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ABSTRACT 

Annual crop planning (ACP) is an NP-Hard type optimisation problem in agricultural 
planning. It involves finding optimal solutions for the seasonal allocations of a limited 
amount of agricultural land among the various competing crops that need to be grown on it. 
This study investigates the effectiveness of employing three relatively new Swarm 
Intelligence (SI) techniques in determining solutions to an ACP problem at a new irrigation 
scheme. The SI metaheuristics studied include Cuckoo Search (CS), Firefly Algorithm (FA), 
and Glow-worm Swarm Optimisation (GSO). The solutions determined by these SI 
techniques are compared against the solutions of Genetic Algorithm (GA), another 
population-based metaheuristic technique. This helps to determine the relative merits of 
the solutions found by the SI techniques. The results show that the SI algorithms delivered 
solutions superior to those of GA in determining solutions to the ACP problem at a new 
irrigation scheme. 

OPSOMMING 

Jaarlikse oesbeplanning is ‘n NP-Hard soort optimiseringsprobleem in landbou beplanning. 
Dit behels die bepaal van optimale oplossing vir die seisoenale toekenning van ‘n beperkte 
hoeveelheid landbougrond aan die verskeie mededingende gewasse. Hierdie artikel 
ondersoek die doeltreffendheid van drie relatiewe nuwe Swerm Intelligensie tegnieke om 
oplossings tot oesbeplanning by ‘n nuwe besproeiingskema te vind. Die Swem Intelligensie 
tegnieke wat ondersoek is, is die Koekoek Soekmetode, die Vuurvliegie Algoritme en die 
Gloei-wurm Swerm Optimisering tegnieke. Die oplossings deur hierdie tegnieke verkry is 
vergelyk met dié verkry met die tradisionele Genetiese Algoritme. Dié vergelyking help om 
die relatiewe voordele van die nuwe Swerm Intelligensie tegnieke te bepaal. Die resultate 
toon dat die voorgestelde tegnieke beter oplossings as die tradisionele Genetiese Algoritme 
benadering gelewer het. 
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1 INTRODUCTION 

Increases in population growth have increased the need for more food to be produced 
worldwide. At present, shortages in food supply have brought the hard-felt reality of 
starvation to the lives of millions of people. This is particularly true in ‘fourth world’ 
countries. To combat this problem in the future, the productivity of food must increase. 
The agricultural sector is the primary supplier of food in the world [1]. To try to meet the 
growing demand for food, the agricultural sector must increase its output. Optimising the 
production of food with current agricultural practices is important, but it is not enough to 
meet the future demands. To produce more food in the future, more land must be made 
available for agricultural production.  
 
The allocation of land for agricultural production will depend on the decisions made by 
local authorities. For land to be allocated, it must be assessed to determine its suitability 
for agricultural production, and whether the crops grown on it will be sustainable in the 
future. This is important for economic development. To determine the agricultural 
potential of a given area of land, several factors must be considered. The main factors are 
soil characteristics and climate conditions [2]. For crop production, these factors will 
determine the types of crops that will most suitably adapt to the given environmental 
conditions. Other important factors are, among others, the natural land resources and 
agricultural trends. 
 
Natural land resources such as lakes and rivers are very valuable commodities. They can be 
used to source irrigated water which, with rainfall, is important in determining the full 
agricultural potential of a given area of agricultural land. The agricultural trends will 
determine the types of crops that will bring the most suitable economic benefits. 
 
When an area of land is allocated to develop a new irrigation scheme, and it has been 
finalised which crops will be cultivated, then solutions must be found to the hectare 
allocations among the competing crops. In determining the hectare allocations, it must be 
considered that different types of crops grow in different seasons, grow for different 
lengths of time, and have different plant requirements. These factors must be considered 
in order to determine feasible solutions.  
 
The problem of trying to optimise the seasonal hectare allocations of a given area of 
agricultural land among the various competing crops that must be grown within a year is an 
NP-Hard type optimisation problem in agricultural planning, called ‘annual crop planning’ 
(ACP). ACP aims to determine solutions that will maximise the total gross profits earned 
from a given area of agricultural land, by making the most efficient use of the limited 
resources available for agricultural production. Limited resources include land, irrigated 
water supply, and the various costs associated with agricultural production. The solutions 
must satisfy the multiple land and irrigation water allocation constraints that are associated 
with ACP, in order to be feasible. 
 
This research introduces a new ACP mathematical model, formulated by the authors of this 
paper, and intended to determine solutions to the ACP problem at a new irrigation scheme. 
Previous studies in crop and irrigation planning have used both single and multi-objective 
mathematical models. Many optimisation techniques have been used to provide solutions to 
these models. These include Linear Programming (LP), Simulated Annealing (SA), Particle 
Swarm Optimisation (PSO) and Evolutionary Algorithms (EAs), among others. Pant et al. [3] 
employed the Differential Evolution (DE) algorithm to provide solutions to a crop planning 
problem under adequate, normal and limited irrigated water supply. The objective was to 
maximise the net benefits gained, under these conditions. It was found that DE performed 
better than the programming tool LINGO. In [4], Pant et al. investigated the performances 
of four EAs in providing solutions to a crop planning problem. These algorithms included the 
Genetic Algorithm (GA), PSO, DE, and Evolutionary Programming (EP). Solutions were also 
determined using LINGO. The solutions showed that, of all the heuristic algorithms, GA 
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performed poorly, and that DE, PSO, and EP were all comparable. Georgiou and 
Papamichail [5] used SA in combination with the Stochastic Gradient Descent Algorithm to 
determine solutions for the optimised water release policies of a reservoir. The released 
water had to be allocated efficiently among the various crops being grown. To maximise 
profits, the ‘optimal’ cropping pattern had to be determined. Wardlaw and Bhaktikul [6] 
used GA to solve a problem of irrigated water scheduling, using a 0-1 approach. The 
research found that GA performed well in being able to distribute irrigated water to several 
farm plots to satisfy the soil moisture content levels under water scarce conditions. The 
water allocations were done on a rotational basis. Sarker and Ray [7] proposed an improved 
EA known as the Multi-objective Constrained Algorithm (MCA), which was used to provide 
solutions to a multi-objective crop planning problem. The research found that MCA 
performed relatively better than the two other optimisation techniques used. These 
techniques included the 𝜀-constrained method and the Non-dominated Sorting Genetic 
Algorithm (NSGAII). Raju and Kumar [8] compared the performances of GA and LP in 
providing solutions to a crop planning problem. The objective was to maximise the net 
benefits. The performances of GA and LP were relatively close. It was concluded that GA is 
an effective heuristic algorithm that can be used for irrigation planning. Reddy and Kumar 
[9] studied the effectiveness of using Elitism-Mutation Particle Swarm Optimisation (EMPSO) 
in determining the short-term release policies of irrigated water from a reservoir under 
water scarce conditions. The study concluded that the heuristic algorithm is effective in 
providing short-term solutions for multi-crop irrigation. 
 
The objective of this paper was to investigate and compare the performances of three 
relatively new Swarm Intelligence (SI) metaheuristic algorithms, in determining solutions to 
an ACP problem at a new irrigation scheme. The algorithms investigated are Cuckoo Search 
(CS), Firefly Algorithm (FA) and Glow-worm Swarm Optimisation (GSO). To determine the 
relative merits of the solutions provided by these SI algorithms, their solutions have been 
compared against the solutions of a traditional population based metaheuristic algorithm, 
the Genetic Algorithm (GA). The solutions determined and comparisons made will indicate 
the possible strengths and/or weaknesses of the SI algorithms, in determining solutions to 
this ACP problem. The solutions found will be valuable in making suggestions concerning the 
seasonal hectare allocations for the crops that are required to be grown. To the best of our 
knowledge, the authors of this paper have not come across any other research that has used 
SI metaheuristic algorithms in determining solutions to an ACP problem at a new irrigation 
scheme.  
 
The rest of this paper is structured as follows. Section 2 describes and presents the 
formulation of the ACP mathematical model. Section 3 describes the case study of the 
Taung Irrigation Scheme. Section 4 describes the SI metaheuristic algorithms used. Section 
5 presents and discusses the experimental results obtained. Finally, Section 6 draws 
conclusions and outlines possible future work. 

2 THE ANNUAL CROP PLANNING MATHEMATICAL MODEL  

This annual crop planning (ACP) mathematical model, formulated by the authors of this 
paper, is intended to determine solutions to the annual crop planning problem at a new 
irrigation scheme. The feasible solutions must allocate the limited amount of agricultural 
land among the various competing crops that need to be grown within the year. These 
solutions must satisfy all the constraints associated with the objective function. The 
objective in determining an optimal solution is to maximise the total gross profits that can 
be earned, in making the most efficient usage of the limited resources available. The 
limited resources include land, irrigated water supply, and the variable costs associated 
with agricultural production. To determine feasible solutions, it must be taken into account 
that different crops grow in different seasons, grow for different lengths of time, and have 
different plant requirements. To make efficient use of irrigated water supply, precipitation 
must be taken into account. 
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The crops cultivated for agricultural production include those that are grown all year 
around. These are the tree-bearing crops and perennials. Other crop types include seasonal 
crops such as the summer, autumn, and winter crops. Single-crop plots of land are 
allocated to those crops that are grown all year around. Double-crop plots of land are 
allocated to two different types of crops that are grown in sequence within the year. 
Triple-crop plots of land are allocated to three different types of crops that are grown in 
sequence within a year, and so on.  
 
Soil characteristics are also a factor in crop planning. Certain crops may adapt well only to 
certain types of soils. Therefore, the use of land is important for optimal yields. Irrigation 
application is also important. Too much or too little application of water will lead to sub-
optimal plant growth. This will affect the yield of the crop. Soils are also sensitive to 
leaching due to excessive water applications [1]. So the seasonal irrigated water allocations 
among the various crops must be well planned. 
 
The ACP mathematical model for determining solutions at a new irrigation scheme is 
formulated as set out below.  
 

2.1 Indices  

• 𝑘 – Plot types. (1 = single-crop plots, 2 = double-crop plots, 3 = triple-crop plots, and 
so on). 

• 𝑖 – Indicative of the groups of crops that are grown in sequence throughout the year, 
on plot type 𝑘 (𝑖 =  1 represents the 1st group of sequential crops, 𝑖 =  2 represents 
the 2nd group of sequential crops, 𝑖 =  3 represents the 3rd group of sequential crops, 
and so on). 

• 𝑗 – Indicative of the individual crops grown at stage 𝑖, on plot 𝑘. 

2.2 Input parameters  

• 𝑙 – Number of different plot types. 
• 𝑁𝑘 – Number of sequential groups of crops grown within a year, on plot 𝑘. 
• 𝑀𝑘𝑖 – Number of different types of crops grown at stage 𝑖, on plot 𝑘. 
• 𝐹𝑘𝑖𝑗 – Average fraction per hectare of crop 𝑗, at stage 𝑖, on plot 𝑘, that needs to be 

irrigated (1 = 100% coverage, 0 = 0% coverage). 
• 𝑅𝑘𝑖𝑗 – Averaged rainfall estimates that fall during the growing months for crop 𝑗, at 

stage 𝑖, on plot 𝑘. 
• 𝐶𝑊𝑅𝑘𝑖𝑗 – Crop water requirements of crop 𝑗, at stage 𝑖, on plot 𝑘. 
• 𝑇 – Total hectares of land allocated for the irrigation scheme. 
• 𝐴 – Volume of irrigated water that can be supplied per hectare (ha-1). 
• 𝑃 – Price of irrigated water m-3. 
• 𝑂𝑘𝑖𝑗 – Other operational costs ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. These costs exclude 

the cost of irrigation. 
• 𝑌𝑅𝑘𝑖𝑗 – The amount of yield that can be obtained in tons per hectare (t ha-1) from crop 

𝑗, at stage 𝑖, on plot 𝑘. 
• 𝑀𝑃𝑘𝑖𝑗 – Producer prices per ton (t-1) for crop 𝑗, at stage 𝑖, on plot 𝑘. 
• 𝐿𝑏𝑘𝑖𝑗 – Lower-bound for crop 𝑗, at stage 𝑖, on plot 𝑘. 
• 𝑈𝑏𝑘𝑖𝑗 – Upper-bound for crop 𝑗, at stage 𝑖, on plot 𝑘. 
• 𝐿𝑏_𝑃𝑘 – Lower-bound for plot type 𝑘. 
• 𝑈𝑏_𝑃𝑘 – Upper-bound for plot type 𝑘. 

2.3 Calculated parameters 

• 𝐼𝑅 𝑘𝑖𝑗 – Volume of irrigated water estimates that should be applied to crop 𝑗, at stage 𝑖, 
on plot 𝑘. (𝐼𝑅𝑘𝑖𝑗𝑚3  =  (𝐶𝑊𝑅𝑘𝑖𝑗𝑚 – 𝑅𝑘𝑖𝑗𝑚)  ∗  10000𝑚2  ∗  𝐹𝑘𝑖𝑗). 

• 𝑇𝐴 – Total volume of irrigated water that can be supplied to the given area of land, 
within a year (𝑇𝐴 =  𝑇 ∗  𝐴). 
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• 𝐶_𝐼𝑅𝑘𝑖𝑗 – The cost of irrigated water ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐶_𝐼𝑅𝑘𝑖𝑗   =
 𝐼𝑅𝑘𝑖𝑗  ∗  𝑃). 

• 𝐶𝑘𝑖𝑗 – Variable costs ha-1 of crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐶𝑘𝑖𝑗  =  𝑂𝑘𝑖𝑗  +  𝐶_𝐼𝑅𝑘𝑖𝑖𝑗). 
• 𝐵𝑘𝑖𝑗 – Gross margin that can be earned ha-1 for crop 𝑗, at stage 𝑖, on plot 𝑘. (𝐵𝑘𝑖𝑗  =

 𝑀𝑃𝑘𝑖𝑗  ∗ 𝑌𝑅𝑘𝑖𝑗 – 𝐶𝑘𝑖𝑗). 

2.4 Variables 

• 𝐿𝑘 – Total area of land allocated for agricultural production for plot type 𝑘. 
• 𝑋𝑘𝑖𝑗 – Area of land, in hectares, that can be feasibly allocated to crop 𝑗, at stage 𝑖, on 

plot 𝑘.  

2.5 Objective function 

Maximise  

            𝑓 = ���𝑋𝑘𝑖𝑗𝐵𝑘𝑖𝑗

𝑀𝑘𝑖

𝑗=1

𝑁𝑘

𝑖=1

              (1)
𝑙

𝑘=1

 

 In equation (1), 𝑘 represents the plot types. 𝑘 = 1 indicates the single-crop plots, 𝑘 =  2 
indicates the double-crop plots, and so on. For each plot type 𝑘, 𝑖 is indicative of the 
number of groups of crops that are grown in sequence throughout the year. For 𝑘 =  1, 𝑁𝑘 
(or 𝑁1) will be equivalent to 1. This will represent the group of crops that are grown all 
year around. For 𝑘 = 2, 𝑁𝑘 = 2. This will represent two groups of crops that are grown in 
sequence throughout the year. These are the summer and winter crop groups. The 
explanation is similar for 𝑘 =  3, and so on. For each sequential crop group 𝑖, grown on plot 
𝑘, 𝑗 will represent the individual crops grown. For 𝑘 = 1 and 𝑖 = 1, 𝑗 will be indicative of all 
the tree-bearing and perennial crops grown. For 𝑘 = 2 and 𝑖 = 1, 𝑗 will be indicative of all 
the summer crops grown. For 𝑘 = 2 and 𝑖 = 2, 𝑗 will be indicative of all the winter crops 
grown, and so on. 
 
Equation (1) is subjected to the land and irrigated water allocation constraints given in 
Sections 2.6 and 2.7 below. The gross benefits 𝐵𝑘𝑖𝑗 that can be earned per crop must also 
satisfy the non-negative constraint given in Section 2.8 below. 

2.6 Land constraints 

Feasible solutions must satisfy the lower and upper bound constraints of the plot types 𝑘. 
This constraint is given in equation (2) below. 

𝐿𝑏_𝑃𝑘 ≤ 𝐿𝑘 ≤ 𝑈𝑏_𝑃𝑘     ∀𝑘, 𝑖, 𝑗               (2) 
The sum of the hectares allocated for each plot type 𝑘 must be less than or equal to 𝑇. This 
constraint is given by equation (3) below. 

            �𝐿𝑘  ≤ 𝑇
𝑙

𝑘=1

                                     (3) 

The sum of the hectares allocated for each crop 𝑗, at stage 𝑖, on plot 𝑘, must be less than 
or equal to the total area of land allocated for agricultural production on plot type 𝑘. This 
constraint is given by equation (4) below. 

�𝑋𝑘𝑖𝑗 ≤ 𝐿𝑘     ∀𝑘, 𝑖                                  (4)
𝑀𝑘𝑖

𝑗 

 

The lower and upper bound constraints for each crop must be satisfied. This constraint is 
given by equation (5) below. 

𝐿𝑏𝑘𝑖𝑗 ≤ 𝑋𝑘𝑖𝑗 ≤ 𝑈𝑏𝑘𝑖𝑗    ∀𝑘, 𝑖, 𝑗                (5) 
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2.7 Irrigation constraints 

The total volume of irrigated water that is required for the production of all crops within 
the year must be less than or equal to the total volume of irrigated water that can be 
supplied to the given area of land. This constraint considers that some crops may require 
more irrigated water than what is supplied per ha. It is therefore the responsibility of the 
farmer to distribute his supply of irrigated water efficiently. This constraint is given by 
equation (6) below. 

���𝑋𝑘𝑖𝑗𝐼𝑅𝑘𝑖𝑗 ≤ 𝑇𝐴                      (6)
𝑗𝑖𝑘

 

2.8 Non-negative constraints 

The gross profits that can be earned per crop must be greater than zero. This constraint is 
given by equation (7) below. 

 𝐵𝑘𝑖𝑗 > 0    ∀𝑘, 𝑖, 𝑗                                      (7) 

3 CASE STUDY 

The Taung Irrigation Scheme (TIS) is situated in the Taung District, in the North West 
Province of South Africa. It adjoins the Vaalharts Irrigation Scheme (VIS) – one of the largest 
irrigation schemes in the world, with a total of 3,764 ha of irrigated land currently [2]. The 
irrigated water currently supplied to the TIS is drawn from the Vaal River, and is supplied 
via the Vaalharts Canal System, which also supplies irrigated water to the VIS. The irrigated 
water is supplied to the TIS at a basic quota of 8,417 m3ha-1annum-1 to the farmers [2]. 
Located in the area of the TIS is the Taung Dam which, at full capacity, has a total volume 
of 62.97 million m3 of water. The dam was originally constructed to supply irrigated water 
to the TIS, but no infrastructure had been built to do so. 
 
A recent survey [2] had been done to determine whether extending the existing TIS would 
be feasible in developing new irrigated areas. If it is found that the adjacent portions of 
land are viable, then the irrigated water supplied to the TIS will be drawn from the Taung 
Dam. The survey found that 3,315 ha are acceptable for agricultural production. It is also 
believed that agricultural production on this portion of land will match the high agricultural 
output of the neighbouring VIS. The current expansion of the TIS will cater for 175 people 
who had been previously excluded from the land. A total of 1,750 ha (10 ha per person) will 
now be allocated to them as restitution. As chosen by the local Department of Agriculture 
and the local farmers, the most suitable crops to be cultivated on this portion of land are 
those listed in Table 1 [2]. The crops consist of lucerne, which is grown all year around (y), 
and the rest of the crops, which are the summer (s) and winter (w) crops. Lucerne will be 
grown on single-crop plots of land, while the summer and the winter crops will be grown on 
double-crop plots of land.  
 
To determine solutions for the seasonal hectare allocations among the various competing 
crops that need to be grown, the crop water requirements (CWR) and the average rainfall 
(AR) statistics need to be determined. The AR values are the average amount of rain that is 
expected to fall during the growing months of each crop. The CWR is provided by the 
Department of Water Affairs and Forestry [2]. The average rainfall statistics are obtained 
from [10]. The producer price per ton (ZAR1 t-1) of yield is determined from data from the 
Department of Agriculture, Forestry and Fisheries [11, 12]. The yield expected (t ha-1) per 
crop is determined from data from the Kwa-Zulu Natal Department of Agriculture and 
Environmental Affairs[13]. The water quota of 8,417 m3ha-1annum-1 will remain the same. 
The cost of irrigated water is 8.77 cents/m3 [14].  

1 ZAR stands for Zuid-Afrikaanse Rand. It is the Dutch translation of “South African Rand”, the South 
African currency. 
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Table 1: Crop and average rainfall statistics 

Crops CWR (mm) AR (mm) ZAR t-1 t ha-1 
Lucerne (y) 1,445 444.7 1,185.52 16.0 
Tomato (s) 1,132 350.8 4,332.00 50.0 
Pumpkin (s) 794 279.0 1,577.09 20.0 

Maize (s) 979 279.0 1,321.25 9.0 
Ground Nut (s) 912 339.5 5,076.00 3.0 
Sunflower (s) 648 314.9 3,739.00 3.0 

Barley (w) 530 58.3 2,083.27 6.0 
Onion (w) 429 177.0 2,397.90 30.0 
Potato (w) 365 152.8 2,463.00 28.0 

Cabbage (w) 350 152.8 1,437.58 50.0 

4 METHODOLOGY 

Swarm Intelligence (SI) is research inspired by observing the naturally intelligent behaviour 
of swarms of biological agents within their environment. Without any central control 
structure directing their movements, they seem to interact intelligently with each 
together, independently achieving their objectives [15]. These observations have led to the 
development of many effective SI optimisation algorithms. The algorithms typically 
represent the individual behaviour of the biological agents, which are represented by a set 
of simple rules.  

SI algorithms have provided effective solutions to many real-world optimisation problems 
that are NP-Hard in nature. This research investigates the effectiveness of employing three 
relatively new SI metaheuristic algorithms in solving the ACP problem at the TIS. The 
algorithms investigated are Cuckoo Search (CS), Firefly Algorithm (FA), and Glow-worm 
Swarm Optimisation (GSO). To determine the relative merits of the solutions provided by 
these algorithms, their solutions will be compared against the solutions of a traditional 
population-based metaheuristic algorithm, the Genetic Algorithm (GA). Brief descriptions of 
these algorithms are given in the subsections below. 

4.1 Cuckoo Search 

CS [16] is inspired by the parasitism of some cuckoo bird species. These birds aggressively 
reproduce and then abandon their eggs in the nests of other bird species as hosts. Some 
host birds behave aggressively and eject the alien eggs upon discovering an intrusion. 
Others simply leave their nests and build new nests elsewhere. Each egg in the host bird’s 
nest represents a possible solution. The goal of the CS algorithm is to replace an inferior 
solution in the host bird’s nest with a potentially better solution. This is represented by a 
newly-laid egg. There are three guiding rules governing the CS algorithm: 
 
1. Each bird lays one egg at a time. The egg gets placed randomly among the host bird 

nests. 
2. The nest with the highest fitness value will get carried over to the next generation. 
3. The number of host bird nests is fixed. The probability of a host bird discovering an 

intrusion is set at a constant value of 𝑝𝑎  ∈  [0,1].  
 
In generating a new solution, the random-walk is best performed by using Levy flights. The 
Levy flight of cuckoo 𝑖 is performed using equation (8). 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑠𝛿                      (8) 
where 𝛿 is drawn from a standard normal distribution with mean 0 and standard deviation 
of 1. 𝛿 determines the direction of movement. 𝑠 is the step size. This determines the 
distance of the random walk. Determining 𝑠 is tricky. If 𝑠 is too big, then 𝑥𝑖(𝑡 + 1) will be 
too far away from 𝑥𝑖(𝑡). If 𝑠 is too small, then 𝑥𝑖(𝑡 + 1) will be too close to 𝑥𝑖(𝑡) to be 
significant. One of the most efficient algorithms used to calculate 𝑠 is Mantegna’s algorithm 
[16]. Using Mantegna’s algorithm, 𝑠 can be calculated by using equation (9). 

               𝑠 =
𝑢

|𝑣|1/𝛽                               (9) 
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where 𝑢 and 𝑣 are drawn from a normal distribution, and 0 < 𝛽 ≤ 2. 
 
CS is implemented in this research by first randomly generating a population of 𝑛 host bird 
nest solutions, i.e. 𝑛𝑒𝑠𝑡 (for 𝑖 =  1, … ,𝑛). Each egg in 𝑛𝑒𝑠𝑡𝑖 is represented by a randomly-
generated number that falls between 0 and 1. The fitness value of each nest 𝑖 is then 
calculated. The best fitness value found in the population and its corresponding solution is 
then recorded in variables 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 respectively. 
 
At each iteration of the algorithm, a new population of nests (𝑛𝑒𝑤𝑁𝑒𝑠𝑡) is generated using 
𝑛𝑒𝑠𝑡 and 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡. Each 𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖 is determined in moving 𝑛𝑒𝑠𝑡𝑖 in the direction of 
𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 using equation (8). The best nest solution from 𝑛𝑒𝑤𝑁𝑒𝑠𝑡 is then determined and 
compared against 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 to check if an improved solution has been found. If the solution 
improves on 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡, then 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 is replaced with this improved solution. Intrusion is 
implemented thereafter on each egg in 𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖 if 𝑝𝑎 <  𝑟𝑎𝑛𝑑, where 𝑟𝑎𝑛𝑑 is a randomly 
generated number between 0 and 1. If 𝑝𝑎 < 𝑟𝑎𝑛𝑑 then a new value for the egg is generated 
at random. At this point, the best solution from 𝑛𝑒𝑤𝑁𝑒𝑠𝑡 is determined and is again 
compared against 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 to see if an improved solution is found. 
 
𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 will contain the best solution found by the algorithm, and this will be returned 
when the stopping criterion is met. 
 
The algorithm for CS is as follows: 
 
1. Generate an initial random solution of 𝑛 host birdnests = 𝑛𝑒𝑠𝑡 (for 𝑖 =  1, … ,𝑛) 
2. Evaluate the fitness of 𝑛𝑒𝑠𝑡𝑖 i.e. 𝑓(𝑛𝑒𝑠𝑡𝑖).  
3. Find the best fitness (𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠) and best nest (𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡) from 𝑛𝑒𝑠𝑡  
4. 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 
5. 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡  
6. while 𝑡 <  𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do  

6.1. Generate 𝑛𝑒𝑤𝑁𝑒𝑠𝑡, using 𝑛𝑒𝑠𝑡 and 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 in performing levy flights  
6.2. Get 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 by performing these steps  

6.2.1. if 𝑓(𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖)  >  𝑓(𝑛𝑒𝑠𝑡𝑖) then 
𝑓(𝑛𝑒𝑠𝑡𝑖) = 𝑓(𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖) 
𝑛𝑒𝑠𝑡𝑖= 𝑛𝑒𝑤𝑁𝑒𝑠𝑡𝑖  

6.2.2. end if 
Evaluate 𝑓(𝑛𝑒𝑠𝑡𝑖) to determine 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡    

6.3. 𝑡 =  𝑡 +  𝑛 
6.4. Generate 𝑛𝑒𝑤𝑁𝑒𝑠𝑡, using nest and pa. Here a  

fraction of the worst solutions are replaced  
with new solutions for each 𝑛𝑒𝑠𝑡𝑖 

6.5. Determine 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 again using step 6.2. 
6.6. 𝑡 =  𝑡 +  𝑛 
6.7. if 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑂𝑣𝑒𝑟𝑎𝑙𝑙 then 

6.7.1. 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 
6.7.2. 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 

6.8. end if 
7. end while 
8. return 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡𝑂𝑣𝑒𝑟𝑎𝑙𝑙 
 
A visual representation of a nest solution in CS is given in Figure 1 below, which shows the 
eggs of a host bird and that of a cuckoo bird in the nest of a host bird. Each egg 𝑥𝑙 (∀ 𝑙 =
1, … , 𝑝) represents a possible solution in the solution of a nest.  
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Figure 1: Representation of a nest solution in the Cuckoo Search algorithm 

4.2 Firefly 

FA [16] is inspired by the ability of fireflies to emit light (bioluminescence) in order to 
attract other fireflies for mating purposes. There are three guiding rules governing this 
algorithm:  
 
1. Fireflies are attracted towards brighter fireflies, regardless of their sex. 
2. The attractiveness of a firefly is related to its brightness. However, it is assumed that 

the brightness decreases with distance. The brightest firefly moves randomly.  
3. The brightness of the firefly is a function of the problems objective.  
Attractiveness: The attractiveness of a firefly is given by equation (10). 

             𝛽(𝑟) = 𝛽0𝑒𝑥𝑝−𝛾𝑟
2                                   (10) 

Here, 𝑟 is the distance between any two fireflies. 𝛽0 represents the initial attractiveness at 
𝑟 =  0. 𝛾 is an absorption coefficient. It controls the decrease in the intensity of light. 
 
Movement: The movement of a less attractive firefly 𝑖 towards a more attractive firefly 𝑗 is 
given by equation (11). 

𝑥𝑖 =  𝑥𝑖 + 𝛽0𝑒𝑥𝑝−𝛾𝑟𝑖𝑗
2
�𝑥𝑗 − 𝑥𝑖� + 𝛼 �𝑟𝑎𝑛𝑑 −

1
2�         (11) 

where 𝑥𝑖 is the current position of the firefly within the solution space. The combination of 
the elements in the second term represents the firefly’s attractiveness, as seen by the 
other fireflies. The third term represents a random adjustment in the movement of the 
firefly. 𝛼 is a scaling parameter, 𝛼 ∈ [0,1]. 𝑟𝑎𝑛𝑑 is a uniformly distributed random number, 
𝑟𝑎𝑛𝑑 ∈ (0,1). 𝑟𝑖𝑗 represents the distance between fireflies 𝑖 and 𝑗. It is calculated using the 
Cartesian distance [16] given in equation (12).  

𝑟𝑖𝑗 = ��(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑑

𝑘=1

                                        (12) 

FA is implemented in this research by first randomly generating a population of 𝑛 fireflies, 
i.e. 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (for 𝑖 =  1 …  𝑛). Each element of each firefly, i.e. 
𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑙 (∀ 𝑙 = 1, … , 𝑝), is represented by a randomly generated number that falls 
between 0 and 1. The light intensity, or fitness value, of each firefly 𝑖 is then calculated 
and stored in the variable 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖. 
 
At each iteration, the fireflies in the population are sorted in descending order according to 
their fitness values. The fitness value of every firefly 𝑖 is then compared to the fitness value 
of every other firefly 𝑗 (for 𝑗 =  1 …  𝑛). If 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 <  𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑗 then firefly 𝑖 
moves in the direction of firefly 𝑗 using equation (11).  
When the stopping criterion is met, the solution returned will be the first solution in 
𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 after the sorted order is maintained, i.e. 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠0. 
 
The FA algorithm is as follows: 
Initialize 𝛼,𝛽0 , 𝛾 and 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
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1. Initialize 𝑛 fireflies = 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(for 𝑖 =  1 …  𝑛) 
2. The light intensity of 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 
3. for 𝑙 till 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do  

3.1. for 𝑖 till 𝑛 do 
3.1.1. 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = Evaluate(𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖) 

3.2. end for 
3.3. Sort 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 and 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠according to 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠 
3.4. 𝑏𝑒𝑠𝑡𝐹𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠0 
3.5. 𝑏𝑒𝑠𝑡𝐹𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠0 
3.6. Move fireflies to new locations by performing these steps 

3.6.1. for 𝑖 till 𝑛 do 
3.6.1.1. for 𝑗 till 𝑛 do 

3.6.1.1.1. if 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 < 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑗then  
3.6.1.1.1.1. Calculate 𝑟𝑖𝑗 
3.6.1.1.1.2. Calculate 𝛽(𝑟) 
3.6.1.1.1.3. Update 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖 

3.6.1.1.2. end if 
3.6.1.2. end for 

3.6.2. end for 
4. end for 
5. return 𝑏𝑒𝑠𝑡𝐹𝑖𝑟𝑒𝑓𝑙𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 
 
A visual representation of a solution in FA is given in Figure 2 below, which shows a swarm 
of fireflies. The position of each firefly represents a solution within the solution space. Its 
position is determined by the variables 𝑥𝑙 (∀ 𝑙 = 1, … , 𝑝). The position of each firefly will 
determine the bioluminescence emitted. 

 

Figure 2: A representation of a solution in the Firefly Algorithm 

4.3 Glow-worm Swarm Optimisation 

The Glow-worm Swarm Optimisation (GSO) [17, 18] is inspired by the natural behaviour of 
glow-worms in emitting a luminescent property called luciferin, in order to attract other 
glow-worms. Glow-worms with larger emissions of luciferin are considered more attractive. 
A glow-worm moves towards a brighter glow-worm if it lies within its range of view.  
 
Initially, glow-worms are distributed randomly throughout the solution space. At any point 
in time 𝑡, the state of a glow-worm 𝑖 is represented by its luciferin level 𝑙𝑖(𝑡), its position 
𝑥𝑖(𝑡), and its vision range 𝑟𝑖(𝑡). During each iteration, these variables are updated, and it 
describes the movement of the glow-worms within the solution space.  
The luciferin update is given by equation (13). 

  𝑙𝑖(𝑡 + 1) = (1 − 𝜌)𝑙𝑖(𝑡) + 𝛾𝒥�𝑥𝑖(𝑡)�                        (13) 
where 𝜌 is the luciferin decay constant (0 <  𝑝 <  1). 𝛾 is the luciferin enhancement 
constant. 𝒥�𝑥𝑖(𝑡)� is the evaluation of the objective function, at time 𝑡. 
 
To update the position of each glow-worm 𝑖, a set of neighbours 𝑁𝑖(𝑡) needs to be 
determined. A glow-worm 𝑗 is considered a neighbour of glow-worm 𝑖, if 𝑗 falls within 𝑖’s 
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vision range 𝑟𝑖(𝑡), and if 𝑙𝑖(𝑡)  <  𝑙𝑗(𝑡). A glow-worm 𝑗 is then selected from 𝑁𝑖(𝑡), using 
roulette wheel selection. Glow-worm 𝑖 then moves in the direction of glow-worm 𝑗 using 
equation (14). 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑠𝑡 ∗ � 𝑥𝑗(𝑡)−𝑥𝑖(𝑡)
�𝑥𝑗(𝑡)−𝑥𝑖(𝑡)�

�                    (14) 
where 𝑠𝑡 is a constant step size.  
 
Lastly, the vision range 𝑟𝑖(𝑡) needs to be updated,  using equation (15).  
       𝑟𝑖(𝑡 + 1) = 𝑚𝑖𝑛{𝑟𝑠,𝑚𝑎𝑥[0, 𝑟𝑖(𝑡) + 𝛽(𝑁𝑑 − |𝑁𝑖(𝑡)|)]}           (15)   
Here, 𝑟𝑠, 𝛽 and 𝑁𝑑 are constant values. 𝑟𝑠 is the maximum vision range, 𝛽 is the rate of 
change of the neighbourhood range, and 𝑁𝑑 is the maximum number of neighbours that 
glow-worm 𝑖 is allowed to have.  
 
GSO is implemented in this paper by first randomly generating a population of 𝑛 glow-
worms, i.e. 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚 (for 𝑖 =  1, … ,𝑛). Each element of each glow-worm, i.e. 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖𝑙 
(∀ 𝑙 = 1, … , 𝑝), is represented by a random number which falls between 0 and 1. The fitness 
values of each 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 are then calculated. The best fitness value and its corresponding 
solution is then stored in variables 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, respectively.  
 
At each iteration, the movement of each glow-worm 𝑖 is performed using equations (13), 
(14) and (15). The best glow-worm from the newly-generated population is then 
determined, and its fitness value is cross-referenced against 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠. If its fitness value 
improves upon 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠, then 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 are replaced with the 
fitness value and the solution of the best glow-worm found. When the stopping criterion is 
met, 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is returned. 
 
The GSO algorithm is as follows: 
 
1. Generate a population of 𝑛 glow-worms = 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚 (for 𝑖 =  1, … ,𝑛) 
2. Initialize the best fitness overall = 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 
3. Initialize the best location overall = 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 
4. while 𝑡 till 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do  

4.1. for 𝑖 till 𝑛 do 
4.1.1. Update luciferin of 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖  

4.2. end for     
4.3. for 𝑖 till 𝑛 do 

4.3.1. Find 𝑁𝑖(𝑡) 
4.3.2. for each 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑗  ∈  𝑁𝑖(𝑡) do  

4.3.2.1. Find probability: 

𝑝𝑖𝑗(𝑡) =
𝑙𝑗(𝑡) − 𝑙𝑖(𝑡)

∑ 𝑙𝑘(𝑡) − 𝑙𝑖(𝑡)𝑘∈𝑁𝑖(𝑡)
 

4.3.3. end for 
4.3.4. Select 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑗 using roulette wheel selection with 𝑝𝑖𝑗(𝑡) 
4.3.5. Update 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 location 
4.3.6. Update vision range  

4.4. end for 
4.5. for 𝑖 till 𝑛 do     

4.5.1. if 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 .𝑓𝑖𝑡𝑛𝑒𝑠𝑠 >  𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 then 
4.5.1.1. 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 . 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
4.5.1.2. 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑔𝑙𝑜𝑤𝑤𝑜𝑟𝑚𝑖 . 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

4.5.2. end if 
4.6. end for 
4.7. 𝑡 =  𝑡 +  1 

5. end while 
6. return 𝑏𝑒𝑠𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 
A visual representation of a solution in GSO is given in Figure 3 below, which shows a swarm 
of glow-worms. The position of each glow-worm within the solution space represents a 
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solution. Its position is determined by the variables 𝑥𝑙 (∀ 𝑙 = 1, … , 𝑝). The position of each 
glow-worm will determine the luciferin emitted. 

 

Figure 3: A representation of a solution in the Glow-worm Swarm Optimisation 
algorithm 

4.4 Genetic Algorithm 

The Genetic Algorithm (GA) [19] is inspired by the process of natural evolution. By 
modelling evolutionary processes such as selection, crossover, and mutation, a population 
of chromosomes (genotypes of the phenotypes or individuals) evolves from one generation 
to the next. Chromosomes are binary encoded for discrete optimisation problems or real-
value encoded for continuous optimisation problems [20]. 
 
GA starts off with an initial, randomly-generated population of chromosomes/solutions. 
Each solution has an associated fitness value that indicates the individuals’ strength. Using 
these fitness values, or not, pairs of solutions are stochastically selected from the current 
population at each generation. Using techniques such as crossover and mutation, these 
pairs of solutions will produce offspring solutions. The offspring solutions form the new 
population, which represent the next generation. This process will continue for a specified 
number of generations or until a satisfactory fitness value has been found. 
 
Selection is done using techniques such as the roulette wheel selection and random 
selection [20]. Roulette wheel selection considers the fitness value of the solutions, while 
random selection does not. When a pair of solutions is selected, the crossover process 
generates offspring solutions that are a recombination of their parent solutions. 
Recombination is done using techniques such as n-point crossover, uniform crossover, and 
arithmetic crossover [20]. The ‘genes’ of the offspring have a probability of undergoing 
mutation. Mutation reduces the risk of premature convergence. Premature convergence 
occurs when the heuristic algorithm becomes trapped within a local neighbourhood 
structure of the solution space, in which the local optimal solution is not ‘close’ enough to 
the global optimal solution. 
 
The implementation of GA in this research was done using real-value encoding and uniform 
crossover. Initially a population of 𝑛 chromosomes/solutions is generated, i.e. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
(for 𝑖 =  1, … ,𝑛). Each gene in each chromosome, i.e. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑙 (∀ 𝑙 = 1, … ,𝑝), is 
represented by a random number between 0 and 1. The fitness value of each solution in the 
population is then calculated, and the best solution, according to the best fitness value 
found, is recorded in the variable 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙.   
At each iteration of the algorithm, and until the new population is created, two parent 
solutions are selected from the previous population using roulette wheel selection. Given a 
predetermined crossover rate (𝑐𝑅𝑎𝑡𝑒), crossover is performed at each index of the adjacent 
genes of the parent solutions if 𝑟𝑎𝑛𝑑 <  𝑐𝑅𝑎𝑡𝑒. 𝑟𝑎𝑛𝑑 is a randomly generated number 
between 0 and 1. If 𝑟𝑎𝑛𝑑 <  𝑐𝑅𝑎𝑡𝑒 then the adjacent genes will be swapped in generating 
the offspring solutions, or else the genes will remain the same in being passed over to the 
offspring. 
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Once the offspring solutions have been generated, then mutation is performed on each 
gene of the offspring solutions in using a predetermined mutation rate (𝑚𝑅𝑎𝑡𝑒). If 𝑟𝑎𝑛𝑑 <
 𝑚𝑅𝑎𝑡𝑒 then mutation is performed on each gene by simply assigning a new randomly 
generated number, 𝑟𝑎𝑛𝑑. Once mutation is complete, the offspring are added to the new 
population.  
 
When the new population is generated, the best solution from the population is determined 
and is compared against 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙. This is to check whether an improved solution has 
been found. If it has, then 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 is replaced by the improved solution. When the 
stopping criterion is satisfied, 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 is returned. This is the best solution found by 
the algorithm. 
 
The algorithm for GA used in this research is as follows: 
 
1. Generate an initial random population of 𝑛 individuals =𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (for 𝑖 =  1, … ,𝑛)  
2. Initialise another population of size 𝑛, i.e.𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
3. Evaluate the fitness of each individual 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖, i.e. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖  
4. Determine the best individual from 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 using 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 
5. Set crossover rate = 𝑐𝑅𝑎𝑡𝑒 
6. Set mutation rate = 𝑚𝑅𝑎𝑡𝑒 
7. for 𝑖 till 𝑚𝑎𝑥𝑁𝑜𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 

7.1. 𝑐𝑜𝑢𝑛𝑡 =  0 
7.2. while 𝑐𝑜𝑢𝑛𝑡 < 𝑛 do 

7.2.1. Select parents 
7.2.2. Perform crossover using 𝑐𝑅𝑎𝑡𝑒 
7.2.3. Perform mutation using 𝑚𝑅𝑎𝑡𝑒 
7.2.4. Add offspring to 𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
7.2.5. 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 +  2 

7.3. end while 
7.4. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
7.5. 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣 = find_Best_Individual(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 
7.6. if 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 better then  

𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 then  
7.6.1. 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣 

7.7. end if 
8. end for 
9. return 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 
 
A visual representation of a solution found in GA is given in Figure 4 below, which shows a 
population of chromosomes within the nucleus of a cell. Each chromosome consists of 
genes, 𝑥𝑙 (∀ 𝑙 = 1, … ,𝑝), which make up a solution. 
 

 

Figure 4: A representation of a solution in the Genetic Algorithm 
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5 TESTING AND EVALUATION 

The non-heuristic specific parameters required for the execution of the algorithms had 
been set according to the values given in Tables 2 and 3. The lower and upper bound 
settings for the different plot types are given in Table 2.  
 
Table 3 gives the lower and upper bound settings, the land coverage fraction values, the 
cost of irrigated water, and the operational costs for each crop. The large differences 
between the lower and upper bound values were to investigate the ability of the heuristic 
algorithms to determine solutions in a larger solution space. 𝐹𝑘𝑖𝑗 ∈ [0,1]. 𝐶_𝐼𝑅𝑘𝑖𝑗 is the cost 
of the irrigated water per hectare per crop (ZAR ha-1). Operational cost 𝑂𝑘𝑖𝑗 is set to a third 
of the producer price per ton of yield (ZAR ha-1).  

Table 2: Lower and upper bounds for each plot type 

Plot Types Bounds (ha) 
𝑳𝒃_𝑷𝒌 𝑼𝒃_𝑷𝒌 

Single-crop 10 1,700 
Double-crop 50 1,740 

Table 3: Non-heuristic specific parameters for the execution of the algorithms 

Crops 𝑳𝒃𝒌𝒊𝒋 𝑼𝒃𝒌𝒊𝒋 𝑭𝒌𝒊𝒋 𝑪_𝑰𝑹𝒌𝒊𝒋 𝑶𝒌𝒊𝒋 
Lucerne (y) 10 1,700 1 877.26 6,259.52 
Tomato (s) 10 1,740 1 685.11 71,478.00 
Pumpkin (s) 10 1,740 1 451.66 10,408.80 

Maize (s) 10 1,740 1 613.90 3,924.09 
Groundnut (s) 10 1,740 1 502.08 5,025.24 
Sunflower (s) 10 1,740 1 292.13 3,701.61 

Barley (w) 12.5 1,740 1 413.68 4,124.88 
Onion (w) 12.5 1,740 1 221.00 23,739.30 
Potato (w) 12.5 1,740 1 186.10 22,758.12 

Cabbage (w) 12.5 1,740 1 172.94 23,720.00 
 
The initial parameters for the heuristic algorithms were set as follows: 
 
• CS – The number of host bird nests 𝑛 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 

100,000. 𝑝𝑎 was set at 0.25. 

• FA – The number of fireflies 𝑛 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 5,000. 𝛼 
was set at 0.25, 𝛽0 at 0.2 and 𝛾 at 1. 

• GSO – The number of glow-worms 𝑛 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 
5,000. 𝑙0 was set at 1, 𝑟0 at 1.2, 𝑟𝑠 at 1.5, 𝜌 at 0.4, 𝛾 at 0.6, 𝛽 at 0.08, 𝑠𝑡 at 0.3 and 
𝑁𝑑 at 10. 

• GA – The number of individuals 𝑛 was set at 20. The 𝑚𝑎𝑥𝑁𝑜𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 
5,000. 𝑐𝑅𝑎𝑡𝑒 was set at 0.8. 𝑚𝑅𝑎𝑡𝑒 was set at 0.05 (1/𝑛). 

 
𝑝𝑎 was set according to the setting given in Xin-She Yang’s Matlab® implementation of CS 
[21]. 𝛼, 𝛽0 and 𝛾 were set according to the settings given in Xin-She Yang’s Matlab® 
implementation of an 𝑚-dimensional Firefly Algorithm [22]. For GSO, 𝜌, 𝛾, 𝛽 and 𝑠𝑡 were 
set according to the settings given in [23]. 𝑙0, 𝑟0 and 𝑟𝑠 are problem specific parameters. 𝑁𝑑 
was set to half of the number of glow-worms 𝑛. For GA, 𝑐𝑅𝑎𝑡𝑒 was set at 0.8. This value 
was used after several tests had been performed to determine the best probable crossover 
rate to use.  
 
In order to compare the heuristic algorithms fairly, each algorithm was set to the same 
‘population’ size, i.e. 𝑛 =  20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (for CS, FA, and GSO) and the 
𝑚𝑎𝑥𝑁𝑜𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (for GA) ensured that each algorithm executed for 100,000 objective 
function evaluations. Each algorithm was run 100 times, using randomly-generated 
population sets for each run.  
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In order to ensure fairness, the 100 different population sets had been initially randomly 
generated. For explanation, we mathematically denote each population set as 𝑝𝑜𝑝𝑖, for 
𝑖 =  1, … , 100. Then, for each run 𝑖, 𝑝𝑜𝑝𝑖 was used as the input population set for each of 
the heuristic algorithms. This means that for run 𝑖 =  1; CS, FA, GSO and GA were run using 
𝑝𝑜𝑝1, for run 𝑖 =  2; CS, FA, GSO and GA were run using 𝑝𝑜𝑝2, and so on until 𝑖 =  100.  
From the 100 best solutions determined by each heuristic algorithm, the results of the best 
and average solutions have been documented. Using the populations of the 100 best 
solutions determined by each heuristic algorithm, the 95% Confidence Interval2 values have 
been calculated for the execution times and for the fitness values (total gross profits). The 
results are explained below. 
 
Table 4 gives the statistics of the average execution times (AVG) in milliseconds (ms), and 
the 95% Confidence Interval (95% CI) values of each heuristic algorithm.  

Table 4: Average execution times and the 95% CI values of each algorithm 

Statistics 
Methods 

CS FA GSO GA 

AVG 884 ms 3455 ms 751 ms 915 ms 

95% CI AVG ± 2 AVG ± 6 AVG ± 3 AVG ± 3 

 
From Table 4 we observe that FA took the longest time to execute. The average execution 
times of CS, GSO, and GA were all comparable. The relatively large average execution time 
of FA is due to its nested ‘for’ loop. In this ‘for’ loop, each firefly’s fitness value is 
compared with the fitness value of every other firefly. This was shown to be 
computationally expensive.  
 
The execution time of GSO is the fastest. This is due to the limitation on the maximum 
number of neighbours that a glow-worm is allowed to have. As the number of iterations 
increases, the vision ranges of the glow-worms will decrease. This will cause the glow-
worms to become more separated in searching the local neighbourhood structures of the 
solution space. This separation will reduce the number of glow-worms considered in 
searching for neighbours, which will speed up the execution process.  
 

 

Figure 5: The average execution times, in milliseconds (ms), and the 95% CI values of 
the algorithms 

The 95% CI values from Table 4 mean that we can be 95% certain that the 100 execution 
times of each algorithm have fallen within those interval estimates. By observing those CI 

2 In statistics a Confidence Interval (CI) indicates the reliability of an interval estimate of population 
parameters. 95% CI means to be 95% certain that the population parameters will lie within the interval 
estimate range.  
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values we conclude that the execution times of the algorithms have been fairly consistent. 
A visual representation of the statistical values from Table 4 is given in Figure 5 above, 
where the 95% CI values are represented by the black interval estimates. 
 
Table 5 gives the statistical values of the overall best (BFV) and average best (ABFV) fitness 
values for each heuristic algorithm. The fitness values are the total gross profits earned. 
The 95% CI values for the fitness value populations of each algorithm are also given. 

Table 5: Statistics for the best fitness values, average best fitness values, and 95% CI 
values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CS 290,770,383 282,000,392 ABFV ± 936,537 
FA 297,967,538 295,623,620 ABFV ± 195,076 

GSO 299,551,069 280,488,876 ABFV ± 6,352,385 
GA 286,477,093 264,550,148 ABFV ± 1,502,171 

 
From Table 5 it is observed that GSO determined the highest BFV. This is followed by FA, 
CS, and then GA. On average FA performed the best. This is followed by CS, GSO, and then 
GA. Each SI algorithm determined superior solutions compared with GA.  
 
A graphical comparison of the algorithms’ best and average fitness values, as determined 
from Table 5, is given in Figure 6. The 95% CI values are represented by the black interval 
estimates, over the average fitness values. 
 

 

Figure 6: A comparison of best and average fitness values, along with the 95% CI 
estimates 

The solutions found by the algorithms were in a solution space of constantly changing plot 
type hectare allocations. The hectare allocations for each plot type had to be determined 
first, before the hectare allocations of the crops, and had to satisfy the land constraints 
given in Section 2.6. 
 
For each algorithm, the best solution determined from the ‘population’ of solutions at 
iteration 𝑡, for plot type hectare allocations 𝑝, will not necessarily be the best solution at 
iteration (𝑡 + 1) for plot type hectare allocations (𝑝 + 1). The change in the plot type 
hectare allocations at iteration (𝑡 + 1) will change the crop hectare allocations accordingly, 
so that the land constraints do not break. The constantly changing dimensions of the 
solution space make it very difficult for the algorithms to perform exploitation3. This makes 
it difficult to determine effective solutions. 
 
Under the circumstance of the constantly changing dimensions of the solution space, FA 
performed most consistently. This is confirmed by its low 95% CI fitness value. Having the 
highest average best fitness value also means that FA has been the strongest heuristic 

3 Exploitation is the act of searching or travelling within a local neighborhood structure of the solution 
space in the hope of determining the local optimum solution. It is a local search technique. 
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algorithm for this particular ACP problem. CS had the second-lowest 95% CI fitness value. 
This is followed by GA, and then GSO. 
 
Although GSO’s average performance is worse than CS, its best fitness value and its high 
95% CI fitness value prove that it determined many good solutions. However, it also 
determined many poor solutions, which is the reason for its lower average.  
 
The strength of FA and GSO in determining the best fitness solutions overall is attributed to 
the algorithms’ versatility in being able to accept both improved and worse solutions at 
each iteration.   
 
In FA, as the fireflies are attracted towards brighter fireflies, some will accept improved 
solutions, while others will accept worse solutions within the local neighbourhood 
structures of the solution space. The solutions that are classified as being either improved 
or worse depend entirely on the plot type hectare allocations 𝑝 at iteration 𝑡. However, at 
iteration (𝑡 + 1), the sorting of the fireflies will take place according to the plot type 
hectare allocations (𝑝 + 1) and not 𝑝. Therefore, what appeared to be improved solutions 
at iteration 𝑡 for 𝑝 might not necessarily be improved solutions at iteration (𝑡 + 1) for (𝑝 +
1). Similarly, what appeared to be worse solutions at iteration 𝑡 for 𝑝 might not necessarily 
be worse solutions at iteration (𝑡 + 1) for (𝑝 + 1). The versatility of FA in accepting both 
improved and worse solutions has been shown to be very valuable for this particular 
optimisation problem.  
 
In GSO, a glow-worm will accept an improved or worse solution in moving towards another 
glow-worm with a higher level of luciferin than itself. Similarly to FA, this ability has been 
shown to be very valuable for this particular optimisation problem. GSO’s average best 
fitness value is, however, relatively low compared with FA and CS. Interestingly enough, it 
also has the highest 95% CI fitness value. The reason for the instability in its performances 
is due to its ability deliberately to cause group-like separations of the glow-worms 
throughout the neighbourhood structures of the solution space. The separations are 
achieved by reducing the glow-worms’ vision ranges as the number of iterations increase, 
and in limiting the maximum number of neighbours that a glow-worm is allowed to have. 
The group-like separations result in fewer glow-worms searching the local neighbourhood 
structures of the solution space. This technique’s strength is in exploration4, but it is 
lacking in terms of exploitation. Strong exploration abilities are beneficial for this 
optimisation problem due to the constantly changing plot type hectare allocations. 
However, the ‘weakness’ in its exploitation ability reduces the probability of its performing 
consistently on average. This explains its relatively low average best fitness value. 
 
For each host bird’s nest solution in the ‘population’, CS only accepts new nest solutions if 
they improve upon the host bird nest solutions in the population. The new nest solutions 
are generated by using the best nest solution from the previous iteration in performing Levy 
flights. However, as explained earlier, what appeared to be the best nest solution at 
iteration (𝑡 − 1) for plot type hectare allocations (𝑝 − 1) will not necessarily be the best 
nest solution at iteration 𝑡, using plot type hectare allocations 𝑝. Therefore, due to the 
constant changes in the dimensions of the solution space, performing Levy flights will not 
result in the most effective exploitation. The probability of the host bird’s discovery of 
intrusions facilitates exploration. This gives CS its best chance of determining improved 
solutions.  

4 Exploration is the act of searching or travelling within the solution space in the hope of determining 
the neighborhood structure that contains the global optimum solution. It is a global search technique. 
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Figure 7: Performance of the heuristic algorithms in determining their overall best 
fitness value solutions 

Figure 7 shows the run-time performances of the heuristic algorithms during the 
determination of their best fitness value solutions. FA found improved solutions at the 
fastest rate up until around 25,000 objective function evaluations. At this point GSO 
determined a solution similar to FA. At around 63,000 objective function evaluations, GSO 
had determined the best fitness value of all the heuristic algorithms. FA found its best 
fitness value at around 90,000 objective function evaluations. Its improvement was not 
enough to be the best overall. CS showed steady increases in determining improved 
solutions. At around 70,000 objective function evaluations, CS found a neighbourhood 
within the solution space that had a solution that was better than GA’s best solution. GA 
found its best solution at around 34,000 objective function evaluations. 

Table 6: Statistics of the IWR and VCP for the best solutions found 

Methods IWR (m3) VCP (ZAR) 

CS 16,971,534 145,436,812 

FA 16,962,160 148,980,411 

GSO 17,052,921 149,772,256 

GA 17,103,618 143,339,455 

 
Table 6 gives the statistics of the irrigated water requirements (IWR) and the variable costs 
of production (VCP) for the best solution determined by each of the heuristic algorithms. FA 
required the least amount of irrigated water. At a cost of ZAR 0.0877 m-3, the cost of this 
irrigated water is ZAR 1,487,581. CS’s IWR value was only 9,374 m3 more than FA. GSO’s 
IWR value was 90,761 m3 more than FA. At a water quota of 8,417 m3ha-1annum-1, FA’s IWR 
value would have supplied irrigated water to 10 ha less than GSO’s value. GA’s irrigated 
water requirement is the highest. The relative increases in the variable costs of production 
(VCP) for each SI algorithm, compared with GA, are acceptable considering the increased 
total gross profits earned. 
 
A graphical representation of the IWRs, as determined from Table 6, is shown in Figure 8. 
 
Table 7 gives the plot type hectare allocations for the best solution found by each 
algorithm. Each heuristic algorithm determined that the total gross profits could be 
increased by allocating more land for the double-crop plots. This was as a result of 
Lucerne’s high irrigated water requirement and low producer price t-1. 
 

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0 1 2 3 4 5 6 7 8 9 10

Fi
tn

es
s 

Va
lu

es
 (Z

AR
/B

ill
io

n)
 

Iterations (Scaled 1:10,000) 

Fitness values vs iterations 

GA
CS
FA
GSO
GA Treadline
CS Treadline
FA Treadline
GSO Treadline

222 



 

Figure 8: Irrigated water requirements of the best heuristic solutions 

Table 7: Plot type hectare allocations for each heuristic algorithm 

Plot Types Methods 
CS FA GSO GA 

Single-Crop 16 ha 13 ha 14 ha 13 ha 
Double-Crop 1734 ha 1737 ha 1736 ha 1737 ha 

 
Figure 9 gives a graphical comparison of the seasonal hectare allocations of each crop, for 
the best solution determined by each heuristic algorithm.  
 
For the single-crop plots of land, each algorithm determined similar hectare allocations for 
lucerne. For the double-crop plots of land, each algorithm allocated the most land to 
tomato, onion, and cabbage. The large hectare allocations for tomato are due to its high 
yield ha-1 and high producer price t-1. Similar hectare allocations were determined for 
pumpkin, maize, ground nuts, and sunflower. GA’s relatively higher hectare allocation for 
barley contributed to its relatively poor best performance.  
 

 

Figure 9: A comparison of the hectare allocations, per crop, for the best solution found 
by each algorithm 

Table 8 gives the statistical values of each crop’s hectare allocations (ha’s crop-1), irrigated 
water requirements (IWR), and variable costs of production (VCP) for the best solution 
determined by each heuristic algorithm. 
 
The program was written in the Java programming language, using the Netbeans® 7.0 
Integrated Development Environment. All simulations were run on the same platform. The 
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computer used had a Windows® 7 Enterprise operating system, an Intel® Celeron® Processor 
430, 3 GB of RAM, and a 500GB hard-drive. 

6 CONCLUSION 

Shortages in food supply and increases in population growth have increased the need for 
food production. To try to meet this growing demand for food, it is important that new 
irrigation schemes be developed to increase agricultural output.  
 
Planning new irrigation schemes requires that optimised solutions be found for the seasonal 
hectare allocations of the crops that need to be grown within the year. The solutions found 
must maximise the total gross profits that can be earned, to make the most efficient use of 
the limited resources available for agricultural production. Determining solutions to this 
problem is referred to as annual crop planning (ACP), an NP-Hard optimisation problem in 
agricultural planning.  
 
This research has introduced a new ACP mathematical model, which is intended to be used 
to determine solutions to the ACP problem at a new irrigation scheme. The case study in 
this paper is the Taung Irrigation Scheme (TIS), situated in the North West Province of South 
Africa. The irrigation scheme is currently being expanded to cater for an extra 1,750 
hectares of irrigated land. This portion of land is required to grow 10 different types of 
crops. In order to determine solutions for this ACP problem, three relatively new Swarm 
Intelligence (SI) metaheuristic algorithms have been investigated. These algorithms include 
Cuckoo Search (CS), Firefly Algorithm (FA), and Glow-worm Swarm Optimisation (GSO). To 
determine the relative merits of their solutions, they have been compared against the 
solutions of another popular population-based metaheuristic algorithm, the Genetic 
Algorithm (GA). To ensure fairness in the performances of the heuristic algorithms, their 
algorithm-specific parameters had used recommended settings. Other parameter settings, 
such as the ‘population’ sizes, the initial population sets, and the number of objective 
function evaluations per run, were all set to be the same. Each heuristic algorithm was run 
100 times. From these 100 runs, the overall best and average solutions of each heuristic 
algorithm were documented.  
 
The results show that GSO determined the overall best solution. This was followed by FA, 
CS, and then GA. On average, FA performed the best, followed by CS, GSO, and then GA. FA 
showed the lowest 95% Confidence Interval (95% CI) fitness value. This proved that, in a 
solution space of constantly changing dimensions, FA performed most consistently. In this 
research, FA was the strongest heuristic algorithm. The disadvantage of FA was its 
relatively higher average execution time. Although GSO’s average performance was worse 
than CS, its best solution and its high 95% CI fitness value proved that it had determined 
some very good solutions. GSO also had the fastest average execution time. Of all the 
heuristic algorithms, GA performed the worst overall. An advantage of FA and CS is their 
relative ease of implementation in developing object-oriented versions of the algorithms, 
compared with GSO. CS requires the fewest parameter settings.  
 
Possible future work will be to extend this ACP mathematical model (or formulate new 
models) to take into account factors such as the dynamic pricing of crops and caloric 
requirements. An investigation into the effectiveness of employing local search 
metaheuristic techniques in determining solutions to this ACP problem might also be 
considered.  
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Table 8: Crop statistics of the best solution determined by each heuristic algorithm 

Crops Methods ha’s crop-1 IWR (m3) VCP (ZAR) 

Lucerne 

CS 16 159,049 113,476 
FA 13 129,349 92,286 

GSO 14 145,019 103,466 
GA 13 128,561 91,724 

Tomato 

CS 1,429 11,161,035 103,099,717 
FA 1,479 11,553,491 106,725,022 

GSO 1,487 11,617,618 107,317,394 
GA 1,424 11,125,493 102,771,401 

Pumpkin 

CS 93 476,715 1,005,310 
FA 65 336,130 708,840 

GSO 62 320,703 676,306 
GA 103 532,815 1,123,615 

Maize 

CS 86 603,190 391,039 
FA 65 453,873 294,239 

GSO 62 434,061 281,395 
GA 67 468,012 303,405 

Ground Nuts 

CS 66 378,980 365,895 
FA 65 373,218 360,331 

GSO 62 355,404 343,133 
GA 72 410,972 396,781 

Sunflower 

CS 60 201,401 241,472 
FA 63 209,286 250,925 

GSO 62 206,495 247,579 
GA 71 236,134 283,116 

Barley 

CS 36 170,083 163,649 
FA 31 148,232 142,625 

GSO 33 154,230 148,395 
GA 146 689,062 662,995 

Onion 

CS 700 1,764,290 16,774,969 
FA 609 1,534,750 14,592,494 

GSO 817 2,059,855 19,585,220 
GA 584 1,471,225 13,988,493 

Potato 

CS 593 1,257,325 13,594,878 
FA 409 867,245 9,377,127 

GSO 90 191,282 2,068,249 
GA 367 778,789 8,420,687 

Cabbage 

CS 405 799,466 9,686,407 
FA 688 1,356,586 16,436,522 

GSO 795 1,568,254 19,001,119 
GA 640 1,262,555 15,297,238 
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