
South African Journal of Industrial Engineering August 2015 Vol 26(2) pp 143-157

COMPARING THE PERFORMANCE OF DIFFERENT META-HEURISTICS FOR UNWEIGHTED
PARALLEL MACHINE SCHEDULING

M.O. Adamu1∗ & A. Adewumi2

1Department of Mathematics
University of Lagos, Nigeria.

madamu@unilag.edu.ng

2School of Mathematics, Statistics & Computer Science
University of Kwazulu-Natal, Durban, South Africa

adewumia@ukzn.ac.za

ABSTRACT

This article considers the due window scheduling problem to minimise the number of early
and tardy jobs on identical parallel machines. This problem is known to be NP complete and
thus finding an optimal solution is unlikely. Three meta-heuristics and their hybrids are
proposed and extensive computational experiments are conducted. The purpose of this
paper is to compare the performance of these meta-heuristics and their hybrids and to
determine the best among them. Detailed comparative tests have also been conducted to
analyse the different heuristics with the simulated annealing hybrid giving the best result.

OPSOMMING

Die minimering van vroeë en trae take op identiese parallelle masjien met behulp van die
gepaste gleufskeduleringsprobleem word oorweeg. Die probleem is nie-deterministies
polinomiese tyd volledig en die vind van ‘n optimale oplossing is dus onwaarskynlik. Drie
meta-heuristieke en hul hibriede word voorgestel en uitgebreide berekeningseksperimente
word uitgevoer. Die doel van hierdie artikel is om die vertoning van hierdie meta-
heuristieke en hul hibriede met mekaar te vergelyk om sodoende die beste te identifiseer.
Gedetaileerde vergelykende toetse is ook uitgevoer om die verskillende heuristieke te
ondersoek; daar is gevind dat die gesimuleerde uitgloei hibried die beste resultaat lewer.

∗ Corresponding author

144

1 INTRODUCTION

Due to an increased emphasis on satisfying customers in service provision, due-date related
objectives are becoming more important in scheduling. In this article, the objective of
minimising the number of early and tardy jobs is considered – a situation where more jobs
are completed within their due windows (due-dates). This objective is practical in real-
world situations, in order to attain a better customer service rating. To the best of our
knowledge, no other article has considered this type of problem. Therefore, the purpose of
this study is to compare the performance of several meta-heuristics and to determine a
good meta-heuristic to solve this problem. In the identical parallel machine problem, n jobs
are to be processed on m machines, assuming the following facts:

• A job is completed when processed by any of the machines;
• A machine can process only one job at a time;
• Once a job is being processed, it cannot be interrupted;
• All jobs are available from time zero;
• The weights (penalties) of the jobs are equal (unweighted); and
• All processed jobs are completed within their due windows.

During the past few decades, a considerable amount of work has been conducted on
scheduling on multiple machines [1] and single machine [2] in order to minimize the
number of tardy jobs. When jobs in a schedule have equal important, they are referred to
as 'unweighted' jobs, whereas 'weighted' jobs are cases where jobs' contributions are not
the same. Garey and Johnson [3] have shown the problem considered in this work is NP-
complete; they argue that finding an optimal solution appears unlikely.

Using the three-field notation of Graham et al. [4], the unweighted problem considered in
this paper can be represented as Pm| |∑(Uj + Vj),), where P describes the shop (machine)
environment for identical parallel machines, and m describes the number of machines. The
space between the bars is for possible constraints on the jobs such as pre-emption, release
time, setup, batching precedence, etc. This current work considers job scheduling case on
parallel machine with no explicit constraint. The symbols Uj and Vj are binary (0 or 1) that
indicates whether a job is scheduled early or tardy respectively, that is, 0 is used when the
job is scheduled on time, and 1 is used if it is not.

Scheduling to minimise the (weighted) number of tardy jobs has been considered by Ho and
Chang [5], Süer et al. [6], Süer [7], Süer et al. [8], Van der Akker [9], Chen and Powell [10],
Liu and Wu [11], and M’Hallah and Bulfin [12]. Sevaux and Thomin [13] addressed the NP-
hard problem to minimise the weighted number of late jobs with release time (P|rj|∑wjUj).
They presented several approaches to the problem, including two MILP formulations for
exact resolution, and various heuristics and meta-heuristics to solve large size instances.
They compared their results with those of Baptiste et al. [14], who performed better on
average. Baptiste et al. [14] used a constraint-based method to explore the solution space
and give good results on small problems (n < 50).

Dauzère-Pérès and Sevaux [15] determined conditions that must be satisfied by at least one
optimal sequence for the problem of minimising the weighted number of late jobs on a
single machine. Sevaux and Sörensen [16] proposed a variable neighbourhood search (VNS)
algorithm in which a ‘tabu’ search algorithm was embedded as a local search operator. The
approach was compared with an exact method by Baptiste et al. [14]. Li [17] addressed the
P|agreeable due dates|∑Uj problem, where the due dates and release times were assumed
to be in agreement. A heuristic algorithm was presented and a dynamic programming lower
bounding procedure developed. Hiraishi et al. [18] addressed the non-pre-emptive
scheduling of n jobs that are completed exactly at their due dates. They showed that this
problem is polynomially solvable, even if positive set-up is allowed.

145

Sung and Vlach [19] showed that when the number of machines is fixed, the weighted
problem considered by Hirashi et al. [18] is solvable in polynomial time (exponential in the
number of machines), no matter whether the parallel machines are identical, uniform, or
unrelated. However, when the number of machines is part of the input, the unrelated
parallel machine case of the problem becomes strongly NP-hard. Lann and Mosheiov [20]
provided a simple greedy O (n log n) algorithm to solve the problem of Hiraishi et al. [18],
thus greatly improving the time complexity. Čepek and Sung [21] considered the same
problem of Hiraishi et al. [18], where they corrected the greedy algorithm of Lann and
Mosheiov [20], which they argued was wrong; Hiraishi et al. [18] presented a new quadratic
time algorithm that solved the problem.

The single-machine scheduling problem to minimize the total job tardiness was considered
by Cheng et al. [22] using the ant colony optimization (ACO) meta-heuristic. [23] compared
scheduling algorithms for flexible flow shop problems with unrelated parallel machines,
setup times, and dual criteria. Janiak et al. [24] studied the problem of scheduling n jobs
on m identical parallel machines, where for each job a distinct due window is given and the
processing time in unit time to minimize the weighted number of early and tardy jobs. They
gave an O(n5) complexity for solving the problem (Pm|pj = 1 |∑wj(Uj + Vj). They also
considered a special case with agreeable earliness and tardiness weights where they gave
on O(n3) complexity (Pm|pj = 1, rj, agreeable ET weights|∑wj(Uj + Vj)). Adamu and Abass
[25] proposed four greedy heuristics for the Pm||∑wj (Uj + Vj) problem, and performed
extensive computational experiments. Adamu and Adewumi [26] proposed some meta-
heuristics and their hybrids to solve the problem considered by Adamu and Abass [25]; they
found them performing better.

2 PROBLEM FORMULATION

Let there be an independent set, N = {1,2, . . . , n} of jobs that are to be scheduled on m
parallel identical machines that are immediately available from time zero, each having an
interval rather than a point in time, which is called the due window of the job. The left end
and the right end of the window are called the earliest due date (i.e., the instant at which
a job becomes available for delivery) and the latest due date (i.e., the instant by which
processing or delivery of a job must be completed) respectively. There is no penalty when a
job is completed within the due window, but for earliness or tardiness, a penalty is incurred
when a job is completed before the earliest due date or after the latest due date. Each job
jє N has a processing time pj, earliest due date aj, and latest due date dj; it is assumed that
there are no pre-emptions and only one job may be processed on a given machine at any
given time. For any schedule S, let tij and Cij(S) = tij +pj represent the actual start time on a
given machine and completion time of job j on machine i, respectively. Job j is said to be
early if Cij(S) <aj, tardy if Cij(S) >dj, and on-time if aj ≤ Cij(S) ≤ dj. For any job k(ij), where
k(ij) stands for the jth processed job on machine i, the number of early and tardy jobs [11]
can be calculated by

2
1])([

2
1in t)()(







+−= jijkijk pSCsig nU

 (1)

where we define that

])([)(jijk pSCsign − =






≤≤−

>>

jijkj

jijkijkj

dSCa
dSCorSCaif

)(,1

)()(,1

)(

)()(

and that int is the operation for making an integer. Obviously,







≤≤

>>
=

jijkj

jijkijkj
ijk dSCa

dSCorSCaif
U

)(,0

)()(,1

)(

)()(
)(

146

Therefore, the problem of scheduling to minimise the number of tardy jobs on identical
parallel machines can be formulated as







+−== ∑∑∑∑

==== 2
1])([

2
1int)(

11
)(

11
jijk

n

j

m

i
ijk

n

j

m

i
pSCsignUW

(2)

 Min W = =∑∑
==

)(
11

ijk

n

j

m

i
U







+−∑∑

== 2
1])([

2
1intmin)(

11
jijk

n

j

m

i
pSCsign

(3)

3 HEURISTICS AND META-HEURISTICS

3.1 Greedy heuristic

Adamu and Abass [25] proposed four greedy heuristics that attempt to provide near-optimal
solutions to the parallel machine scheduling problem. In this paper, the fourth heuristic
(DO2) is used. It entails sorting the jobs according to their latest due date (i.e., latest due
time - processing time) and the ties broken by the highest inverse ratio of processing time
(i.e., 1 / processing time).

The results of these greedy heuristics are encouraging; however, whether using meta-
heuristics and their hybrids can achieve better results will be investigated further. Similar
codes used in Adamu and Adewumi [26] will be used to solve the problem of minimising the
number of early and tardy jobs on parallel machines.

3.2 Genetic algorithm

Genetic algorithm (GA) is one of the best known meta-heuristics for solving optimisation
problems [27,28,29]. The technique is loosely based on evolution in nature, and uses
strategies such as survival of the fittest, genetic crossover, and mutation. It has proved
very useful in handling many discrete optimisation problems [30-32]; hence the decision to
test its performance on the current problem and to compare it with the performance of
greedy heuristics. An overview of the GA implemented for the current problem is presented
as follows:

1. Problem representation: Deciding on a suitable representation is one of the most

important aspects of a GA. An integer string representation is adopted in this study.
Each job is fixed to a gene in the chromosome; this implies that the chromosome has
length n (where n is the number of jobs). Each position in the chromosome therefore
represents a job. Each gene contains two integer numbers representing the number of
the machine to which the job will be assigned, and an order, respectively. The order
number is a value between 1 and n, representing the order in which jobs assigned to
the same machine will be executed. Genetic operators are then applied to both the
machine number and the order. Figure 1 presents a typical representation for a case
of five jobs (n = 5) to be processed on three machines. In this case, Jobs 1 and 4
should both be processed on Machine 2, but with Job 4 having priority over Job 1.

2.

 Job 1 Job 2 Job 3 Job 4 Job 5

2 (2) 3 (1) 1 (1) 2 (1) 1 (2)

Figure 1: A sample representation for GA

3. Algorithm: The pseudo code of the GA implemented is presented on the next page:

147

Generate a population of randomly initialised individuals.
iterations← 0
repeat
fori = 1 →popSizedo
 Perform crosssover with probability crossoverRate.
end for
fori = 1 →popSizedo
forj = 1 →numJobsdo
 Mutate machine with probability mutationRate.
end for
end for
fori = 1 →popSizedo
forj = 1 →numJobsdo
 Mutate order with probability mutationRate.
end for
end for
 Use selection to form a new population of individuals.
iterations←iterations + 1
untiliterations ≥ numIterations
 Return the fitness of the best individual.

4. Fitness function: The fitness function calculates the total number of jobs that could
not be assigned to any of the machines so that they would finish between the earliest
due date and the latest due date. For each machine, jobs that are assigned to it are
placed in a priority queue (based on their respective order). Each job is then removed
from the queue and placed on the machine. If the job were to finish early it would be
scheduled to begin later (at earliest due date - processing time) in order to avoid the
earliness penalty. However, if the job were to finish past the end time, it would not
be scheduled at all; instead the job would be added to the total penalty (fitness).
Since the fitness calculates the penalty incurred, it then implies that the lower the
fitness function, the better the performance of the algorithms or the result generated.

5. Genetic operators: The choice of basic operators of selection, crossover, and mutation
influences the behaviours of the GA [29]. In the current study, the operators are
applied separately to the machine and the order number. For both, the tournament
selection was used to select the two parents for crossover. For the machine, the 1-
point crossover and conventional mutation was adopted. The mutation operator
chooses a random machine from 0 to m-1 inclusive, and also changes the machine
number randomly. Since the order number (the order in which jobs are to be
processed on a machine) is permutation-based, swap mutation for the execution order
was used. This involves randomly selecting two jobs to be processed on the same
machine, and swapping the order in which they were originally to be processed.
However, since there were no guarantees that these operators would allow for the
best performance, further experimentation with variations of these operators was
performed. More details will be given in a later section. Detail and basic descriptions
of these operators can be found in Goldberg [27] and Mitchell [29].

3.3 Particle swarm optimisation

Particle swarm optimisation (PSO) is regarded as another efficient optimisation technique
[33,34], hence its selection for the current parallel machine scheduling problem. It is a
population-based technique derived from the flocking behaviour of birds, and relies on both
the particle’s best position found so far and the entire population’s best position, in order
to get out of local optimums to approach the global optimum. PSO is appropriate to use for
parallel machine scheduling since not much is known about the solution landscape. A
description of the PSO, as implemented for this study, is presented on the next page:

1. Problem representation: The PSO algorithm requires that a representation of the

solution (or encoding of the solution) is chosen. Each particle will be an instance of
the chosen representation. A complication is that PSO works in the continuous space,

148

whereas the scheduling problem is a discrete problem. Thus a method is needed to
convert from the continuous space to the discrete space. The representation is as
follows:

• Each particle is represented by a pair of two digits.
• The first digit is a number in the range [0,m), where m represents the number of

machines on which the particle is scheduled. Note that 0 is inclusive and m is
exclusive in the range. The number is simply truncated to convert to the discrete
space.

• Similarly, the second digit, also in the range [0,m) represents the order of
scheduling of the particle relative to other particles on the same machine; a
lower number indicates that the job will be scheduled before jobs with higher
numbers.

2. Algorithm: Below is a basic pseudo code of the PSO that was used.

fori = 1 →PopSize do
 Construct particle with randomly initialised machine number and order.
end for
repeat
 pbest← 231
 fori = 1 →PopSizedo
 fitness←calcfitness(pop[i])
 if fitness <pbest then
 pbest← fitness
 end if
 if fitness< fitness(gbest) then
 gbest← pop[i]
 end if
 end for
 fori = 1 →PopSize do
 v[i + 1] ←wv[i] + r1c1(pbest – pos[i]) + r2c2(gbest – pos[i])
 pos[i + 1] ←pos[i] + v[i] (ensuring to clamp the position within range)
 end for
 iterations← iterations + 1
until iterations ≥ numIterations

3. Fitness function: Finally, a method is needed to convert the encoding into a valid

schedule (performed when calculating the fitness). This is performed by separating
the jobs into groups based on the machine to which they are assigned. Within a group,
the jobs are sorted by their order parameter and organised into a queue. The schedule
for a particular machine is then formed by removing jobs from the queue and
scheduling them as early as possible without breaking the earliness constraint. The
fitness of a solution is computed as the penalty incurred; that is, the total number of
jobs that cannot be scheduled, which ideally should be as small as possible.

3.4 Simulated annealing

Simulated annealing (SA) has also been shown to be highly effective for discrete problems
[35,36], hence its selection for the current problem. SA is based on real-life annealing,
where the heating of metals allows for atoms to move from their initial position, and
cooling allows for the atoms to settle in new optimal positions. SA is not a population-based
heuristic; thus only one solution is kept at any one stage. Since SA should result in fewer
operations being performed than by a population-based technique, execution times may be
quicker. It is for this reason that SA was chosen for investigation.

It should also be noted that SA will in all likelihood achieve better results than a simple hill-
climbing technique. This is because SA can take downward steps (i.e., accept worse

149

solutions) in order to obtain greater exploration. Thus, it is less likely to become stuck in a
local minimum (a very real problem, given the complex solution space).

1. Problem representation: The representation is remarkably similar to that used in the

GA. A solution consists of n elements (where n is the number of jobs). Each element
has a specific job, as well as the machine to which it will be assigned and the order of
assignment. Perhaps the major difference between SA and GA is that the GA has a
population of solutions (chromosomes), whereas SA focuses on a single solution.

2. Algorithm: This is the basic algorithm used in the SA technique:

Generate a randomly initialised solution sol.
repeat
 fori→ 10 do
 find a neighbor of sol and call it solPrime.
 if fitness(solPrime) < fitness(sol) then
 sol←solPrime
 else
 if efitness(sol) – fitness(solPrime)> rand(0..1) then
 sol←solPrime
 end if
 end if
 end for
 temp← temp*beta
until temp ≤ templ

3. Fitness function: Since the solution is represented in virtually the same manner as a

chromosome in the GA and a particle in PSO, the fitness function is calculated in the
same way. That is, jobs pertaining to a particular machine are placed in a priority
queue before being assigned to the machine. Those that cannot be assigned contribute
towards the penalty.

4. Operators: Although SA does not really have operators (in the sense of a GA having
genetic operators), the SA algorithm does have to select a neighbour. The particular
neighbour selection strategy that is used updates only a single element of the solution.
The element is given a new randomly-chosen machine and a new order (done by
swapping with the order of another randomly chosen element). By allowing for a high
level of randomness when selecting the neighbour, it is ensured that good exploration
will be achieved and that a local best is not found too early.

4 COMPUTATIONAL ANALYSIS AND RESULTS

4.1 Data generation

The program was written in Java using Eclipse. It actually consists of a number of programs,
each one implementing a different type of solution. The output of each of these programs
gives the final fitness after the algorithm has been performed, and the time in milliseconds
that the algorithm took to run.

The heuristics were tested on problems generated with 100, 200, 300, and 400 jobs, similar
to Adamu and Abass [25], Adamu and Adewumi [26], Ho and Chang [5], Baptiste et al. [14],
and M’Hallah and Bulfin [12]. The number of machines was set at levels of 2, 5, 10, 15, and
20. For each job j, an integer processing time pj was randomly generated in the interval (1,
99). Two parameters, k1 and k2 (levels of traffic congestion ratio) were taken from the set
{1, 5, 10, 20}. For the data to depend on the number of jobs n, the integer’s earliest due
date (aj) was randomly generated in the interval (0, n / (m * k1)), and the integer’s latest
due date (dj) was randomly generated in the interval (aj + pj, aj + pj+ (2 * n * p) / (m * k2)).

For each combination of n, k1, and k2, ten instances were generated; i.e., for each value
of n, 160 instances were generated for 8,000 problems of 50 replications. The meta-

150

heuristics were implemented on a Pentium Dual 1.86 GHz, 782 MHz, and 1.99 GB of RAM.
The following meta-heuristics were analysed: GA, PSO, SA, GA Hybrid, PSO Hybrid, and SA
Hybrid.

4.2 Improvements

The use of genetic operators of crossover and mutation for both exploration and
exploitation of solution space gives the GA a unique advantage over some other meta-
heuristics. In this work, the original GA that was tested used 1-point crossover, random
mutation for machines, swap mutation for order, and tournament selection. Other
combinations of operators were also tested to check which ones improved the performance
of the algorithm. This initial experiment showed that roulette-wheel selection, uniform
crossover, and insert mutation (for order) are better for the problem at hand. A user can
choose any combination of these operators to use to run the algorithm. More information on
the optimal combination of genetic operators will be mentioned in Section 4.4.

4.3 Greedy hybrids

This work seeks to improve the performance of the underlying meta-heuristics (GA, PSO,
and SA) by potentially hybridising them with some features of the greedy heuristic proposed
by Adamu and Abass [25]. The key feature of the greedy heuristics in that work essentially
lies in the order in which jobs were assigned to machines. So the mechanisms of ordering in
DO2 [25] are incorporated in the meta-heuristics (GA, PSO, SA).

To implement the hybrid in the three meta-heuristics, the order field was removed from
Gene, Dimension, and Element respectively. Also, any code in Chromosome, Particle, and
Solution, which dealt with the order (e.g., swap mutation in Chromosome), was removed.

4.4 Parameter settings

For each solutions strategy, there are a number of different parameters that affect the
performance of the algorithm, such as population size, mutation rate, initial temperature,
etc. These parameters were determined experimentally by running the algorithms on a
subset of all the testing data, in order to determine the optimal parameters. This involved
experimenting with the full range of each parameter and recording and tabulating the
results achieved. The combination of parameters that gave the best performance was
selected as the optimal combination. After this initial experiment, the optimal parameters
for the GA were found to be as follows:

• A population size of 10.
• Random mutation (for machines) used at a rate of 0.01.
• Swap mutation (for order) used at a rate of 0.01.
• Uniform crossover at a rate of 0.5.
• Tournament selection with a k set at 40 per cent of the population size.
• The number of iterations of the algorithm was set at 2,000.

The best performance with a population size of 10 for this initial experience is likely due to
the inherently parallel nature of the GA; hence lower population size might give better
runtime and fitness for problems of this nature where time is a critical factor.

Further to the above parameters, the GA hybrid achieved best results when hybridised with
the DO2 greedy heuristic.

The optimal parameters for PSO are:

• A population size of 50.
• A w (momentum value) of 0.3.
• A c1 of 2.
• A c2 of 2.
• The number of iterations of the algorithm was set at 2,000.

151

Further to the above parameters, the particle swarm optimisation hybrid achieved best
results when hybridised with the DO2 greedy heuristic.

The optimal parameters for SA are:

• An initial temperature of 25.
• A final temperature of 0.01.
• A geometrical decreasing factor (beta) of 0.999.

Further to the above parameters, the SA hybrid achieved best results when hybridised with
the DO2 greedy heuristic.

5 DISCUSSION OF RESULTS

In this section, the results of the algorithms are shown, including the results of the
hybridisations. In the four tables shown in Table 1 (a and b), each cell consists of two
numbers. The top number is the weight of the schedule that is produced, averaged over 50
runs. The bottom number is the average time in milliseconds that the algorithm takes to
complete.

Also included are four charts, each for the performance of the meta-heuristics in relation to
the penalty (see Figure 2) and time (see Figure 3) for n= 100, 200, 300, and 400. Figure 2
compares the relative performance (penalty) of each of the six algorithms with the number
of machines used. Again, four charts are given to show the computational times of the
meta-heuristics for various values of N.

It should be clear from both Table 1 and the charts (Figures 2 and 3) that the SA Hybrid
(SAH) outperformed the other meta-heuristics in almost all points. Its average performance
time is 0.5 seconds. It was observed that the various hybrids performed better than their
meta-heuristic without hybridisation. It further proves the effectiveness of hybridisation on
the meta-heuristics.

The GA performed worse than other meta-heuristics in all of the categories considered for
all N jobs and M machines. The GA time is on the average less than two seconds, far slower
than the SAH – notably because it keeps track of a population of individual solutions.
Results show it to being in the region of four times slower than SAH.

The GA that is hybridised with DO2 (GAH) achieves better results (see Table 1 and Figure 2)
on all of the test cases than the simple GA. In all cases considered, the GAH outperforms
the ordinary GA, and as the value of N increases, the performance rate of the GAH over the
GA widens. For larger values of N, the performance of the GAH is almost equivalent to, if
not better, than the SAH. The GAH takes on average about 2.55 seconds. The GAH would be
ideal for larger values of N where an optimal solution is not readily feasible. It is observed
that, on average, the GA takes less time to run than the GAH.

The PSO and the hybrid PSO (PSOH) produce a lower number of early and tardy jobs than
the GA. Furthermore, they are far slower than all the meta-heuristics considered (over 33.1
times slower for PSO and 22.9 for PSOH in relation to the SA). This is understandable since
PSO is a population-based algorithm, so a lot of work is done at each step. Hybridising PSO
with the DO2 greedy heuristic produces results that are better than PSO for all cases. The
PSOH is also about 1.45 times faster than PSO. While it is observed for all other meta-
heuristics that, as the number of machines increases, their corresponding penalties reduce,
the reverse is the case for PSO and PSOH.

The results for SA are far better on average than those for GA, PSO, AND PSOH, in
performance of both penalty and time (see Tables 1 and 2 and Figures 2 and 3). On
average, SA takes 0.45 seconds to run. However, it is about 4.41, 5.72, 33.1, and 22.9 times

15
2

Table 1a: Performance of meta-heuristics for different values of N (100 and 200)

 m=2 m=5 m=10 m=15 m=20
 MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX
 GA 113 119.38 126 105 110.84 116 96 103.14 109 92 98.68 106 88 93.26 101
 1937 2006.86 2122 1891 1961.52 2266 1828 1909.34 1985 1890 1928.72 2000 1922 1987.5 2094
 GAH 63 76.04 85 59 69.52 59 52 64.02 76 51 59.96 67 41 51.8 62
 2781 2904.34 3063 2641 2770.62 2938 2484 2628.76 2782 2485 61 2750 2531 2648.48 2813
 PSO 80 90.42 104 80 93.44 103 83 92.08 99 82 90.54 95 80 88 95
n=100 13734 14069.74 14453 13359 13795.38 14250 13406 13703.4 14141 13468 14622.4 20687 14187 15614.72 18344
 PSOH 65 74.96 85 68 82.88 90 64 85.5 95 74 83.82 93 72 80.48 87
 10093 10771.24 11765 9625 10251.9 11172 9375 9993.76 10922 9234 10029.34 10687 9531 10251.54 11109
 SA 74 81.68 91 69 75.84 81 59 67.46 76 54 62.06 69 47 54.36 64
 422 482.36 609 391 439.5 516 375 425.06 485 390 435.64 516 406 459.08 531
 SAH 67 78.58 93 56 66.7 75 47 58.32 71 41 53.54 61 35 46.28 57
 516 564.34 641 484 506.38 562 437 470.62 500 437 468.14 515 453 476.62 532

 m=2 m=5 m=10 m=15 m=20
 MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX
 GA 105 112.74 119 94 100.46 111 78 89.28 96 75 82.8 92 72 77.14 85
 1922 2014.68 2640 1844 1948.48 2453 1844 1915.86 2297 1875 1922.2 1985 1890 1986.2 2625
 GAH 32 43 53 25 38.1 45 22 35.68 43 22 31.94 39 18 27.86 36
 2797 2889.16 3031 2625 2751.26 2938 2484 2591.58 2719 2454 2579.58 2734 2484 2606.54 2766
 PSO 57 69.68 82 54 71.4 87 65 73.6 83 62 72.36 81 62 72.02 79
n=200 14187 15639.1 17656 13953 15253.88 16884 13750 15079.68 16750 13875 15277.78 17157 14218 15587.76 17687
 PSOH 33 42.38 54 31 52.34 63 46 57.24 65 49 57.46 65 48 56.64 67
 9953 10685.86 11672 9500 10410.12 20562 9359 10099.74 18812 9343 10094.66 18422 9484 10341.26 19719
 SA 49 57.2 66 36 50.02 58 31 43.64 51 31 38.02 45 24 33.68 41
 421 470 532 406 436.52 485 375 424.3 500 390 434.74 500 406 457.3 547
 SAH 32 44.12 52 24 35.96 49 18 31.92 42 17 26.88 34 15 23.02 34
 531 553.74 610 468 500.9 547 437 464.44 515 437 466.26 437 453 479.92 547

15
3

Table 1b: Performance of meta-heuristics for different values of N (300 and 400)

 m=2 m=5 m=10 m=15 m=20
 MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX
 GA 96 109.28 127 85 94.9 105 71 82.52 95 67 74.3 83 60 68.26 76
 1938 2031.28 3266 1844 1945.92 2422 1844 1918.78 2391 1828 1962.22 2766 1891 2003.44 2734
 GAH 13 21.06 29 12 18.72 30 8 15.94 24 8 14.94 23 3 11.48 21
 2765 2868.62 3047 2609 2745.68 2938 2500 2579.72 2656 2500 2561.46 2687 2485 2592.92 2688
 PSO 44 57.7 69 42 57.38 75 50 63.2 72 41 61.44 70 56 61.96 72
n=300 14093 15610.6 18469 13890 15334.38 17375 13765 15153.82 17062 13906 15309.38 17969 14218 15566.66 18500
 PSOH 13 21 32 15 30.74 47 18 35.98 45 12 38.34 51 10 37.78 48
 10125 10898.8 21672 9610 10250.84 14594 9266 9850.64 10750 9094 9849.82 10610 9078 10079.08 11203
 SA 32 42.26 56 28 34.84 44 19 28.36 36 18 24.88 35 13 20.1 29
 422 479.12 563 391 448.86 547 375 432.72 516 390 435.64 485 406 451.26 516
 SAH 14 21.6 32 13 18.04 29 7 13.86 21 4 11.96 19 2 8.4 16
 516 551.54 609 468 501.16 578 437 459.1 500 437 461.88 500 437 463.8 516

 m=2 m=5 m=10 m=15 m=20
 MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX
 GA 94 106.38 118 81 93.22 107 63 79.1 93 62 71.3 83 57 64.7 74
 1953 2021.86 2312 1844 1974.82 3141 1875 1914.62 169 1844 1974.86 3016 1938 1993.8 2625
 GAH 3 8.9 15 2 8.32 15 0 6.6 18 0 4.84 12 0 3.16 13
 2766 2861 2938 2640 2716.32 2782 2500 2566.86 2672 2484 2560.86 2860 2515 2576.74 2641
 PSO 42 54.72 66 37 52.88 71 36 56.24 65 30 54.64 62 49 54.62 61
n=400 14157 15572.48 17468 13110 14119.14 16953 12906 13153.44 13516 12953 13333.5 13641 13265 13559.38 13906
 PSOH 3 9.46 16 10 18.26 29 11 23.76 37 12 27.26 39 1 25.84 40
 9921 10640.96 11672 9437 10122.72 10922 9297 9868.22 10579 9016 9887.2 11188 9437 10066.84 13297
 SA 23 43.2 42 18 25.88 33 14 20.28 33 8 15.92 24 6 12.58 22
 422 468.78 532 406 442.44 500 375 417.8 484 390 437.8 390 406 446.32 515
 SAH 3 9.32 16 1 8.22 16 0 5.74 15 0 3.64 10 0 2 9
 515 549.7 609 468 496.56 532 437 460.06 516 437 466.54 532 437 472.78 547

154

quicker than the GA, GAH, PSO, and PSOH, respectively. SA has the best overall time
performance of all the meta-heuristics.

Table 2: Homogeneous subsets

PENALTY

Scheffea

HEURISTICS N

Subset for alpha = 0.05

1 2 3

SAH 20 28.4050

GAH 20 30.5940

SA 20 41.6130

PSOH 20 47.1060

PSO 20 69.4160

GA 20 91.5840

Sig. .147 1.000 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses harmonic mean sample size = 20.000.

Figure 2: Meta-heuristics performance in relation to penalty

0
20
40
60
80

100
120
140

GA GAH PSO PSOH SA SAH

Chart for n = 100

m=2

m=5

m=10

m=15

m=20 0

20

40

60

80

100

120

GA GAH PSO PSOH SA SAH

Chart for n = 200

m=2

m=5

m=10

m=15

m=20

0

20

40

60

80

100

120

GA GAH PSO PSOH SA SAH

Chart for n = 300

m=2

m=5

m=10

m=15

m=20 0

20

40

60

80

100

120

GA GAH PSO PSOH SA SAH

Chart for n = 400

m=2

m=5

m=10

m=15

m=20

155

Figure 3: Performance time of the meta-heuristics

Hybridising SA with the DO2 greedy heuristic (SAH) produces results that are slightly better
than the SA solution for all cases considered. It produces the overall best results among the
meta-heuristics in terms of performance in relation to penalty. The average timing is a
little less than 0.5 seconds.

Due to the equality of their variances, subsets of homogeneous groups are displayed in
Table 2 using Scheffé’s method. The Scheffé test is designed to allow all possible linear
combinations of group means to be tested. That is, pair-wise multiple comparisons are done
to determine which means differ. Three groups are obtained: Group 1 - SAH, GAH, SA, and
PSOH; Group 2 - PSO; and Group 3 – GA. These groups are arranged in decreasing order of
their effectiveness. The worst among them is the GA.

6 CONCLUSION

We considered an identical machine problem with the objective of minimising the number
of early and tardy jobs. The purpose of this study was to compare the performance of
several meta-heuristics and determine a good meta-heuristics to solve this problem. Six
meta-heuristics that incorporate a fast greedy heuristic were suggested because they gave
promising results. Computational experiments and statistical analyses were performed to
compare these algorithms. The SAH was the best among the various meta-heuristics. This
research can be extended in several directions. First, these results could be compared with
an optimal solution. Second, the environment with uniform or unrelated parallel machines
could be a practical extension.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Chart for n = 100

m=2

m=5

m=10

m=15

m=20 0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Chart for n = 200

m=2

m=5

m=10

m=15

m=20

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Chart for n = 300

m=2

m=5

m=10

m=15

m=20 0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Chart for n = 400

m=2

m=5

m=10

m=15

m=20

156

ACKNOWLEDGEMENTS

The authors are grateful to the referee(s) for their useful comments that improved the
quality of this paper.

REFERENCES

[1] Adamu, M.O. & Adewumi, A.O. 2015. Minimizing the weighted number of tardy jobs on multiple
machines: A review. Asian Pacific Journal of Operations Research. In press.

[2] Adamu, M.O. & Adewumi, A.O. 2014. Single machine review to minimize weighted number of
tardy jobs. Journal of Industrial and Management Optimization, 10(1), pp. 219–241.

[3] Garey, M.R. & Johnson, D.S. 1979. Computers and intractability: A guide to the theory of NP
completeness. San Francisco: Freeman.

[4] Graham, R.L., Lawler, E.L., Lenstra, T.K. & RinnooyKan, A.H.G. 1979. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5, pp. 287-326.

[5] Ho, J.C. & Chang Y.L. 1995. Minimizing the number of tardy jobs for m parallel machines.
European Journal of Operational Research, 84, pp. 343-355.

[6] Süer, G.A., Baez, E. & Czajkiewicz, Z. 1993. Minimizing the number of tardy jobs in identical
machine scheduling. Computers & Industrial Engineering, 25(1-4), pp. 243-246.

[7] Süer, G.A. 1997. Minimizing the number of tardy jobs in multi-period cell loading problems.
Computers and Industrial Engineering, 33(3,4), pp. 721-724.

[8] Süer, G.A., Pico, F. & Santiago, A. 1997. Identical machine scheduling to minimize the number
of tardy jobs when lost-splitting is allowed. Computers and Industrial Engineering, 33 (1,2), pp.
271-280.

[9] Van Den Akker, J.M., Hoogeveen, J.A. & Van De Velde, S.L. 1999. Parallel machine scheduling
by column generation. Operations Research, 47(6), pp. 862-872.

[10] Chen, Z. & Powel, W.B. 1999. Solving parallel machine scheduling problems by column
generation. INFORMS Journal on Computing, 11(1), pp. 78-94.

[11] Liu, M. & Wu, C. 2003. Scheduling algorithm based on evolutionary computing in identical
parallel machine production line. Robotics and Computer Integrated Manufacturing, 19, pp. 401-
407.

[12] M’Hallah, R. & Bulfin, R.L. 2005. Minimizing the weighted number of tardy jobs on parallel
processors. European Journal of Operational Research, 160, pp. 471-484.

[13] Sevaux, M. & Thomin, P. 2001. Heuristics and metaheuristics for a parallel machine scheduling
problem: A computational evaluation. Proceedings of the 4th Metaheuristics International
Conference, pp. 411-415.

[14] Baptiste, P., Jouglet, A., Pape, C.L. & Nuijten, W. 2000. A constraint based approach to
minimize the weighted number of late jobs on parallel machines. Technical Report 2000/228,
UMR, CNRS 6599, Heudiasyc, France.

[15] Dauzère-Pérès, S. & Sevaux, M. 1999. Using lagrangean relation to minimize the (weighted)
number of late jobs on a single machine. National Contribution IFORS 1999, Beijing, P.R. of China
(Technical Report 99/8 Ecole des Minesdes Nantes, France).

[16] Sevaux, M. & Sörensen, K. 2005. VNS/TS for a parallel machine scheduling problem. MEC-VNS:
18th Mini Euro Conference on VNS.

[17] Li., C.L. 1995. A heuristic for parallel machine scheduling with agreeable due dates to minimize
the number of late jobs. Computers and Operations Research, 22(3), pp. 277-283.

[18] Hiraishi, K., Levner, E. & Vlach, M. 2002. Scheduling of parallel identical machines to maximize
the weighted number of just-in-time jobs. Computers and Operations Research, 29, pp. 841-848.

[19] Sung, S.C. & Vlach, M. 2001. Just-in-time scheduling on parallel machines. The European
Operational Research Conference, Rotterdam, Netherlands.

[20] Lann, A. & Mosheiov, G. 2003. A note on the maximum number of on-time jobs on parallel
identical machines. Computers and Operations Research, 30, pp. 1745-1749.

[21] Čepek, O. & Sung, S.C. 2005. A quadratic time algorithm to maximize the number of just-in-time
jobs on identical parallel machines. Computers and Operational Research, 32, pp. 3265-3271.

[22] Cheng, T., Lazarev, A. & Gafarov, E. 2009. A hybrid algorithm for the single-machine total
tardiness problem. Computers & Operations Research, 36(2), pp. 308–315.

[23] Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P. & Werner, F. 2009. A comparison of
scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup
times, and dual criteria. Computers & Operations Research, 36(2), pp. 358–378.

[24] Janiak, A., Janiak, W.A. & Januszkiewicz, R. 2009. Algorithms for parallel processor scheduling
with distinct due windows and unit-time jobs. Bulletin of the Polish Academy of Sciences
Technical Sciences, 57(3), pp. 209-215.

157

[25] Adamu, M. & Abass, O. 2010. Parallel machine scheduling to maximize the weighted number of
just-in-time jobs. Journal of Applied Science and Technology, 15(1-2), pp. 27–34.

[26] Adamu, M.O. & Adewumi, A.O. 2012. Metaheuristics for scheduling on parallel machines to
minimize the weighted number of early and tardy jobs. International Journal of Physical
Sciences, 7(10), pp. 1641-1652.

[27] Goldberg, D.E. 1989. Genetic algorithms in search, optimization and machine learning. Addison-
Wesley.

[28] Holland, J.H. 1975. Adaptation in natural and artificial systems. Ann Arbor, MI: University of
Michigan Press.

[29] Mitchell, M. 1998. An introduction to genetic algorithms. The MIT Press.
[30] Adewumi, A.O. & Ali, M. 2010. A multi-level genetic algorithm for a multi-stage space allocation

problem. Mathematical and Computer Modeling, 51(1-2), pp. 109-126.
[31] Adewumi, A.O., Sawyerr, B.A. & Ali, M.M. 2009. A heuristic solution to the university

timetabling problem. Engineering Computations, 26(8), pp. 972-984.
[32] Naso, D., Surico, M., Turchiano, B. & Kaymak, U. 2007. Genetic algorithms for supply-chain

scheduling: A case study in the distribution of ready-mixed concrete. European Journal of
Operational Research, 177, pp. 2069–2099.

[33] Arasomwan, A. M. & Adewumi, A. O.,2013. On the Performance of Linear Decreasing Inertia
Weight Particle Swarm Optimization for Global Optimization, The Scientific World Journal, 2013,
Article ID 860289, 12 pages. doi:10.1155/2013/860289.

[34] Poli, R., Kennedy, J. & Blackwell, T. 2007. Particle swarm optimization: An overview. Swarm
Intelligence, 1, pp. 33–57.

[35] Kirkpatrick, S., Gellat, C. & Vecchi, M. 1983. Optimization by simulated annealing. Science,
220, pp. 671–680.

[36] Chetty, S. & Adewumi, A.O., 2013. Three New Stochastic Local Search Metaheuristics for the
Annual Crop Planning Problem Based on a New Irrigation Scheme. Journal of Applied
Mathematics, 2013, Article ID 158538, 14 pages. http://dx.doi.org/10.1155/2013/158538.

	COMPARING THE PERFORMANCE OF DIFFERENT META-HEURISTICS FOR UNWEIGHTED PARALLEL MACHINE SCHEDULING
	M.O. Adamu10F(& A. Adewumi2

	ABSTRACT
	OPSOMMING
	1 INTRODUCTION
	During the past few decades, a considerable amount of work has been conducted on scheduling on multiple machines [1] and single machine [2] in order to minimize the number of tardy jobs. When jobs in a schedule have equal important, they are referred ...
	The single-machine scheduling problem to minimize the total job tardiness was considered by Cheng et al. [22] using the ant colony optimization (ACO) meta-heuristic. [23] compared scheduling algorithms for flexible flow shop problems with unrelated p...
	2 problem formulation
	3 HEURISTICS AND META-HEURISTICS
	3.1 Greedy heuristic
	3.2 Genetic algorithm
	3.3 Particle swarm optimisation
	3.4 Simulated annealing

	4 COMPUTATIONAL ANALYSIS AND RESULTS
	4.1 Data generation
	4.2 Improvements
	4.3 Greedy hybrids
	4.4 Parameter settings

	5 DISCUSSION OF RESULTS
	6 cONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

