the 
two vertices come from the same triangle, they are linked. 
 
If a facet does intersect the cutting plane, two of the vertices of the facet will have one 
end above the cutting plane and the opposite or other end below the cutting plane (see 
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Figure 1). This particular positioning relationship between the cutting plane and the 
corresponding facet is denoted as: 
 

((V1 > Z) & ((V2 < Z) & (V3 < Z)) 
 

There are other cases of facet intersections. According to the cutting plane’s z-axis value, 
Z, there are ten kinds of different positional relationships between the cutting plane and 
the corresponding facet (F), as shown in Figure 2 and listed below: 

 

Figure 2: Facet and cutting plane positional relationships 

 
I. (V1 > Z) & ((V2 < Z) & (V3 <Z)) 
II. (V1 < Z) & ((V2 > Z) & (V3 > Z)) 
III. V1 = Z & ((V2 < Z) & (V3 > Z)) 
IV. V1 = Z & ((V2 > Z) & (V3 > Z)) 
V. V1 = Z & ((V2 < Z) & (V3 < Z)) 
VI. ((V1 = Z) & (V2 = Z)) & (V3 > Z) 
VII. ((V1 = Z) & (V2 = Z)) & (V3 < Z) 
VIII. ((V1 > Z) & (V2 > Z) & (V3 > Z)) 
IX. ((V1 < Z) & (V2 < Z) & (V3 < Z)) 
X. ((V1 = Z) & (V2 = Z) & (V3 = Z)) 

 
In Case I, none of the facet’s (F) vertices contact the cutting plane, but one of the vertices 
(v1) is on the opposite side of the cutting plane when viewed from the y-axis or the x-axis. 
This creates two intersection points, point 1 (p1) and point 2 (p2), as displayed in Figure 1. 
These vertices’ points become part of the output as polygons or line groupings that form a 
closed loop, which represents a layer of the STL model. The dot product of two vectors, 
also known as the scalar product, is a number obtained by performing a specific procedure 
on the vector components. The dot product is required to calculate the angle between the 
two vectors that intersect the cutting plane, thus determining the location of the facet’s 
intersection with the cutting plane. 
 
Case II is identical to Case I; the only difference is the location of the F’s vertices, but the 
same concept is applicable. In Case III, one of the F’s vertices contacts the cutting plane. 
The other intersection point must be determined using the common equation of a straight 
line, also known as the ‘slope-intercept form’: 
 

 y = mx + c      (1) 
 
This is called the slope-intercept form because ‘m’ is the slope and ‘c’ is the y-axis 
intercept. Also in Case III, the z values of the intersection points are both recorded. This 
coding allows the algorithm to recognise the acquired line data in other parts of the code. 
In Case IV, the F contacts the cutting plane at a single point, which results in unnecessary 
information for the rest of the code. The same applies for Case V, which also results in 
redundant information, since the F also touches the cutting plane at only one point. 
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In Case VII, the F contacts the cutting plane with its two vertices, which are directly on the 
cutting plane, and these two points are the intersection locations. The recorded 
information is the values of these vertices and the z value of the other vertex, which is 
used to determine whether to keep or delete the data.   
 
In Case VIII and Case IX, the F does not intersect the cutting plane, so the algorithm ignores 
these facets and proceeds to the next value of the cutting plane on the z-axis. In Case X, F 
is parallel to either the base or the summit, and there is no need to calculate the 
intersection points because all the vertices of the F symbolise the intersection points. The 
outputs of the F intersection point discovery algorithm are all the pairs of intersection 
points that are situated on the cutting plane. These pairs of vertices are linked because 
they come from the same F. Once all of the facets have been checked or flagged, the 
resulting points represent lines that are sorted in a start-to-end fashion to create polygons. 
 
At this point, polygons that represent a particular layer have been identified. Since the 3-D 
printer extruder head has a thickness, and we cannot just randomly fill in this geometry 
with a perfect layer of extrusion material, it is almost impossible to fill in the layer exactly. 
Instead, the goal is to generate a path that gives us the best possible fill to fit this set of 
polygons. The algorithm does not fill the inside of a model with solid material, since this 
uses more material and creates a heavier object that is not actually any more useful or 
stronger than one with a lot of empty spaces inside. The in-fill of an object’s interior is 
produced by creating parallel lines at a certain angle. These lines are then rotated in 
successive layers. 
 
If the 3-D printer extruder head followed the outer edge of the created polygon (Polygon 1) 
during the fabrication process, half the material would end up outside the polygon, 
resulting in an object larger than the STL model. To compensate for the width of the 
extruded material, we shrink the polygons so that we end up with another polygon (Polygon 
2) that is slightly smaller than our target. If the extruder follows our polygon (Polygon 2), 
then the outer edge of the extruded material will match the edge of the original target 
polygon, and we shall create an object of the correct size. This tracing of the outside of the 
polygon is called a wall (or shell, or skin). If we want multiple skin layers, we shrink the 
polygons again, this time by the full thickness of the extruded material, instead of half, and 
the extruder can follow that polygon for an additional wall.  
 
The shrinking algorithm of polygons works by selecting each vertex of the polygon and 
moving it inward, depending on the width of the print material (filament): Acrylonitrile 
Butadiene Styrene (ABS) or Polylactic Acid (PLA). The two adjacent vertices are used to 
decide where the point should be moved. If the vertex is pointing out of the polygon, the 
point needs to be moved inward more than the amount being shrunk, and the angle of the 
adjoining edges is used to find that point. The outside (‘fill’) polygons are shrunk and the 
inside (‘hole’) polygon is enlarged by a certain size.  
 
After the generation of the skin or wall polygons, the fill polygons must be created. 
Crisscross or zigzag lines are used to fill the inside of a layer. The crisscross lines can be 
changed by selecting the angle of the lines. Basically, the whole plane is filled with parallel 
lines, and then the print material is extruded along any of those lines that are within the 
fill polygons. For every layer or slice, the fill distance is always the same, and the direction 
of the crisscross lines is changed by a fixed angle between successive layers (see Figure 5) 
.A number of STL files have been tested for feasibility studies, and they have proved that 
the reliability of the developed algorithm is satisfactory. 

4 PRELIMINARY RESULTS AND DISCUSSION 

The data and results obtained are described in the following section. The main user 
interface for displaying the STL files, settings, and options for G-code generation is shown 
in Figure 3. 
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Figure 3: Main graphic user interface 

The main graphic user interface (GUI) of the system is very important. It must be user-
friendly and easy to understand. Providing the user with options for viewing the models to 
be printed is a priority. There are several benefits for visualising a print job: 
 
• Positioning STL models in the desired orientations. 
• Positioning models economically: avoiding, as much as possible, voids in the job 

volume not occupied by models. The algorithm automatically separates objects by 5 
mm. 

• Positioning models so that they do not intersect each other. 
• Changing options and settings for the G-code file, such as extruder speed, layer 

height, print material width, fill distance, rotation per layer, and so on. 
• Previewing generated G-code before fabrication. 
 
Two case studies were presented and successfully tested with the algorithm. The properties 
of these STL files are shown in Table 2. Several other STL files were tested and successfully 
printed from the generated G-code files. 

Table 2: Case study STL properties 

Case Study Triangles Endpoints Volume (mm^3) Processing Time / 0.5 mm 
1 12 8 4000 2 sec 
2 114510 57245 42528.930 2 min 59 sec 

 

                       
                         (a) Layer height = 0.5 mm       (b) Layer height = 1 mm 

Figure 4: 20 mm x 10 mm cube (case study 1) 
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(a) Fill rotation = 45°              (b) Fill rotation = 90°              (c) Fill rotation = 180° 

Figure 5: Case study 1’s fill rotation options (in degrees) 

The comparison of layer heights is shown in Figure 4. The layer height is the step value of 
the selected layer height (the Z-step increment value). The rotation of the fill lines is 
shown in Figure 5. The rotation options are not limited to these, but a user can select 
between 0° and 180°. A sample of the G-code generated by the algorithm for case study 1 
is shown in Figure 6. 
 

 
Figure 6: Case study 1 sample G-code 

 
Figure 7: Replicator crank (case study 2)       Figure 8: Case study 2 sample G-code 

Even though the generated G-codes are saved into one file with the “.gcode” extension, 
the algorithm output can be demonstrated layer by layer. The processing time for parts is 
determined by the selected options (i.e., the processing time for a model with a layer 
height of 0.235mm will take more time than the same model with a layer height of 0.5mm). 
The schematic illustration of the sample G-code obtained from case study 1 is shown in 
Figure 6, and the G-code from case study 2 is shown in Figure 8.  
 
The following parts have been successfully printed with the G-code generated by the 
algorithm and the BFB 3000 entry-level 3-D printer, using ABS plastic material: 
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                  (a)                                  (b)                                 (c)                                (d) 

Figure 9: (a) 20 mm x 10 mm cube (b) 3-D knot (c) Hollow cube with lid (d) Rocket base 

5 CONCLUSION 

This paper proposed a slicing and tool-path generation algorithm for STL files, with the goal 
of creating a G-code machine path file. The proposed algorithm’s objectives were to read 
STL files and slice them into layers, and then finally generate a G-code file for an entry-
level 3-D printer. The algorithm reported in this paper has been successfully tested on 
several STL files. This algorithm is customised for entry-level 3-D printers, utilising the FDM 
technology or SFF. The use of screenshots in this research provides a clear view of how the 
slicing plane thickness, fill distance, and orientation can affect the generated G-code file, 
which ultimately influences the build time and quality of the final fabricated prototype. 
 
The results should be interpreted with caution because of the following limitations of our 
research. The generated G-code file has not been tested using multiple entry-level 3-D 
printers, but has been successfully tested with the BFB 3000 3-D printer. Multiple STL 
models with different settings were also successfully printed from this generated G-code 
file. 
 
Future work can be done to improve the algorithm. To meet the demand for increasingly 
intricate and detailed prototypes, it is necessary to include a computational technique in 
the generation of support geometry. The inclusion of a support structure for STL files with 
overhangs is necessary as parts become more complex. A time estimate is also necessary to 
know how long a slicing job will take, instead of relying on a progress bar. Since the 
research has proven that the slice layer’s thickness will influence the final slicing total time 
and the physical build time, it is necessary to know the time estimate of a slicing job. The 
new STL file format that contains colour information could also be adapted into the 
algorithm for future research. 
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