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ABSTRACT 

This article considers the due window scheduling problem to minimise the number of early 
and tardy jobs on identical parallel machines. This problem is known to be NP complete and 
thus finding an optimal solution is unlikely. Three meta-heuristics and their hybrids are 
proposed and extensive computational experiments are conducted. The purpose of this 
paper is to compare the performance of these meta-heuristics and their hybrids and to 
determine the best among them. Detailed comparative tests have also been conducted to 
analyse the different heuristics with the simulated annealing hybrid giving the best result. 

OPSOMMING 

Die minimering van vroeë en trae take op identiese parallelle masjien met behulp van die 
gepaste gleufskeduleringsprobleem word oorweeg. Die probleem is nie-deterministies 
polinomiese tyd volledig en die vind van ‘n optimale oplossing is dus onwaarskynlik. Drie 
meta-heuristieke en hul hibriede word voorgestel en uitgebreide berekeningseksperimente 
word uitgevoer. Die doel van hierdie artikel is om die vertoning van hierdie meta-
heuristieke en hul hibriede met mekaar te vergelyk om sodoende die beste te identifiseer. 
Gedetaileerde vergelykende toetse is ook uitgevoer om die verskillende heuristieke te 
ondersoek; daar is gevind dat die gesimuleerde uitgloei hibried die beste resultaat lewer. 

                                                      
∗  Corresponding author 
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1 INTRODUCTION 

Due to an increased emphasis on satisfying customers in service provision, due-date related 
objectives are becoming more important in scheduling. In this article, the objective of 
minimising the number of early and tardy jobs is considered – a situation where more jobs 
are completed within their due windows (due-dates). This objective is practical in real-
world situations, in order to attain a better customer service rating. To the best of our 
knowledge, no other article has considered this type of problem. Therefore, the purpose of 
this study is to compare the performance of several meta-heuristics and to determine a 
good meta-heuristic to solve this problem. In the identical parallel machine problem, n jobs 
are to be processed on m machines, assuming the following facts: 
 
• A job is completed when processed by any of the machines; 
• A machine can process only one job at a time; 
• Once a job is being processed, it cannot be interrupted;  
• All jobs are available from time zero; 
• The weights (penalties) of the jobs are equal (unweighted); and 
• All processed jobs are completed within their due windows. 
 
During the past few decades, a considerable amount of work has been conducted on 
scheduling on multiple machines [1] and single machine [2] in order to minimize the 
number of tardy jobs. When jobs in a schedule have equal important, they are referred to 
as 'unweighted' jobs, whereas 'weighted' jobs are cases where jobs' contributions are not 
the same. Garey and Johnson [3] have shown the problem considered in this work is NP-
complete; they argue that finding an optimal solution appears unlikely. 
 
Using the three-field notation of Graham et al. [4], the unweighted problem considered in 
this paper can be represented as Pm| |∑(Uj + Vj), ), where P describes the shop (machine) 
environment for identical parallel machines, and m describes the number of machines. The 
space between the bars is for possible constraints on the jobs such as pre-emption, release 
time, setup, batching precedence, etc. This current work considers job scheduling case on 
parallel machine with no explicit constraint. The symbols Uj and Vj are binary (0 or 1) that 
indicates whether a job is scheduled early or tardy respectively, that is, 0 is used when the 
job is scheduled on time, and 1 is used if it is not.  
 
Scheduling to minimise the (weighted) number of tardy jobs has been considered by Ho and 
Chang [5], Süer et al. [6], Süer [7], Süer et al. [8], Van der Akker [9], Chen and Powell [10], 
Liu and Wu [11], and M’Hallah and Bulfin [12]. Sevaux and Thomin [13] addressed the NP-
hard problem to minimise the weighted number of late jobs with release time (P|rj|∑wjUj). 
They presented several approaches to the problem, including two MILP formulations for 
exact resolution, and various heuristics and meta-heuristics to solve large size instances. 
They compared their results with those of Baptiste et al. [14], who performed better on 
average. Baptiste et al. [14] used a constraint-based method to explore the solution space 
and give good results on small problems (n < 50).  
 
Dauzère-Pérès and Sevaux [15] determined conditions that must be satisfied by at least one 
optimal sequence for the problem of minimising the weighted number of late jobs on a 
single machine. Sevaux and Sörensen [16] proposed a variable neighbourhood search (VNS) 
algorithm in which a ‘tabu’ search algorithm was embedded as a local search operator. The 
approach was compared with an exact method by Baptiste et al. [14]. Li [17] addressed the 
P|agreeable due dates|∑Uj problem, where the due dates and release times were assumed 
to be in agreement. A heuristic algorithm was presented and a dynamic programming lower 
bounding procedure developed. Hiraishi et al. [18] addressed the non-pre-emptive 
scheduling of n jobs that are completed exactly at their due dates. They showed that this 
problem is polynomially solvable, even if positive set-up is allowed.  
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Sung and Vlach [19] showed that when the number of machines is fixed, the weighted 
problem considered by Hirashi et al. [18] is solvable in polynomial time (exponential in the 
number of machines), no matter whether the parallel machines are identical, uniform, or 
unrelated. However, when the number of machines is part of the input, the unrelated 
parallel machine case of the problem becomes strongly NP-hard. Lann and Mosheiov [20] 
provided a simple greedy O (n log n) algorithm to solve the problem of Hiraishi et al. [18], 
thus greatly improving the time complexity. Čepek and Sung [21] considered the same 
problem of Hiraishi et al. [18], where they corrected the greedy algorithm of Lann and 
Mosheiov [20], which they argued was wrong; Hiraishi et al. [18] presented a new quadratic 
time algorithm that solved the problem.  
 
The single-machine scheduling problem to minimize the total job tardiness was considered 
by Cheng et al. [22 ] using the ant colony optimization (ACO) meta-heuristic. [23] compared 
scheduling algorithms for flexible flow shop problems with unrelated parallel machines, 
setup times, and dual criteria.  Janiak et al. [24] studied the problem of scheduling n jobs 
on m identical parallel machines, where for each job a distinct due window is given and the 
processing time in unit time to minimize the weighted number of early and tardy jobs. They 
gave an O(n5) complexity for solving the problem (Pm|pj = 1 |∑wj(Uj + Vj). They also 
considered a special case with agreeable earliness and tardiness weights where they gave 
on O(n3) complexity (Pm|pj = 1, rj, agreeable ET weights|∑wj(Uj + Vj)). Adamu and Abass 
[25] proposed four greedy heuristics for the Pm||∑wj (Uj + Vj) problem, and performed 
extensive computational experiments. Adamu and Adewumi [26] proposed some meta-
heuristics and their hybrids to solve the problem considered by Adamu and Abass [25]; they 
found them performing better. 

2 PROBLEM FORMULATION 

Let there be an independent set, N = {1,2, . . . , n} of jobs that are to be scheduled on m 
parallel identical machines that are immediately available from time zero, each having an 
interval rather than a point in time, which is called the due window of the job. The left end 
and the right end of the window are called the earliest due date (i.e., the instant at which 
a job becomes available for delivery) and the latest due date (i.e., the instant by which 
processing or delivery of a job must be completed) respectively. There is no penalty when a 
job is completed within the due window, but for earliness or tardiness, a penalty is incurred 
when a job is completed before the earliest due date or after the latest due date. Each job 
jє N has a processing time pj, earliest due date aj, and latest due date dj; it is assumed that 
there are no pre-emptions and only one job may be processed on a given machine at any 
given time. For any schedule S, let tij and Cij(S) = tij +pj represent the actual start time on a 
given machine and completion time of job j on machine i, respectively. Job j is said to be 
early if Cij(S) <aj, tardy if Cij(S) >dj, and on-time if aj ≤ Cij(S) ≤ dj. For any job k(ij), where 
k(ij) stands for the jth processed job on machine i, the number of early and tardy jobs [11] 
can be calculated by  
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Therefore, the problem of scheduling to minimise the number of tardy jobs on identical 
parallel machines can be formulated as  
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3 HEURISTICS AND META-HEURISTICS 

3.1 Greedy heuristic 

Adamu and Abass [25] proposed four greedy heuristics that attempt to provide near-optimal 
solutions to the parallel machine scheduling problem. In this paper, the fourth heuristic 
(DO2) is used. It entails sorting the jobs according to their latest due date (i.e., latest due 
time - processing time) and the ties broken by the highest inverse ratio of processing time 
(i.e., 1 / processing time).  
 
The results of these greedy heuristics are encouraging; however, whether using meta-
heuristics and their hybrids can achieve better results will be investigated further. Similar 
codes used in Adamu and Adewumi [26] will be used to solve the problem of minimising the 
number of early and tardy jobs on parallel machines. 

3.2 Genetic algorithm 

Genetic algorithm (GA) is one of the best known meta-heuristics for solving optimisation 
problems [27,28,29]. The technique is loosely based on evolution in nature, and uses 
strategies such as survival of the fittest, genetic crossover, and mutation. It has proved 
very useful in handling many discrete optimisation problems [30-32]; hence the decision to 
test its performance on the current problem and to compare it with the performance of 
greedy heuristics. An overview of the GA implemented for the current problem is presented 
as follows: 
 
1. Problem representation: Deciding on a suitable representation is one of the most 

important aspects of a GA. An integer string representation is adopted in this study. 
Each job is fixed to a gene in the chromosome; this implies that the chromosome has 
length n (where n is the number of jobs). Each position in the chromosome therefore 
represents a job. Each gene contains two integer numbers representing the number of 
the machine to which the job will be assigned, and an order, respectively. The order 
number is a value between 1 and n, representing the order in which jobs assigned to 
the same machine will be executed. Genetic operators are then applied to both the 
machine number and the order. Figure 1 presents a typical representation for a case 
of five jobs (n = 5) to be processed on three machines. In this case, Jobs 1 and 4 
should both be processed on Machine 2, but with Job 4 having priority over Job 1. 

2.  

 Job 1 Job 2 Job 3 Job 4 Job 5 

2 (2) 3 (1) 1 (1) 2 (1) 1 (2) 

Figure 1: A sample representation for GA 

3. Algorithm: The pseudo code of the GA implemented is presented on the next page:  
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Generate a population of randomly initialised individuals.  
iterations← 0 
repeat 
fori = 1 →popSizedo 
       Perform crosssover with probability crossoverRate.  
end for 
fori = 1 →popSizedo 
forj = 1 →numJobsdo 
                Mutate machine with probability mutationRate.  
end for 
end for 
fori = 1 →popSizedo 
forj = 1 →numJobsdo 
               Mutate order with probability mutationRate.  
end for 
end for 
     Use selection to form a new population of individuals.  
iterations←iterations + 1 
untiliterations ≥ numIterations 
     Return the fitness of the best individual.  
 

4. Fitness function: The fitness function calculates the total number of jobs that could 
not be assigned to any of the machines so that they would finish between the earliest 
due date and the latest due date. For each machine, jobs that are assigned to it are 
placed in a priority queue (based on their respective order). Each job is then removed 
from the queue and placed on the machine. If the job were to finish early it would be 
scheduled to begin later (at earliest due date - processing time) in order to avoid the 
earliness penalty. However, if the job were to finish past the end time, it would not 
be scheduled at all; instead the job would be added to the total penalty (fitness). 
Since the fitness calculates the penalty incurred, it then implies that the lower the 
fitness function, the better the performance of the algorithms or the result generated. 

5. Genetic operators: The choice of basic operators of selection, crossover, and mutation 
influences the behaviours of the GA [29]. In the current study, the operators are 
applied separately to the machine and the order number. For both, the tournament 
selection was used to select the two parents for crossover. For the machine, the 1-
point crossover and conventional mutation was adopted. The mutation operator 
chooses a random machine from 0 to m-1 inclusive, and also changes the machine 
number randomly. Since the order number (the order in which jobs are to be 
processed on a machine) is permutation-based, swap mutation for the execution order 
was used. This involves randomly selecting two jobs to be processed on the same 
machine, and swapping the order in which they were originally to be processed. 
However, since there were no guarantees that these operators would allow for the 
best performance, further experimentation with variations of these operators was 
performed. More details will be given in a later section. Detail and basic descriptions 
of these operators can be found in Goldberg [27] and Mitchell [29]. 

3.3 Particle swarm optimisation 

Particle swarm optimisation (PSO) is regarded as another efficient optimisation technique 
[33,34], hence its selection for the current parallel machine scheduling problem. It is a 
population-based technique derived from the flocking behaviour of birds, and relies on both 
the particle’s best position found so far and the entire population’s best position, in order 
to get out of local optimums to approach the global optimum. PSO is appropriate to use for 
parallel machine scheduling since not much is known about the solution landscape. A 
description of the PSO, as implemented for this study, is presented on the next page: 
 
1. Problem representation: The PSO algorithm requires that a representation of the 

solution (or encoding of the solution) is chosen. Each particle will be an instance of 
the chosen representation. A complication is that PSO works in the continuous space, 
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whereas the scheduling problem is a discrete problem. Thus a method is needed to 
convert from the continuous space to the discrete space. The representation is as 
follows:  
 
• Each particle is represented by a pair of two digits.   
• The first digit is a number in the range [0,m), where m represents the  number of 

machines on which the particle is scheduled.  Note that 0 is inclusive and m is 
exclusive in the range. The number is simply truncated to convert to the discrete 
space.  

• Similarly, the second digit, also in the range [0,m) represents the order of 
scheduling of the particle relative to other particles on the same machine; a 
lower number indicates that the job will be scheduled before jobs with higher 
numbers. 
 

2. Algorithm: Below is a basic pseudo code of the PSO that was used. 
 
fori = 1 →PopSize do  
 Construct particle with randomly initialised machine number and order.  
end for 
repeat 
 pbest← 231 
 fori = 1 →PopSizedo  
  fitness←calcfitness(pop[i]) 
  if fitness <pbest then 
   pbest← fitness 
  end if  
  if fitness< fitness(gbest) then 
   gbest← pop[i] 
  end if  
 end for        
 fori = 1 →PopSize do 
  v[i + 1] ←wv[i] + r1c1(pbest – pos[i]) + r2c2(gbest – pos[i])  
  pos[i + 1] ←pos[i] + v[i] (ensuring to clamp the position within range) 
 end for 
 iterations← iterations + 1 
until iterations ≥ numIterations 

 
3. Fitness function: Finally, a method is needed to convert the encoding into a valid 

schedule (performed when calculating the fitness). This is performed by separating 
the jobs into groups based on the machine to which they are assigned. Within a group, 
the jobs are sorted by their order parameter and organised into a queue. The schedule 
for a particular machine is then formed by removing jobs from the queue and 
scheduling them as early as possible without breaking the earliness constraint. The 
fitness of a solution is computed as the penalty incurred; that is, the total number of 
jobs that cannot be scheduled, which ideally should be as small as possible. 

3.4 Simulated annealing 

Simulated annealing (SA) has also been shown to be highly effective for discrete problems 
[35,36], hence its selection for the current problem. SA is based on real-life annealing, 
where the heating of metals allows for atoms to move from their initial position, and 
cooling allows for the atoms to settle in new optimal positions. SA is not a population-based 
heuristic; thus only one solution is kept at any one stage. Since SA should result in fewer 
operations being performed than by a population-based technique, execution times may be 
quicker. It is for this reason that SA was chosen for investigation.  
 
It should also be noted that SA will in all likelihood achieve better results than a simple hill-
climbing technique. This is because SA can take downward steps (i.e., accept worse 
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solutions) in order to obtain greater exploration. Thus, it is less likely to become stuck in a 
local minimum (a very real problem, given the complex solution space). 
 
1. Problem representation: The representation is remarkably similar to that used in the 

GA. A solution consists of n elements (where n is the number of jobs). Each element 
has a specific job, as well as the machine to which it will be assigned and the order of 
assignment. Perhaps the major difference between SA and GA is that the GA has a 
population of solutions (chromosomes), whereas SA focuses on a single solution.  

2. Algorithm: This is the basic algorithm used in the SA technique:  
 

Generate a randomly initialised solution sol.  
repeat 
 fori→ 10 do 
  find a neighbor of sol and call it solPrime. 
  if fitness(solPrime) < fitness(sol) then 
   sol←solPrime 
  else 
   if efitness(sol) – fitness(solPrime)> rand(0..1) then 
    sol←solPrime 
   end if 
  end if 
 end for 
 temp← temp*beta 
until temp ≤ templ 

 
3. Fitness function: Since the solution is represented in virtually the same manner as a 

chromosome in the GA and a particle in PSO, the fitness function is calculated in the 
same way. That is, jobs pertaining to a particular machine are placed in a priority 
queue before being assigned to the machine. Those that cannot be assigned contribute 
towards the penalty.  

4. Operators: Although SA does not really have operators (in the sense of a GA having 
genetic operators), the SA algorithm does have to select a neighbour. The particular 
neighbour selection strategy that is used updates only a single element of the solution. 
The element is given a new randomly-chosen machine and a new order (done by 
swapping with the order of another randomly chosen element). By allowing for a high 
level of randomness when selecting the neighbour, it is ensured that good exploration 
will be achieved and that a local best is not found too early.  

4 COMPUTATIONAL ANALYSIS AND RESULTS 

4.1 Data generation 

The program was written in Java using Eclipse. It actually consists of a number of programs, 
each one implementing a different type of solution. The output of each of these programs 
gives the final fitness after the algorithm has been performed, and the time in milliseconds 
that the algorithm took to run.  
 
The heuristics were tested on problems generated with 100, 200, 300, and 400 jobs, similar 
to Adamu and Abass [25], Adamu and Adewumi [26], Ho and Chang [5], Baptiste et al. [14], 
and M’Hallah and Bulfin [12]. The number of machines was set at levels of 2, 5, 10, 15, and 
20. For each job j, an integer processing time pj was randomly generated in the interval (1, 
99). Two parameters, k1 and k2 (levels of traffic congestion ratio) were taken from the set 
{1, 5, 10, 20}. For the data to depend on the number of jobs n, the integer’s earliest due 
date (aj) was randomly generated in the interval (0, n / (m * k1)), and the integer’s latest 
due date (dj) was randomly generated in the interval (aj + pj, aj + pj+ (2 * n * p) / (m * k2)).  
 
For each combination of n, k1, and k2, ten instances were generated; i.e., for each value 
of n, 160 instances were generated for 8,000 problems of 50 replications. The meta-
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heuristics were implemented on a Pentium Dual 1.86 GHz, 782 MHz, and 1.99 GB of RAM. 
The following meta-heuristics were analysed: GA, PSO, SA, GA Hybrid, PSO Hybrid, and SA 
Hybrid. 

4.2 Improvements 

The use of genetic operators of crossover and mutation for both exploration and 
exploitation of solution space gives the GA a unique advantage over some other meta-
heuristics. In this work, the original GA that was tested used 1-point crossover, random 
mutation for machines, swap mutation for order, and tournament selection. Other 
combinations of operators were also tested to check which ones improved the performance 
of the algorithm. This initial experiment showed that roulette-wheel selection, uniform 
crossover, and insert mutation (for order) are better for the problem at hand. A user can 
choose any combination of these operators to use to run the algorithm. More information on 
the optimal combination of genetic operators will be mentioned in Section 4.4.  

4.3 Greedy hybrids 

This work seeks to improve the performance of the underlying meta-heuristics (GA, PSO, 
and SA) by potentially hybridising them with some features of the greedy heuristic proposed 
by Adamu and Abass [25]. The key feature of the greedy heuristics in that work essentially 
lies in the order in which jobs were assigned to machines. So the mechanisms of ordering in 
DO2 [25] are incorporated in the meta-heuristics (GA, PSO, SA).  
 
To implement the hybrid in the three meta-heuristics, the order field was removed from 
Gene, Dimension, and Element respectively. Also, any code in Chromosome, Particle, and 
Solution, which dealt with the order (e.g., swap mutation in Chromosome), was removed.  

4.4 Parameter settings 

For each solutions strategy, there are a number of different parameters that affect the 
performance of the algorithm, such as population size, mutation rate, initial temperature, 
etc. These parameters were determined experimentally by running the algorithms on a 
subset of all the testing data, in order to determine the optimal parameters. This involved 
experimenting with the full range of each parameter and recording and tabulating the 
results achieved. The combination of parameters that gave the best performance was 
selected as the optimal combination. After this initial experiment, the optimal parameters 
for the GA were found to be as follows:  
 
• A population size of 10.  
• Random mutation (for machines) used at a rate of 0.01.  
• Swap mutation (for order) used at a rate of 0.01.  
• Uniform crossover at a rate of 0.5.  
• Tournament selection with a k set at 40 per cent of the population size.  
• The number of iterations of the algorithm was set at 2,000.  
 
The best performance with a population size of 10 for this initial experience is likely due to 
the inherently parallel nature of the GA; hence lower population size might give better 
runtime and fitness for problems of this nature where time is a critical factor.  
 
Further to the above parameters, the GA hybrid achieved best results when hybridised with 
the DO2 greedy heuristic.  
 
The optimal parameters for PSO are:  
 
• A population size of 50.  
• A w (momentum value) of 0.3.  
• A c1 of 2.  
• A c2 of 2.  
• The number of iterations of the algorithm was set at 2,000.  
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Further to the above parameters, the particle swarm optimisation hybrid achieved best 
results when hybridised with the DO2 greedy heuristic.  
 
The optimal parameters for SA are:  
 
• An initial temperature of 25.  
• A final temperature of 0.01.  
• A geometrical decreasing factor (beta) of 0.999. 
 
Further to the above parameters, the SA hybrid achieved best results when hybridised with 
the DO2 greedy heuristic. 

5 DISCUSSION OF RESULTS 

In this section, the results of the algorithms are shown, including the results of the 
hybridisations. In the four tables shown in Table 1 (a and b), each cell consists of two 
numbers. The top number is the weight of the schedule that is produced, averaged over 50 
runs. The bottom number is the average time in milliseconds that the algorithm takes to 
complete.  
 
Also included are four charts, each for the performance of the meta-heuristics in relation to 
the penalty (see Figure 2) and time (see Figure 3) for n= 100, 200, 300, and 400. Figure 2 
compares the relative performance (penalty) of each of the six algorithms with the number 
of machines used. Again, four charts are given to show the computational times of the 
meta-heuristics for various values of N. 
 
It should be clear from both Table 1 and the charts (Figures 2 and 3) that the SA Hybrid 
(SAH) outperformed the other meta-heuristics in almost all points. Its average performance 
time is 0.5 seconds. It was observed that the various hybrids performed better than their 
meta-heuristic without hybridisation. It further proves the effectiveness of hybridisation on 
the meta-heuristics.  
 
The GA performed worse than other meta-heuristics in all of the categories considered for 
all N jobs and M machines. The GA time is on the average less than two seconds, far slower 
than the SAH – notably because it keeps track of a population of individual solutions. 
Results show it to being in the region of four times slower than SAH.  
 
The GA that is hybridised with DO2 (GAH) achieves better results (see Table 1 and Figure 2) 
on all of the test cases than the simple GA. In all cases considered, the GAH outperforms 
the ordinary GA, and as the value of N increases, the performance rate of the GAH over the 
GA widens. For larger values of N, the performance of the GAH is almost equivalent to, if 
not better, than the SAH. The GAH takes on average about 2.55 seconds. The GAH would be 
ideal for larger values of N where an optimal solution is not readily feasible. It is observed 
that, on average, the GA takes less time to run than the GAH. 
 
The PSO and the hybrid PSO (PSOH) produce a lower number of early and tardy jobs than 
the GA. Furthermore, they are far slower than all the meta-heuristics considered (over 33.1 
times slower for PSO and 22.9 for PSOH in relation to the SA). This is understandable since 
PSO is a population-based algorithm, so a lot of work is done at each step. Hybridising PSO 
with the DO2 greedy heuristic produces results that are better than PSO for all cases. The 
PSOH is also about 1.45 times faster than PSO. While it is observed for all other meta-
heuristics that, as the number of machines increases, their corresponding penalties reduce, 
the reverse is the case for PSO and PSOH. 
 
The results for SA are far better on average than those for GA, PSO, AND PSOH, in 
performance of both penalty and time (see Tables 1 and 2 and Figures 2 and 3). On 
average, SA takes 0.45 seconds to run. However, it is about 4.41, 5.72, 33.1, and 22.9 times  
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Table 1a: Performance of meta-heuristics for different values of N (100 and 200) 

      m=2     m=5     m=10     m=15     m=20   
    MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX 
  GA 113 119.38 126 105 110.84 116 96 103.14 109 92 98.68 106 88 93.26 101 
    1937 2006.86 2122 1891 1961.52 2266 1828 1909.34 1985 1890 1928.72 2000 1922 1987.5 2094 
  GAH 63 76.04 85 59 69.52 59 52 64.02 76 51 59.96 67 41 51.8 62 
    2781 2904.34 3063 2641 2770.62 2938 2484 2628.76 2782 2485 61 2750 2531 2648.48 2813 
  PSO 80 90.42 104 80 93.44 103 83 92.08 99 82 90.54 95 80 88 95 
n=100   13734 14069.74 14453 13359 13795.38 14250 13406 13703.4 14141 13468 14622.4 20687 14187 15614.72 18344 
  PSOH 65 74.96 85 68 82.88 90 64 85.5 95 74 83.82 93 72 80.48 87 
    10093 10771.24 11765 9625 10251.9 11172 9375 9993.76 10922 9234 10029.34 10687 9531 10251.54 11109 
  SA 74 81.68 91 69 75.84 81 59 67.46 76 54 62.06 69 47 54.36 64 
    422 482.36 609 391 439.5 516 375 425.06 485 390 435.64 516 406 459.08 531 
  SAH 67 78.58 93 56 66.7 75 47 58.32 71 41 53.54 61 35 46.28 57 
    516 564.34 641 484 506.38 562 437 470.62 500 437 468.14 515 453 476.62 532 

                       m=2     m=5     m=10     m=15     m=20   
    MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX 
  GA 105 112.74 119 94 100.46 111 78 89.28 96 75 82.8 92 72 77.14 85 
    1922 2014.68 2640 1844 1948.48 2453 1844 1915.86 2297 1875 1922.2 1985 1890 1986.2 2625 
  GAH 32 43 53 25 38.1 45 22 35.68 43 22 31.94 39 18 27.86 36 
    2797 2889.16 3031 2625 2751.26 2938 2484 2591.58 2719 2454 2579.58 2734 2484 2606.54 2766 
  PSO 57 69.68 82 54 71.4 87 65 73.6 83 62 72.36 81 62 72.02 79 
n=200   14187 15639.1 17656 13953 15253.88 16884 13750 15079.68 16750 13875 15277.78 17157 14218 15587.76 17687 
  PSOH 33 42.38 54 31 52.34 63 46 57.24 65 49 57.46 65 48 56.64 67 
    9953 10685.86 11672 9500 10410.12 20562 9359 10099.74 18812 9343 10094.66 18422 9484 10341.26 19719 
  SA 49 57.2 66 36 50.02 58 31 43.64 51 31 38.02 45 24 33.68 41 
    421 470 532 406 436.52 485 375 424.3 500 390 434.74 500 406 457.3 547 
  SAH 32 44.12 52 24 35.96 49 18 31.92 42 17 26.88 34 15 23.02 34 
    531 553.74 610 468 500.9 547 437 464.44 515 437 466.26 437 453 479.92 547 
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Table 1b: Performance of meta-heuristics for different values of N (300 and 400) 

      m=2     m=5     m=10     m=15     m=20   
    MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX 
  GA 96 109.28 127 85 94.9 105 71 82.52 95 67 74.3 83 60 68.26 76 
    1938 2031.28 3266 1844 1945.92 2422 1844 1918.78 2391 1828 1962.22 2766 1891 2003.44 2734 
  GAH 13 21.06 29 12 18.72 30 8 15.94 24 8 14.94 23 3 11.48 21 
    2765 2868.62 3047 2609 2745.68 2938 2500 2579.72 2656 2500 2561.46 2687 2485 2592.92 2688 
  PSO 44 57.7 69 42 57.38 75 50 63.2 72 41 61.44 70 56 61.96 72 
n=300   14093 15610.6 18469 13890 15334.38 17375 13765 15153.82 17062 13906 15309.38 17969 14218 15566.66 18500 
  PSOH 13 21 32 15 30.74 47 18 35.98 45 12 38.34 51 10 37.78 48 
    10125 10898.8 21672 9610 10250.84 14594 9266 9850.64 10750 9094 9849.82 10610 9078 10079.08 11203 
  SA 32 42.26 56 28 34.84 44 19 28.36 36 18 24.88 35 13 20.1 29 
    422 479.12 563 391 448.86 547 375 432.72 516 390 435.64 485 406 451.26 516 
  SAH 14 21.6 32 13 18.04 29 7 13.86 21 4 11.96 19 2 8.4 16 
    516 551.54 609 468 501.16 578 437 459.1 500 437 461.88 500 437 463.8 516 

                       m=2     m=5     m=10     m=15     m=20   
    MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX 
  GA 94 106.38 118 81 93.22 107 63 79.1 93 62 71.3 83 57 64.7 74 
    1953 2021.86 2312 1844 1974.82 3141 1875 1914.62 169 1844 1974.86 3016 1938 1993.8 2625 
  GAH 3 8.9 15 2 8.32 15 0 6.6 18 0 4.84 12 0 3.16 13 
    2766 2861 2938 2640 2716.32 2782 2500 2566.86 2672 2484 2560.86 2860 2515 2576.74 2641 
  PSO 42 54.72 66 37 52.88 71 36 56.24 65 30 54.64 62 49 54.62 61 
n=400   14157 15572.48 17468 13110 14119.14 16953 12906 13153.44 13516 12953 13333.5 13641 13265 13559.38 13906 
  PSOH 3 9.46 16 10 18.26 29 11 23.76 37 12 27.26 39 1 25.84 40 
    9921 10640.96 11672 9437 10122.72 10922 9297 9868.22 10579 9016 9887.2 11188 9437 10066.84 13297 
  SA 23 43.2 42 18 25.88 33 14 20.28 33 8 15.92 24 6 12.58 22 
    422 468.78 532 406 442.44 500 375 417.8 484 390 437.8 390 406 446.32 515 
  SAH 3 9.32 16 1 8.22 16 0 5.74 15 0 3.64 10 0 2 9 
    515 549.7 609 468 496.56 532 437 460.06 516 437 466.54 532 437 472.78 547 
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quicker than the GA, GAH, PSO, and PSOH, respectively. SA has the best overall time 
performance of all the meta-heuristics. 

Table 2: Homogeneous subsets 

PENALTY 

Scheffea 

HEURISTICS N 

Subset for alpha = 0.05 

1 2 3 

SAH 20 28.4050   

GAH 20 30.5940   

SA 20 41.6130   

PSOH 20 47.1060   

PSO 20  69.4160  

GA 20   91.5840 

Sig.  .147 1.000 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses harmonic mean sample size = 20.000. 

 

 

Figure 2: Meta-heuristics performance in relation to penalty 
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Figure 3: Performance time of the meta-heuristics 

Hybridising SA with the DO2 greedy heuristic (SAH) produces results that are slightly better 
than the SA solution for all cases considered. It produces the overall best results among the 
meta-heuristics in terms of performance in relation to penalty. The average timing is a 
little less than 0.5 seconds. 
 
Due to the equality of their variances, subsets of homogeneous groups are displayed in 
Table 2 using Scheffé’s method. The Scheffé test is designed to allow all possible linear 
combinations of group means to be tested. That is, pair-wise multiple comparisons are done 
to determine which means differ. Three groups are obtained: Group 1 - SAH, GAH, SA, and 
PSOH; Group 2 - PSO; and Group 3 – GA. These groups are arranged in decreasing order of 
their effectiveness. The worst among them is the GA.  

6 CONCLUSION 

We considered an identical machine problem with the objective of minimising the number 
of early and tardy jobs. The purpose of this study was to compare the performance of 
several meta-heuristics and determine a good meta-heuristics to solve this problem. Six 
meta-heuristics that incorporate a fast greedy heuristic were suggested because they gave 
promising results. Computational experiments and statistical analyses were performed to 
compare these algorithms. The SAH was the best among the various meta-heuristics. This 
research can be extended in several directions. First, these results could be compared with 
an optimal solution. Second, the environment with uniform or unrelated parallel machines 
could be a practical extension. 
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