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ABSTRACT 

Telemedicine applications have had much success in strengthening health systems 
worldwide. Unfortunately, many systems are implemented without decisions based on 
proper needs assessments. In South Africa, this ‘technology push’ approach has led to a 
large amount of equipment standing dormant. It is proposed that the potential of 
telemedicine be measured prior to implementation, thus ‘pulling’ the technology towards a 
clinical need. A decision support system is developed that uses health informatics and 
computational intelligence to determine the need for telemedicine and to allocate 
equipment in a network of facilities to achieve the best cost benefit. The system facilitates 
the collection and storage of electronic health record (EHR) data in a data warehouse. A 
linear programming model is used with a genetic algorithm. The system was developed and 
tested for the South African public health sector, using data from 27 hospitals in the 
Western Cape Province. Results have shown that if telemedicine workstations with specific 
peripheral equipment, as determined by the algorithm, were implemented in the given 
period, an estimated R8.7 million in referral costs could have been saved for the 27 
hospitals. Thus the case study provided evidence for the benefits of implementation in the 
chosen network of hospitals. This new application of health informatics could provide 
telemedicine management with a useful tool for making implementation decisions based on 
evidence. Future work would include the development of similar systems for other markets. 

OPSOMMING 

’n Verskeidenheid telegeneeskunde toepassings het reeds groot sukses behaal in die 
bevordering van gesondheidsdienste wêreldwyd. Ongelukkig word tegnologie dikwels 
geimplementeer sonder om besluitneming te baseer op behoorlike behoefte bepalings. In 
Suid-Afrika, het hierdie ‘tegnologie stoot’ benadering gelei tot ’n groot hoeveelhede 
ongebruikte toerusting. Daar word voorgestel dat die potensiaal van telemedisyne gemeet 
moet word, voor implementering, om sodoende tegnologie te ‘trek’ na kliniese behoefte. ’n 
Besluitneming ondersteuning stelsel is ontwikkel wat gebruik maak van gesondheidsorg 
informatika en rekenkundige intelligensie, om die behoefte vir tele-geneeskunde te bepaal 
en daarvolgens toerusting toe te ken aan ’n netwerk van gesondheidsorg fasiliteite, om die 
beste kostevoordeel te bereik. Die stelsel fasiliteer die versamel en berg van elektroniese 
mediese rekord data in ’n data stoor. ’n Lineêre programmering model word gebruik met ’n 
genetiese algoritme opgelos. Die stelsel is ontwikkel en getoets vir die Suid-Afrikaanse 
openbare gesondheidsektor, met behulp van data van 27 hospitale in die Wes-Kaap 
Provinsie. Resultate toon dat indien telemedisyne werkstasies met spesifieke aanvullende 
toerusting, soos bepaal deur die algoritme, beskikbaar was in die gegewe tydperk, ’n 
beraamde R8.7 miljoen gespaar kon word met betrekking tot pasiënt verwysingkoste. Die 
gevallestudie toon dus van die voordele van implementering in die gekose netwerk van 
hospitale. Hierdie nuwe toepassing van gesondheidsorg informatika kan dien as ’n nuttige 
hulpmiddel vir tele-geneeskunde besluitnemers in tele-geneeskunde om besluite gebaseer 
op konkrete bewyse. Toekomstige werk sal die ontwikkeling van soortgelyke stelsels vir 
ander markte insluit.AAA 
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1 INTRODUCTION 

A telemedicine service is a healthcare service (‘-medicine’) that is delivered over a 
distance (‘tele-‘). The interest in the potential of telemedicine to increase the quality, 
accessibility, utilisation, efficiency, and effectiveness of healthcare services is fuelled by 
the rapid development of information and communication technology (ICT) and connectivity 
[1]. The focus of this paper is specifically on the potential of telemedicine to strengthen 
hospital referral systems by reducing the need to transport patients between facilities [2].  

1.1 Telemedicine service as an alternative to physical hospital referrals 

Health facilities in the public health system are defined according to levels of care. Figure 
1 below illustrates the hierarchy of different types of hospitals. More basic levels of care 
that are not included in the figure include district hospitals and primary health care 
facilities such as clinics and community health centres. The public health system in South 
Africa relies on a patient referral system that serves as a crucial link so that all patients 
have access to higher-levels of care. Patients typically enter the system at a low level, and 
are only referred when they are in need of more specialised services not offered at the 
facility. Unfortunately, patient referrals involve risks, and thus they are not always 
feasible. Transporting patients between facilities also has high cost implications [5]. 
Telemedicine could aid referral systems by reducing these negative aspects [6]. 
 

 

Figure 1: Referral hierarchy in South Africa (Adapted from National Department of 
Health, 2003) 

Without telemedicine, a patient who is diagnosed with an irregular skin rash at a primary 
health care facility may be referred to a secondary hospital for consultation with a 
dermatologist. Traditionally the patient has to travel to the hospital to see the 
dermatologist. However, if the following technology setup were available, this journey 
would become obsolete: an appropriate digital camera at the clinic, a reliable internet link 
with sufficient bandwidth, a personal computer at the hospital, and a telephone connection 
between the dermatologist and the primary care giver. The advantages to the patient and 
to the health system include reduced transport costs and risk, better utilisation of human 
and physical resources, and access to quality and timely healthcare.  
 
Store-and-forward (or asynchronous) services involve the transmission of medical data from 
a patient to a doctor, or from one healthcare worker to another, for assessment at a later 
time. Real-time (or synchronous) telemedicine services use technology such as video-
conferencing and telephones for real-time remote communication. It is not (yet) feasible to 
use synchronous technologies in the public health sector of South Africa. Many hospitals, 
especially in the rural areas, do not have reliable internet connections. Low bandwidth also 
limits the connectivity for real-time consultations. 
A 
A 
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The type of technology available at the referring and receiving facilities will determine the 
type of service that can be delivered. For example, if an electronic cardiogram (ECG) meter 
is available at the referring facility, and if the receiving facility has the technology to read 
the ECG, a cardiologist can be consulted without any need to transport the patient.  Other 
examples of enabling equipment are CT scanners, MRI scanners, bronchoscopes, and 
stethoscopes. In an ideal world all possible telemedicine equipment should be available at 
all healthcare facilities. However, within the boundaries of financial constraints, the 
challenge is to allocate the telemedicine equipment to optimise the value of the benefit of 
these telemedicine services for all patients in the particular health system. 

1.2 Problem statement 

In the public health care system of South Africa, decisions on the procurement and 
placement of telemedicine equipment are most often not based on the needs within and 
between particular facilities; a technology-push approach is followed, where the 
technology is pushed into a system without a proper needs assessment [10]. The preferred 
alternative, called a clinical-pull strategy, is to base procurement and implementation 
decisions on a proven clinical need [3]. The lack of a proper needs assessment is often 
listed as a primary reason for unsustainable telemedicine initiatives [4]. The problem is that 
the persons who make decisions about the procurement and implementation of 
telemedicine equipment are often only focused on a particular facility. They lack the 
decision support that is based on the actual data of the entire system. 

1.3 Purpose 

The purpose of this paper is to describe a decision support system (DSS) that draws on 
historical electronic health records (EHRs) to support decisions about the allocation of 
telemedicine equipment for a network of hospitals. The system was specifically developed 
and validated for the public health sector of South Africa, and is presented in this article as 
such. However, it is designed to provide a measurement tool, assessing the needs and 
potential benefits of implementing telemedicine equipment, prior to implementation, 
within any context.  

2 METHODOLOGY 

The methodology of developing the DSS is based on the framework provided by Turban et 
al. [8] (refer to Figure 2): data are extracted from existing data sources, which are typically 
the result of a transactional information system. In this case, the actual data from the 
district health information systems (DHIS) and electronic healthcare records (EHRs) are used 
as input, together with reports on equipment specifications and costs, and health 
indicators.  
 
These data are extracted, transformed, and loaded (ETL) into a data warehouse in which 
the aggregated data are stored in data marts. For the purpose of this study, four data marts 
were created: a referral mart, a technology mart, a health indicator mart, and a 
technology-association mart. These marts provide input data for the data analysis 
algorithms or mathematical models. In this study, a linear programming mathematical 
model was developed and solved for this study using the genetic algorithm. This solution 
will help decision-makers to decide which telemedicine equipment should be procured and 
implemented at which healthcare facility. 

3 DECISION SUPPORT SYSTEM DESIGN  

3.1 Data sources 

The opportunities to use healthcare data in decision-making are continually increasing as 
ICTs evolve. Decision-makers such as healthcare providers and insurance companies rely on 
data-intensive statistical indicators to make informed decisions. Some of the data that were 
originally collected to assess provincial and national health indicators are available for  
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Figure 2: Approach to the development of the DDSs 

research studies. However, these data sets, which were intended for health indicators, are 
mostly of a general nature, and are not always suitable for data mining and artificial 
intelligence. 
 
Unfortunately, there are limited data available that relate to telemedicine. This can 
possibly be attributed to the fact that both the telemedicine initiative and computerised 
health information systems are relatively new in South Africa. Furthermore, since 
telemedicine needs assessments were mostly done qualitatively, programmes and systems 
to collect and store quantitative data for telemedicine needs assessments have not yet 
been introduced. Therefore, finding the appropriate data for the decision support system 
could be a challenge.  
 
Since there is not much quantifiable data available on telemedicine referrals, other sources 
were considered that could provide a decision support system with data. Hospital referral 
data are similar to telemedicine data, since telemedicine could potentially refer patient 
information electronically. The potential (or need) for using telemedicine can be assessed 
by focusing on cases where telemedicine could have been used as an alternative to physical 
patient transfers.  
 
The framework in Figure 2 lists three data sources that are identified as possible sources for 
telemedicine decision support: District health information systems (DHIS), electronic health 
records (EHRs), and reports on equipment specifications and costs and health indicators. 
These are all sources that contain data on patient referrals. 
 
After exploring data sources available for assessment in South Africa, the benefits that can 
be measured using discharge data from EHRs were separated from those that were not 
quantifiable using EHR data. Measurements that could quantitatively assess the need for 
telemedicine, and thus aid in decision-making for implementation, are included in the 
system, and are listed below: 
 
• Hospital utilisation 
• Reduction in transportation cost 
• Reduction in human resource cost 

3.2 Data extraction and warehousing 

An integral part of data-based decision support systems is the ability rapidly to analyse 
large amounts of data from a variety of sources. Data warehouse is the term used for the 
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pool of data used by the decision support system [8]. The data warehouse structures 
integrate data in order to be readily available for decision-makers when needed.  
 
One of the primary goals of telemedicine programmes is to improve the quality of care by 
referring patient information to specialists, thus reducing the need to transfer patients to 
another facility. By examining the referral processes in hospitals (prior to telemedicine 
implementation), the potential of telemedicine to change existing referral processes is 
assessed. Collecting applicable data from the available data sources could possibly enable 
decision-makers, using the DSS, to determine the extent to which a telemedicine 
programme could change the existing referral processes and ultimately healthcare service 
delivery. 
 
To analyse the data for the needs assessment, the data have to be in a form that would 
allow the use of mathematical models and other analysis tools. Data are extracted, 
transformed, and loaded into a data warehouse (Figure 2) before being analysed. Table 1 
outlines the data that were used to develop the decision support system. 

Table 1: Data used to build the decision support system 

 Health indicator data Referral data 

Description 
General statistics of the hospitals. 
Indications of the size and workload of the 
hospital 

Referral data of patients that have been 
referred from one hospital to another 

Population Department of Health Hospitals: DHIS, EHR Department of Health Hospitals: DHIS, EHR 
Collecting 
methods Request extraction from EHR database  Request extraction from EHR database 

Data 
attributes 

• Number of beds  
• Patient day equivalent   
• Cost per patient day  
• Bed utilisation rate  
• Transfer distances 
• Patient transfer cost 

• Diagnosis 
• Referral reason 
• ‘Referred to’ hospital 
• ‘Referred from’ hospital 
• Date admitted 
• Date of discharge 
• Patient date of birth 
• Patient gender 
• Patient suburb 

Analysis • Economic analysis 
• Statistical analysis 
• Referral mapping 

3.3 Mathematical model 

The calculation of potential telemedicine implementation savings becomes complex when 
there is an increase in the variety of telemedicine equipment and the number of hospitals 
under consideration. A combination of devices influences the type of diagnostics that can 
be done using telemedicine systems. Decisions about the nature of telemedicine devices to 
be implemented should therefore be integrated with specific reference to the influence on 
expected implementation costs and savings. 
 
In order to acquire maximum cost benefits, the selection of telemedicine devices at a 
number of hospitals is modelled as a mixed integer programming problem, and is 
formulated as follows: 

Indices: 

𝑖 =  1,2,3 …  𝑛    Device index 
𝑗 =  1,2,3, …  𝑚   Hospitals 'referred from' index (for which referral reports were collected)  
𝑘 =  1,2,3, …  𝑝    Hospitals 'referred to' index 
𝑙 =  1,2,3, … 𝑞    Diagnosis (ICD10) index 
a 
a 
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Decision variable: 

𝑥𝑖,𝑗 = �1, 𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 is chosen to be  implemented at hospital 𝑗 
0, 𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 is not chosen to be implemented at hospital 𝑗      

  

Input parameters (independent of decision variable): 

𝑦𝑖,𝑗 = �1,   𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 is already available at hospital 𝑗 when decision is made
0,   𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 is not already available at  hospital 𝑗 when decision is made 

 

𝑑𝑖,𝑙  = �1,   𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 is required to diagnose a case recorded as ICD10 code 𝑙
0,   𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 is not required to diagnose a case recorded as ICD10 code 𝑙 

 
ℎ𝑗,𝑘,𝑙 =  Amount of times that diagnosis l was referred from hospital j  to hospital k  
 
𝑐𝑖 = Annual payments to implement and maintain device i 
 
𝑏𝑗,𝑘 =  Difference in overnight cost if a patient stayed in hospital j and not hospital k 
 
𝑡𝑗,𝑘 =  Transport distance to transfer a patient from hospital j to hospital k 
 
𝑢 =  Patient transport cost per km 
 
𝑤 =  Total annual payment cost available to implement devices 
 

𝑔𝑗,𝑘 = �1, 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑗 is of the same or  lower level than hospital 𝑘 
0, 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑗 is a higher referral level than hospital 𝑘  

 
Variable parameters (influenced by decision variable): 
 
• Devices i that will be available at hospital j are a combination of what was available 

prior to implementation and the devices that are chosen to be implemented. 

𝑉𝑖,𝑗�𝑥𝑖,𝑗�𝑦𝑖,𝑗� = �1,𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 will be available after implementation at hospital 𝑗 
0,𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 will not be available after implementation at hospital 𝑗   

𝑉𝑖,𝑗  =  𝑥𝑖,𝑗 + 𝑦𝑖,𝑗           𝑖 = 1,2,3, …𝑛;  𝑗 = 1,2,3, …𝑚 
 
• The annual payments are calculated for the devices chosen at each hospital.  

𝐶𝑖,𝑗�𝑥𝑖,𝑗�𝑐𝑖� =  Annual payment costs to implement device i at hospital j 
𝐶𝑖,𝑗  =  𝑥𝑖,𝑗 ∗ 𝑐𝑖               𝑖 = 1,2,3, . .𝑛;   𝑗 = 1,2,3, …𝑚 

 
• The number of referrals that have the potential to be telemedicine referrals, with the 

chosen devices, is calculated for each hospital j. Each ICD-10 case requires a unique 
combination of devices for diagnosis. Thus a referral recorded in 2010, hj,k,l is only a 
potential telemedicine referral if all the devices that are required to diagnose l at 
that hospital are available after implementation: 
𝑅𝑗,𝑘�𝑉𝑖,𝑗�𝑑𝑖,𝑙� ℎ𝑗,𝑘,𝑙 |𝑔𝑗,𝑘� =  Number of telemedicine referrals from hospital 𝑗 to hospital 𝑘   

 

 𝑅𝑗,𝑘 =

⎩
⎪
⎨

⎪
⎧

      

0, 𝑉𝑖,𝑗 < 𝑑𝑖,𝑙 ,
 

�ℎ𝑗,𝑘,𝑙 .𝑔𝑗,𝑘

𝑞

𝑙=1

, 𝑉𝑖,𝑗 ≥ 𝑑𝑖,𝑙
            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,3, . .𝑛      

 
• The expected travel cost savings between hospital j and hospital k is calculated as a 

product of the determined number of potential referrals, the transport distances, and 
the cost per km. 
𝑇𝑗,𝑘�𝑅𝑗,𝑘�𝑡𝑗,𝑘�𝑢� = Travel cost savings from hospital 𝑗 to hospital 𝑘 with proposed devices 
𝑇𝑗,𝑘  =  𝑅𝑗,𝑘 ∗ 𝑡𝑗,𝑘 ∗ 𝑢             𝑗 = 1,2,3, . .𝑚;   𝑘 = 1,2,3, … 𝑝 
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• The expected savings that are credited to patients staying in hospitals with a lower 
daily cost are calculated as a product of the number of potential referrals determined 
in (3), and the difference in hospitalisation costs between hospital j and hospital k. 
𝐵𝑗,𝑘�𝑅𝑗,𝑘�𝑏𝑗,𝑘� = Hospitalisation savings, patients staying at hospital 𝑗 and not hospital 𝑘 
𝐵𝑗,𝑘  =  𝑅𝑗,𝑘 ∗ 𝑏𝑗,𝑘                   𝑗 = 1,2,3, . .𝑚;   𝑘 = 1,2,3, … 𝑝 

Objective function:  

The objective is to maximise the cost savings (z) that can be expected when choosing 
telemedicine devices to be implemented in the various referral hospitals. The annual 
payment costs, transport cost savings, and hospitalisation savings are all functions of the 
decision variable. These costs and savings are therefore variables determined by the 
decision variable. The objective function is to choose a decision variable that will maximise 
the sum of the savings with the subtracted cost. 
 

max 𝑧 =  −��𝐶𝑖,𝑗

𝑚

𝑗=1

+  ��𝑇𝑗,𝑘

𝑝

𝑘=1

+
𝑚

𝑗=1

��𝐵𝑗,𝑘

𝑝

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

Subject to:  

1. A device should not be implemented if it is already available at that hospital. 
𝑥𝑖,𝑗 + 𝑦𝑖,𝑗  ≤ 1               𝑖 = 1,2,3, …𝑛;  𝑗 = 1,2,3, …𝑚 

 
2. The total annual payment cost is constrained. 

��𝑐𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 ≤ w       

3.4 Using the genetic algorithm to solve the model 

Heuristic methods are good alternatives to solving problems for which exhaustive search 
methods are impractical. A genetic algorithm is a search-heuristic that mimics evolutionary 
principles by iteratively searching for the best solution to the problem. The genetic 
algorithm was chosen and developed specifically for the decision support system in order to 
find a solution to the formulated problem. Microsoft Excel was chosen as the computing 
platform, together with Visual Basic as the programming language, based on the practical 
implications for the South African Department of Health. The genetic algorithm is 
integrated with the rest of the decision support system to provide better usability.  
 
Optimisation problems require both variety and progression. Natural phenomena, therefore, 
provide valuable principles for algorithms. Genetic algorithms mimic the biological theory 
of evolution, where plant and animal species breed to form new offspring with unique 
features. With the birth of a new offspring, a new generation is formed. The concept of 
evolution is that new generations possess different characteristics from the previous 
generation, with the capability of improved performance in the new environment. The 
‘survival of the fittest’ principle is applied so that, with the passage of time, new 
generations become stronger by abandoning weaker individuals. Mutations, which occur 
randomly, reduce the possibility of inbreeding and lower the chances of the population 
being trapped at a local optimum [9]. 

Initiation 

The initial population consists of a number of feasible trial solutions. Each individual 
solution in the population is created randomly and repaired to meet the set of constraints. 
For example, a population for the decision variable 𝑥𝑖,𝑗 would consist of a number of trial 
solutions that are repaired to ensure that a device is not chosen for a hospital where such a 
device is already available.  
 
A basic feasible solution consists of a number of genes (with a value of 0 or 1), indicating 
the chosen devices for the hospitals. The genes determine the strength of the individual. 
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Genes that form combinations of devices resulting in high cost savings and low 
implementation costs would have a high fitness (value of the objective function) outcome. 
The fitness is calculated for each feasible member of the initial population. 
 
Solving highly constrained problems with genetic algorithms can be complex. One reason for 
this is that the generation of new offspring does not allow for constraint consistency 
through crossover. Hence, through crossover, the birth of a new offspring does not 
necessarily allow for a new feasible solution. The new offspring has to meet the 
requirements of the constraints before it can be considered a possible solution [10]. 
Nevertheless, the formulated problem is not highly constrained, making the genetic 
algorithm a practical approach. 

Iterations 

During the iteration phase, new basic feasible solutions are created using the 
characteristics of good existing solutions. Parents (basic feasible solutions in the 
population) are randomly selected and compete in a tournament to mimic natural 
selection. Two parents with relatively high levels of fitness are chosen and paired with each 
other in a multiple crossover process to form an offspring (new basic feasible solution). 
Crossover points are chosen at random, so that if two parents were to pair more than once, 
different offspring would be created. Offspring inherit a combination of both parents’ 
genes; thus a different combination of genes from the same parents would result in a 
different child. Mutation occurs on a random basis to increase the stochasticity of the 
algorithm, allowing a new offspring to be generated with unique genes that do not belong 
to either parent. 
 
New offspring are subject to the same set of constraints, ensuring that it is a feasible 
solution. If a new offspring is created that does not fit the criteria, making it unfeasible, 
the solution (offspring) is repaired in the same way that the individuals of the original 
population were repaired. The fitness of each offspring is calculated when the algorithm 
searches through the EHR data to calculate the cost (savings) for each basic feasible 
solution. As the process evolves, the fitness of the population increases. This process of 
creating new offspring continues until the termination criterion is met.  

Termination rule 

Since there are a large number of feasible solutions, the algorithm will continue to search 
through the solution space until a stopping condition is met, indicating that it has found a 
near-optimum. A number of different termination rules can be used, such as a fixed 
computation time, a fixed number of iterations, or a fixed number of consecutive iterations 
without improvement. If the algorithm is executed for an adequate time period, the entire 
population will have the same fitness. If no new offspring are created during a number of 
iterations, it can be assumed that the algorithm has found a near-optimum solution. 
Therefore, when reaching the termination criterion, the solution space would have 
converged on the final solution. The algorithm stops after a number of consecutive 
iterations do not improve. This number can be changed if more certainty is required that 
the algorithm has reached its best solution. 

4 CASE STUDY 

The system was developed and tested for the South African public health sector, using data 
from 27 hospitals in the Western Cape Province. These data were extracted during 2011 
from the Clinicom hospital information system. The Western Cape Department of Health 
provided ethical clearance for the data to be used for purposes of this study. 
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Figure 3: Equipment allocation algorithm iteration results on potential telemedicine 
cost savings 

The genetic algorithm iteration results of the algorithm are shown in Figure 2. Between the 
1st and the 200th iteration, there was a large stochastic element in the basic feasible 
solutions’ (bfs) objective functions. The reason for this is that the genetic algorithm starts 
with a random population that is improved by randomly pairing basic feasible solutions with 
high objective functions. As a result, as iterations increase, the stochasticity decreases and 
the objective functions increase.  
 
The algorithm was programmed to stop after 200 consecutive iterations had showed no 
improvement. Table 2 is an extract from the i x j  matrix that contains the full solution. For 
example, the value of the decision variable xij = x71 = x74 = x75 = 1 indicates that for this 
solution, George hospital should be equipped with a basic telemedicine workstation, a 
telestethoscope, and an ECG machine. This solution suggests an estimated potential cost 
savings, when implementing the equipment, of R8.7 million. This is not necessarily the 
optimum solution; however, it is strongly recommended that this good solution be 
implemented.  
 
The results from this case study are unique to the types of referrals between these 
hospitals for the given time period. However, since referrals are largely influenced by the 
services hospitals provide, it can be expected that referral patterns for these hospitals 
would be similar in the future, thus making the implementation suggestions (based on 
historical data) relevant into the future. 

5 CONCLUSION AND RECOMMENDATION   

In this study, a clinical-pull approach to telemedicine equipment allocation was proposed, 
using health informatics to determine the need for telemedicine before implementation. 
The decision support system was developed to support strategic implementation decisions 
concerning the potential of telemedicine as an alternative to hospital referrals within the 
public health sector of South Africa. The system serves as a tool to identify, assess, and use 
the potential benefits of telemedicine systems in management implementation planning. 
 
The novelty of using EHR data to measure the potential benefits of telemedicine 
implementation called for an exploratory study to consider decision support systems, 
different applications of telemedicine, and the data sources available. The decision support 
system was subsequently based on a new concept of using patient discharge data to 
quantify potential benefits for implementation.  
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Table 2: DSS algorithm implementation decisions 

Hospital name Basic 
(i=1) 

Camera 
(i=2) 

Bronchoscope 
(i=3) 

Stethoscope 
(i=4) 

ECG 
(i=5) 

X ray 
(i=6) 

CT Scan 
(i=7) 

MRI 
(i=8) 

Alexandra (j=1) 0 0 0 0 0 0 0 0 

Brewelskloof (j=2) 0 0 0 0 0 0 0 0 

Brooklyn Chest (j=3) 1 0 0 1 0 1 0 0 

DP Marais (j=4) 0 0 0 0 0 0 0 0 

Eerste River (j=5) 1 1 0 0 0 0 0 0 

False Bay (j=6) 1 1 0 0 0 0 0 0 

George (j=7) 1 0 0 1 1 0 0 0 

GF Jooste (j=8) 1 1 1 1 1 0 1 0 

Groote Schuur (j=9) 1 0 0 0 0 0 0 0 

Harry Comay  (j=10) 0 0 0 0 0 0 0 0 

Helderberg  (j=11) 1 0 1 1 1 0 1 0 

Karl Bremer (j=12) 1 1 1 1 1 0 1 0 

 
The mixed integer programming problem was formulated and solved using a genetic 
algorithm. This new approach proved to be effective in choosing equipment for 
implementation that could provide high cost benefits for a network of hospitals. Future 
work could include using other heuristics to solve the problem. The problem could also be 
expanded to include other quantifiable benefits for telemedicine implementation. Although 
the system was specifically developed for the South African public sector, it could be 
modified to be used in different health systems. 
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