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ABSTRACT 

In this paper we study an extension of a classic newsvendor model with balking under a 
service-level constraint. We also relax the assumption that the demand distribution is fully 
available to a decision-maker; we assume that only the mean and variance of the demand 
distribution are known, and discuss the procedure for determining the optimal order 
quantity for the concomitant model. We further extend our base model to two different 
cases: (i) when the fixed ordering cost is included, and (ii) when yield is uncertain. We 
illustrate the solution procedures for each case with numerical examples. Moreover, we 
discuss the performance and robustness of the approach through randomly generated test 
instances, and perform a numerical sensitivity analysis to evaluate the impact of the 
changes of a targeted fill-rate and variances of a demand distribution. 

OPSOMMING 

Die navorsing handel oor uitbreiding van die klassieke koerantverkoopsmodel met weiering 
teen die agtergrond van ‘n diensrandvoorwaarde en bekende gemiddelde en variansie van 
vraag.  Die bogenoemde uitbreiding sluit ook as alternatief die bestelkoste vir onsekere 
vraag in.  Die modelprestasie word gedemonstreer via ‘n reeks van syfervoorbeelde. 
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1 INTRODUCTION 

The newsvendor model has served as one of the fundamental models in stochastic inventory 
control problems [17], and has been used in numerous applications including 
production/inventory control,  supply chain coordinations, option pricing and contract, and 
yield management. A comprehensive literature survey of the model can be found in Khouja  
[8] and Petruzzi & Dada [16]. 
 
It is well known that newsvendor-type problems can easily be solved when the full demand 
distribution is available, and that they have an elegant solution structure called the critical 
fractile solution [17]. However, in practice it is often found that there may be weak or no 
justification that demand should follow a certain distribution. Thus a robust min-max (or 
distribution-free) approach for the newsvendor model, pioneered by Scarf [18], has been 
proposed, and various forms of extensions have been discussed in the extant literature 
[1,5,6,9,11,13]. It allows us to make a decision about the worst case distribution when only 
the mean and variance information for demand can readily be captured or estimated from 
the data. This is indeed a risk-averse approach [15]. 
 
In this paper we specifically consider a robust min-max approach for an extension of the 
newsvendor model with customer balking and a service-level constraint. It is often observed 
that demand for a product can be influenced by product availability on the shelf. For 
example, customers may not purchase items if the inventory on the shelf is below a certain 
level. We often observe such customer behaviour in our daily life, especially for perishable 
products such as dairy products, fruits, or vegetables in grocery stores. If there are few 
items left on the shelf, customers are reluctant to buy them, possibly thinking that the 
products might not be in as good shape as they should to be, might no longer be fresh, or 
might be close to their expiry date. This is referred to as ‘balking‘ [14]. Thus, in this study, 
if the inventory level drops below a threshold 𝐊, we assume that customers may balk with 
probability 𝟏 − 𝛄, and so demand is deflated by 𝛄. 
 
Moon & Choi [11] and Liao et al. [9] are the researchers who are most relevant to this 
study. Moon & Choi [11] provide the optimal order quantity that minimises the expected 
cost against the worst possible distribution of the demand with mean 𝛍 and variance 𝛔𝟐 
with balking. However, they disregard the impact of lost sales, which is typically captured 
by the shortage cost in a newsvendor setting. Most of all, the phenomenon of customer 
balking exacerbates the magnitude of lost sales. It is thus reasonable and important to 
incorporate this aspect to reflect customer balking effects better. Liao et al. [9] examine a 
simple extension of the model in Moon & Choi [11] by also incorporating a linear lost-sales 
penalty cost in the profit function. However, the main concern about this extension is that, 
in many cases, the lost sales penalty is difficult to estimate in practice, since it includes 
intangible factors such as loss of goodwill or customers. In order to handle the lost sales 
effect in a tractable manner, we incorporate the notion of service level (or fill-rate) into 
the decision framework, and so our model is more viable in practice than the earlier models 
in the literature. 
 
The main contribution of this work is that we incorporate the service level constraint for 
considering the lost-sales effect due to the understocking of items and customer balking, 
and we provide a practical guide to the interdependence of retail shelf management and 
associated inventory control in the broader sense. As Liao et al. [9] point out, the previous 
distribution-free newsvendor model with balking neglected this aspect, despite the 
significance of lost sales. They therefore attempt to consider this aspect with the explicit 
lost-sales penalty term in the profit function – although they admit that the penalty cost is 
hardly ever estimated in practice. In this paper we aim to discuss the optimal ordering 
policy for the robust min-max single-period model with balking under a fill-rate constraint, 
to improve the practicality of the concomitant model. Furthermore, we present two 
extensions of the base model: one including a fixed ordering cost, and the other assuming 
yield uncertainty. We note that, in the shipment of perishable goods, the amount that 
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perishes during storage and transit in the United States is 10 to 15 per cent of perishable 
freight tonnage [10]. The percentages are even higher in countries that do not have a 
sufficiently developed cold chain infrastructure [3]. Thus the extension for yield 
uncertainty also readily captures the aspect in which the exact random shrinkage 
distribution during a shipment is almost never estimated. (Many items in a grocery store are 
perishable and are subject to freight shrinkage during a shipment.) We then evaluate the 
performance of the concomitant robust min-max model with a set of randomly generated 
instances, and discuss the conditions under which the robust min-max approach presented 
in this paper can be recommended for use by practitioners in the retail industry. 
 
The remainder of this paper is organised as follows. Section 2 presents the base model with 
balking and a service level constraint, using cases where the exact demand distribution is 
either available or is not available. Sections 3 and 4 discuss the extensions of the base 
model in Section 2: the fixed ordering cost case and the random yield case respectively. 
Section 5 presents computational experiments for evaluating the performance and checking 
the robustness of distribution-free models. We conclude the discussion in Section 6. 

2 BASE MODEL 

We mainly adopt the notation presented in Moon and Choi [11] (listed in Table 1): 

Table 1:  Notation 

Notation Description 

𝑐 unit ordering cost of the inventory item 

𝑝 unit retail price 

𝑣 unit salvage value 

𝐷 
the item’s random demand with a probability and cumulative density function of 𝑓(𝐷) and 
𝐹(𝐷) respectively 

𝜇 the item’s expected demand over the sales period 

𝜎 standard deviation of the item’s demand 

𝐾 the threshold inventory level at which customers may balk 

𝛾 
probability of a sale when the stock level is below 𝐾 (due to balking,  
𝛾 < 1) 

𝑄 the item’s order quantity 

 
Then the expected profit function πF(Q) can be expressed as  

πF(Q) =  � [pD + v(Q − D)]dF(D)
Q−K

0
+ � �

p�Q − K + γ(D − Q + K)�
+ v�K − γ(D − Q + K)�

�dF(D)
Q−K+Kγ

Q−K
 

                                     +∫ pQdF(D)∞
Q−K+Kγ

−  cQ   

which has explicit dependence on the demand distribution F(D) with mean µ and variance 
σ2. As presented in the equation above, there are three possible cases, depending on the 
demand realisation: 
 
a. 0 ≤ D ≤ Q − K : the resulting inventory level after the demand is met is still above the 

threshold K, and so no change occurs in the sales rate. 
b. Q − K ≤ D ≤ Q − K + K/γ: the stock level becomes less than the threshold K, and so 

the amount of D� = (Q − K) +  γ�D− (Q − K)� is the realised demand size, and the 
amount of Q − D� = K − γ(D − Q + K) will be salvaged at the end of the selling season. 

c. Q − K + K/γ ≤ D: all the ordered items must be sold out; so a shortage of items occurs 
with the amount of D − (Q − K + K/γ). 

 
As mentioned earlier, we introduce the service level constraint in our decision model. 
Service level or fill-rate β is defined as β = 1 −  Expected lost sales Expected total demand⁄ , 
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which is the average fraction of demand that is satisfied immediately from stock on the 
shelf [12]. Let ξ be the desired service level, and the decision-maker determines the 
optimal order quantity under the constraint β ≥ ξ. We note that, in the concomitant model, 
the expected lost sales equal ∫ (D − (Q − K + K/γ))dF(D)∞

Q−K+K/γ , and so the fill-rate β(Q), 
which is a function of an order quantity Q, is given as 

β(Q) = 1 − �∫ (D − (Q − K + K/γ))dF(D)∞
Q−K+K/γ 𝜇� � ≥ 𝜉. 

 
Under the assumption that the demand distribution F(⋅) is fully available to the decision-
maker, the optimal order quantity QF

∗  is determined as follows: 

QF
∗ = arg max𝑄 �𝜋𝐹(𝑄): ∫ (D − (Q − K + K/γ))dF(D) ≤ (1 − 𝜉)𝜇∞

Q−K+K/γ �. 
 
We note that πF(Q) can be rewritten as 

πF(Q) =  (p − v)µ − (1 − γ)(p − v)ED[(D − Q + K)+] − γ(p − v)ED ��D − (Q − K + K/γ)�+�
− (c − v)Q 

where (a)+ = max {a, 0}. Let 

𝐶𝐹(𝑄) = (1 − γ)(p − v)ED[(D − Q + K)+] + γ(p − v)ED ��D − (Q − K + K/γ)�+� + (c − v)Q 
so that πF(Q) =  (p − v)µ − CF(𝑄). Note that maximising πF(Q) is equivalent to minimising 
𝐶𝐹(𝑄), and it can easily be verified that 𝐶𝐹(𝑄) is convex in 𝑄 (by evaluating the second-
order derivative of 𝐶𝐹(𝑄) with respect to 𝑄). 
 
Similarly, the fill-rate constraint can be also expressed as  

ED ��D − (Q − K + K/γ)�+� ≤ (1 − 𝜉)𝜇.    (1) 

Let SLF(𝑄) = ED ��D − (Q − K + K/γ)�+� − (1 − ξ)µ. It can also easily be shown that SLF(𝑄) is 
convex in Q so that the feasible solution set ΩF = {𝑄 ≥ 0:𝑆𝐿𝐹(𝑄) ≤ 0} is convex. 
 
Consequently, if the demand distribution information F(⋅) is available, the optimal order 
quantity QF

∗  is determined by solving the constrained convex optimisation problem 
min𝑄∈Ω𝐹 𝐶𝐹(𝑄). We now discuss how to determine the optimal order quantity QF

∗  when the 
exact demand distribution information is known. Since 𝐶𝐹(𝑄) is convex in 𝑄, as mentioned 
earlier, we examine the first-order condition:† 
(1 − γ)(p − v)F(Q − K)  + γ(p − v)F(Q − K + K/γ)  =  p − c.  (2) 
 
Let QF

′   be Q satisfying Equation (2). If SLF(𝑄𝐹′ ) ≤ 0 (or 𝑄𝐹′ ∈ Ω𝐹), then QF
∗ = 𝑄𝐹′ . Otherwise 

the optimal order quantity must be a boundary point in ΩF. It can be shown that the fill-
rate 𝛽, which is a function of 𝑄, strictly increases in 𝑄. Then the conditions that (i) 𝐶𝐹(𝑄) is 
convex in 𝑄 and (ii) 𝑄𝐹′ ∉ ΩF imply that 𝑄𝐹∗  should satisfy the fill-rate constraint with 
equality (i.e. SLF(𝑄𝐹∗) = 0). Algorithm 1 summarises the discussion above. 
 
1. Find QF

′  satisfying Equation (2) - i.e.  
• (1 − γ)F(QF

′  − K) + γF(QF
′  − K + K/γ)  =  p−c

p−v 
. 

If 𝑄𝐹′ ∈ Ω𝐹  , then QF
∗ = 𝑄𝐹′  and stop. Otherwise, go to step 2. 

2. Find QF
′′ satisfying the fill-rate constraint with equality – i.e.  

• −∫ 𝐷𝑑𝐹(𝐷)
QF′′−K+

K
γ

0 = �QF
′′ − K + K

γ
� �1 − 𝐹 �QF

′′ − K + K
γ
�� − 𝜉𝜇. 

Then QF
∗ = 𝑄𝐹′′. 

Algorithm 1: Procedure to determine the optimal order quantity 𝐐𝐅∗  when the exact 
demand distribution 𝑭(⋅) is available 

So far we have discussed the newsvendor model with balking and a service level constraint 
under the full demand distribution information. We now present the corresponding robust 

† Let 𝐻(𝑄) = 𝐸𝐷 ��𝐷 − ℎ(𝑄)�
+
� = ∫ �𝐷 − ℎ(𝑄)�𝑑𝐹(𝐷)∞

ℎ(𝑄)  where ℎ(𝑄) is a function of 𝑄. Then 
𝑑𝐻(𝑄)
𝑑𝑄

= −𝑑ℎ(𝑄)
𝑑𝑄

[1 −

𝐹�ℎ(𝑄)�]. 

 86 

                                                      



min-max model in which there is no assumption about the demand distribution apart from 
the mean 𝜇 and variance 𝜎2. Let Γ(𝜇,𝜎) be the set of all possible demand distributions with 
mean 𝜇 and variance 𝜎2. In the robust min-max model, we derive an upper-bound function 
𝐶(Q) such that 𝑠𝑢𝑝 𝐹∈Γ(𝜇,𝜎)𝐶𝐹(𝑄) ≤ 𝐶(𝑄) for all 𝑄 ≥ 0, and the following lemma provides the 
theoretical basis for the derivation of the upper bound function: 
 
Lemma 1. Let 𝑔(𝑄) be a random variable, which is a function of 𝑄 and independent of 𝐷, 
𝐸[𝑔(𝑄)] be the expectation of 𝑔(𝑄), and 𝑉𝑎𝑟[𝑔(𝑄)] be the variance of 𝑔(𝑄). 
a. Then, 

𝐸 ��𝐷 − 𝑔(𝑄)�+� ≤ �𝜎2+𝑉𝑎𝑟[𝑔(𝑄)]+(𝐸[𝑔(𝑄)]−𝜇)2−(𝐸[𝑔(𝑄)]−𝜇)
2

.                            (3)               
b. Suppose that 𝑔(𝑄) is a constant (i.e.  𝐸[𝑔(𝑄)] = 𝑔(𝑄) and 𝑉𝑎𝑟[𝑔(𝑄)] = 0). Then, for 

any 𝑔(𝑄), there is always a demand random variable 𝐷 whose distribution is 𝐹𝐷 ∈ 𝛤(𝜇,
𝜎) where the upper bound (right-hand side of Equation (3)) is tight. 

 
Proof. See Appendix A.  
 

Thus, (i) when 𝑔(𝑄) = 𝑄 − 𝐾, 𝐸 ��𝐷 − 𝑔(𝑄)�+� ≤ �𝜎2+(𝑄−𝐾−𝜇)2−(𝑄−𝐾−𝜇)
2

, and (ii) when 

𝑔(𝑄) = 𝑄 − 𝐾 + 𝐾/𝛾, 𝐸 ��𝐷 − 𝑔(𝑄)�+� ≤ �𝜎2+(𝑄−𝐾+𝐾/𝛾−𝜇)2−(𝑄−𝐾+𝐾/𝛾−𝜇)
2

. Based on the results, 

a possible candidate of 𝐶(Q) is 

𝐶(Q) = (1 − γ)(p − v) �𝜎
2+(𝑄−𝐾−𝜇)2−(𝑄−𝐾−𝜇)

2
+ γ(p − v)

�𝜎2+�𝑄−𝐾+𝐾
𝛾
−𝜇�

2
−�𝑄−𝐾+𝐾

𝛾
−𝜇�

2
+ (c − v)Q. 

 
The first and second derivatives of 𝐶(Q) in Q are 
 
𝑑𝐶(Q)
𝑑𝑄 =

(1 − γ)(p − v)
2

(𝑄 − 𝐾 − 𝜇)

�𝜎2 + (𝑄 − 𝐾 − 𝜇)2
+
γ(p − v)

2
(𝑄 − 𝐾 + 𝐾/𝛾 − 𝜇)

�𝜎2 + (𝑄 − 𝐾 + 𝐾/𝛾 − 𝜇)2
−
𝑝 + 𝑣 − 2𝑐

2  

 
and 

𝑑2𝐶(Q)
𝑑𝑄2 =

(1 − γ)(p − v)𝜎2

2(𝜎2 + (𝑄 − 𝐾 − 𝜇)2)3/2 +
γ(p − v)𝜎2

2(𝜎2 + (𝑄 − 𝐾 + 𝐾/𝛾 − 𝜇)2)3/2 > 0 

respectively by using the Leibniz rule. Since 𝑑
2𝐶(Q)
𝑑𝑄2

> 0, 𝐶(Q) is convex in Q. 

 
We next consider the fill-rate constraint when there is no assumption about the demand 
distribution. Due to the result from Lemma 1, 
 

SLF(Q) ≤
�𝜎2 + (𝑄 − 𝐾 + 𝐾/𝛾 − 𝜇)2 − (𝑄 − 𝐾 + 𝐾/𝛾 − 𝜇)

2 − (1 − ξ)µ 

and let 𝑆𝐿(𝑄) be the function of the right-hand-side of the inequality above. We identify 
the constraint 𝑆𝐿(𝑄) ≤ 0 as the distribution-free fill-rate constraint. We note that Lemma 
1(ii) implies that there is a demand distribution 𝐹 satisfying SLF(𝑄) = 𝑆𝐿(𝑄). Since it can be 
verified that 𝑆𝐿(𝑄) is also convex in 𝑄, the set Ω = �𝑄 ≥ 0: 𝑆𝐿(𝑄) ≤ 0� is convex, and 
moreover Ω ⊆ Ω𝐹 for all F ∈ Γ(µ,σ) due to the relation SLF(𝑄) ≤ 𝑆𝐿(𝑄). 
 
Therefore, the robust min-max model is to determine Q that minimises the upper bound 

function C(𝑄) over the set Ω, say, Q
∗
: i.e. Q

∗
= arg min𝑄∈Ω 𝐶(𝑄). Note that Q

∗
∈ Ω ⊆ Ω𝐹 for 

all F ∈ Γ(µ,σ). We now discuss how Q
∗
 can be determined, and we can apply the same 

argument that we made for the case where the exact demand distribution is known because 
both 𝐶(𝑄)  and 𝑆𝐿(𝑄) are convex in 𝑄. Thus we present the simple solution procedure to 
determine Q

∗
 for this robust min-max model in Algorithm 2. 

1. Find Q
′
 satisfying the first-order condition d𝐶(𝑄)

dQ
|
𝑄=Q

′ = 0 - i.e. 
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• (1 − γ)
�Q

′
−𝐾−𝜇�

�𝜎2+�Q
′
−𝐾−𝜇�

2 + γ
�Q

′
−𝐾+𝐾/𝛾−𝜇�

�𝜎2+�Q
′
−𝐾+𝐾/𝛾−𝜇�

2  =  p+v−2c
p−v 

. 

If Q
′
∈ Ω , then Q

∗
= Q

′
 and stop. Otherwise, go to step 2. 

2. Find Q
′′
satisfying the distribution-free fill-rate constraint with equality – i.e. 𝑆𝐿 �Q

′′
� =

0 or 

• �𝜎2 + �Q
′′
− 𝐾 + 𝐾/𝛾 − 𝜇�

2
− Q

′′
= −𝐾 + 𝐾/𝛾 + (1 − 2𝜉)𝜇. 

Then Q
∗

= Q
′′
. 

Algorithm 2: Procedure to determine the optimal order quantity 𝐐
∗
 for the robust min-

max model 

We note that Moon & Choi [11] suggested the notion of the expected value of additional 
information (EVAI) to measure the additional value of acquiring the exact demand 
distribution. In this case, the expected marginal value of knowing the exact demand 
distribution relative to the lack of distribution information can be expressed as EVAI =
π F(QF

∗ ) − π F(𝑄�∗) = CF(𝑄�∗) −  CF(QF
∗ ), and we introduce (%𝐸𝑉𝐴𝐼) = (EVAI π F(QF

∗ )⁄ ) ×
100 (%), which is the percentage loss due to the lack of demand distribution information, 
to evaluate the performance of the robust min-max approach. 
 
Example 1. For the illustration, we assume that the mean and the standard deviation of 
the demand are 𝜇 = 800 and 𝜎 = 150 respectively. The demand deflation threshold and the 
corresponding deflation rate are 𝐾 = 200 and 𝛾 = 0.8 respectively. The cost parameters are 
as follows: the unit ordering cost is 𝑐 = $35, the unit retail price is 𝑝 = $60, and the unit 
salvage value is 𝑣 = $15. Lastly, let the target fill-rate be 𝜉 = 0.85. Suppose that the 
demand distribution is given as 𝑈(540,1060), whose mean and standard deviation are 800 
and 150 respectively. The optimal order quantity 𝑄𝐹∗  for the distribution is approximately 
829; on the other hand, the optimal quantity Q

∗
 for the robust min-max model is close to 

804. Since CF(𝑄𝐹∗) ≈ $19319.764 and 𝐶𝐹(𝑄
∗
) ≈ $19347.013, (𝐸𝑉𝐴𝐼) is $27.249 and 

(%𝐸𝑉𝐴𝐼) ≈ 0.141(%), indicating that the loss due to the lack of demand information is 
insignificant. We now increase the fill-rate to 𝜉 = 0.95. Then Q𝐹

∗ ≈ 829,𝑄
∗
≈ 851,𝐶𝐹(𝑄𝐹∗) ≈

$19319.764, and CF(𝑄
∗
) ≈ $19340.975. Thus (𝐸𝑉𝐴𝐼) = $21.211 and (%𝐸𝑉𝐴𝐼) ≈ 0.109(%). 

We note that, as the desired service level 𝜉 is increased from 0.85 to 0.95, the order 
quantity obtained from the first-order condition of the model having full demand 
information still satisfies the corresponding fill-rate constraint (i.e. Equation (1)), and thus 
𝑄𝐹∗  remains at the same value, 829. On the other hand, the order quantity satisfying the 
first-order condition of the robust min-max model eventually violates the distribution-free 
fill-rate constraint, and so 𝑄

∗
 is changed from 804 to 851. In this example, (%𝐸𝑉𝐴𝐼) 

decreases when 𝜉 is increased from 0.85 to 0.95, and we note that this is not a typical 
pattern. Depending on the parameter values, the changes in (%𝐸𝑉𝐴𝐼) may not have any 
consistent pattern as ξ increases; however, as presented in Section 5, (%𝐸𝑉𝐴𝐼) generally 
increases in ξ. 

3 THE FIXED ORDERING COST CASE 

We now discuss an extension of the base model given in Section 2. Suppose (i) that 
whenever the retailer procures any positive number of items (i.e. Q > 0), a fixed cost A is 
charged; and (ii) that the retailer owns an inventory I ≥ 0 initially where possessing the 
initial inventory is irrelevant to any cost. It is well known that the classic newsvendor 
model with a fixed ordering cost follows the so-called (s, S) inventory replenishment policy 
[4]. However, it will be shown that the extension we examine in this section does not 
follow the (s, S) policy because of the fill-rate constraint. 
 
Let S be the inventory level after receiving an order (i.e. S = I + Q). Then the expected 
total profit function under the exact demand information πF

(1)(𝑆) is expressed as 
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πF
(1)(𝑆) = (p − v)µ − (1 − γ)(p − v)ED[(D − S + K)+] − γ(p − v)ED ��D − (S − K + K/γ)�+ � 

−(c − v)S +  cI –  A1S>𝐼 
with the fill-rate constraint ED ��D − (S − K + K/γ)�+ � ≤ (1 − 𝜉)𝜇 where 1𝛼 is an indicator 
function. The corresponding robust min-max optimisation model is 

min
𝑆≥𝐼

�𝐶
(1)

(𝑆) + 𝐴1𝑆>𝐼: 𝑆𝐿
(1)

(𝑆) ≤ 0� 
where 

𝐶
(1)

(𝑆) = (1 − γ)(p − v)
�𝜎2 + (𝑆 − 𝐾 − 𝜇)2 − (𝑆 − 𝐾 − 𝜇)

2                        

+ γ(p − v)
�𝜎2 + (𝑆 − 𝐾 + 𝐾/𝛾 − 𝜇)2 − (𝑆 − 𝐾 + 𝐾/𝛾 − 𝜇)

2
+ (c − v)S + cI 

and 

𝑆𝐿
(1)

(𝑆) = �𝜎2+(𝑆−𝐾+𝐾/𝛾−𝜇)2−(𝑆−𝐾+𝐾/𝛾−𝜇)
2

− (1 − 𝜉)𝜇. 
 

Let 𝑆
′
be the minimiser of the robust min-max expected cost function 𝐶

(1)
(𝑆) + 𝐴1𝑆>𝐼, – that 

is, 𝑆
′
 satisfies the following first-order condition:  

(1 − 𝛾)
�𝑆

′
− 𝐾 − 𝜇�

�𝜎2 + �𝑆
′
− 𝐾 − 𝜇�

2
+ γ

�𝑆
′
− 𝐾 + 𝐾/𝛾 − 𝜇�

�𝜎2 + �𝑆
′
− 𝐾 + 𝐾/𝛾 − 𝜇�

2
=
𝑝 + 𝑣 − 2𝑐
𝑝 − 𝑣  

due to the convexity of 𝐶
(1)

(𝑆). In addition, there is a unique 𝑠′(< 𝑆
′
) satisfying the 

equation 𝐶
(1)
�𝑠′� = 𝐶

(1)
�𝑆

′
� + 𝐴. 

 

The fact that 𝐶
(1)

(𝑆) is strictly convex and is not bounded from above ensures the existence 
of such an 𝑠′. We also note that 𝑠′ corresponds to the reorder point in a (𝑠, 𝑆) policy, and 
without the fill-rate constraint, the pair (𝑠′, 𝑆

′
) forms such a policy, because the retailer 

places an order up to 𝑆
′
 only when 𝐼 < 𝑠′ due to the fact that 𝐶

(1)
(𝐼) > 𝐶

(1)
�𝑆

′
� + 𝐴 for 

𝐼 < 𝑠′, and 𝑠′ is the break-even point. 
 
We now discuss how to determine the optimal order quantity 𝑄

∗
for this robust min-max  

model. Let 𝑆
′′
be a 𝑆 satisfying the distribution-free fill-rate constraint with equality, or 

�𝜎2 + �𝑆
′′
− 𝐾 + 𝐾/𝛾 − 𝜇�

2
− 𝑆

′′
= −𝐾 + 𝐾/𝛾 + (1 − 2𝜉)𝜇. 

We note that the fill-rate constraint 𝑆𝐿
(1)

(𝑆) ≤ 0 is equivalent to 

𝛽(𝑆) = 1 −
�𝜎2 + (𝑆 − 𝐾 + 𝐾/𝛾 − 𝜇)2 − (𝑆 − 𝐾 + 𝐾/𝛾 − 𝜇)

2𝜇
 ≥ 𝜉  

and it can be easily verified that the distribution-free fill-rate function 𝛽(𝑆) is increasing in 
𝑆. Thus we can interpret 𝑆

′′
as the minimum inventory level required for the targeted 

service level in the expected sense. Given 𝑠′,𝑆
′
, and 𝑆

′′
, we can consider the following 

three cases: 
 
a. If 𝑆

′′
≤ 𝑠′, both 𝑠′ and 𝑆

′
satisfy the fill-rate constraint due to the property of 𝛽(𝑆), and 

so the model becomes an unconstrained optimisation problem. The optimal order 
quantity is determined according to the (𝑠′, 𝑆

′
) policy: 

𝑄
∗

= �𝑆
′
− 𝐼 if 𝐼 < 𝑠′

0 o/w
. 

b. If 𝑆
′
≤ 𝑆

′′
, the inventory level after receiving an order should be equal to 𝑆

′′
 due to 

the convexity of the objective function 𝐶
(1)

(𝑆) + 𝐴. Thus 
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𝑄
∗

= �𝑆
′′
− 𝐼 if 𝐼 < 𝑆

′′

0 o/w
. 

c. Otherwise, the inventory level after receiving an order should be at least greater than 

or equal to 𝑆
′′
. If I ∈ (𝑠′,𝑆

′′
), the order needs to be placed up to 𝑆

′
 because 𝐶

(1)
�𝑆

′′
� +

𝐴 > 𝐶
(1)
�𝑆

′
� + 𝐴. If I ∈ [𝑆

′′
, 𝑆

′
), it is unnecessary to place an order because 𝐶

(1)
(𝑆) is 

convex and 𝐶
(1)
�𝑆

′′
� < 𝐶

(1)
�𝑠′� = 𝐶

(1)
�𝑆

′
� + 𝐴. This suggests the following ordering 

policy: 

𝑄
∗

= � 𝑆
′
− 𝐼 if 𝐼 < 𝑆

′′

0 o/w
. 

 
Algorithm 3 summarises the procedure for determining the optimal order quantity for the 
robust min-max model with a fixed ordering cost. 
 

1. Find 𝑆
′
, 𝑠′ �< 𝑆

′
� and 𝑆

′′
satisfying the following equations:  

 (1 − 𝛾)
�𝑆

′
−𝐾−𝜇�

�𝜎2+�𝑆
′
−𝐾−𝜇�

2 + γ
�𝑆

′
−𝐾+𝐾/𝛾−𝜇�

�𝜎2+�𝑆
′
−𝐾+𝐾/𝛾−𝜇�

2 = 𝑝+𝑣−2𝑐
𝑝−𝑣

, 

 𝐶
(1)
�𝑠′� = 𝐶

(1)
�𝑆

′
� + 𝐴, and 

 �𝜎2 + �𝑆
′′
− 𝐾 + 𝐾/𝛾 − 𝜇�

2
− 𝑆

′′
= −𝐾 + 𝐾/𝛾 + (1 − 2𝜉)𝜇. 

2. Given the initial inventory level 𝐼, the optimal order quantity 𝑄
∗
 is determined as 

follows: 

• 𝑄
∗

=

⎩
⎪
⎨

⎪
⎧� 𝑆

′′
− 𝐼�

+
      if  𝑆

′′
∈ [𝑆

′
,∞)   

�𝑆
′
− 𝐼� 1𝐼<𝑆′′ if  𝑆

′′
∈ [𝑠′,𝑆

′
]    

�𝑆
′
− 𝐼� 1𝐼<𝑠′ if  𝑆

′′
∈ �−∞, 𝑠′� 

 

Algorithm 3: Procedure to determine the optimal order quantity 𝐐
∗
 for the robust min-

max model with a fixed ordering cost 

Example 2. Using the parameter values in Example 1, we assume that the fixed ordering 

cost is A = $600. Then, if ξ = 0.85, �𝑠′,𝑆
′
,𝑆

′′
� ≈ (703,804,676). Since 𝑆

′′
< 𝑠′, the optimal 

policy for this robust min-max model is (804− 𝐼) if 𝐼 < 703, and 0 otherwise. If we increase 

the value of 𝜉 from 0.85 to 0.9, �𝑠′,𝑆
′
, 𝑆

′′
� is changed into (703,804,740), and so the optimal 

policy becomes (804− 𝐼) if 𝐼 < 740, and 0 otherwise. Lastly, if ξ = 0.95, �𝑠′,𝑆
′
, 𝑆

′′
� ≈

(703,804,851). Since 𝑆
′

< 𝑆
′′
, the optimal policy in this case is (851− 𝐼) if 𝐼 < 851, and 0 

otherwise. 

4 THE RANDOM YIELD CASE 

In this section we consider the case in which the ordered or produced quantity Q is not 
perfect. This type of problem is in the class of random yield models [19]. We especially 
assume the multiplicative random yield model that appears frequently in the literature 
[2,7]. We note that Jung & Lee [6] present a robust newsvendor model with balking and 
random yield; however, unlike ours, their model assumes that the yield distribution follows 
a binomial distribution. Let ρ be a random variable with support on (0,1] whose probability 
(cumulative) density function is y(ρ) �Y(ρ)�. In addition, we denote µ𝜌 and σ𝜌2 as the 
expectation and variance of the random variable ρ respectively. We assume that ρ is 
independent of the order quantity Q and of the demand D. In this random yield case, it is 
assumed that out of Q items, only ρQ can be sellable or in a good shape. Then the expected 
profit function πF

(2)(𝑄) can be expressed as 
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πF
(2)(𝑄) = � �� �

pD
+v(ρQ − D)� dF(D) +

ρQ−K

0
� �

p�ρQ − K + γ(D − ρQ + K)�
+ v�K − γ(D − ρQ + K)�

�dF(D)
ρQ−K+Kγ

ρQ−K

1

0

+ � p(ρQ)dF(D)
∞

ρQ−K+Kγ

�𝑑𝑌(𝜌)  − 𝑐𝑄 = (p − v)µ 

−(1 − γ)(p − v)Eρ,D[(D − ρQ + K)+]}   − γ(p − v)Eρ,D[�D − �ρQ − K +
K
γ��

+

 ]  − (c − vµ𝜌)Q.  

 

Let CF
(2)(𝑄) = (1 − 𝛾)(𝑝 − 𝑣)𝐸𝜌,𝐷[(𝐷 − 𝜌𝑄 + 𝐾)+] + 𝛾(𝑝 − 𝑣)𝐸𝜌,𝐷 ��𝐷 − �𝜌𝑄 − 𝐾 + 𝐾

𝛾
��

+

� +

�𝑐 − 𝑣𝜇𝜌�𝑄, and it is clear that maximising πF
(2)(𝑄) is equivalent to minimising CF

(2)(𝑄). Like 

the previous cases, the fill-rate 𝛽(𝑄) is given as 𝛽(𝑄) = 1 − 𝐸𝜌,𝐷[�𝐷−(𝜌𝑄−𝐾+𝐾/𝛾)�+]
𝜇

 ≥ 𝜉. Under 

the assumption that the exact demand and yield distributions are available, the optimal 
order quantity 𝑄𝐹∗  is 

QF
∗ = arg min

𝑄
�𝐶𝐹

(2)(𝑄):𝐸𝜌,𝐷 ��𝐷 − �𝜌𝑄 − 𝐾 +
𝐾
𝛾��

+

� ≤ (1 − 𝜉)𝜇�. 

 
We now discuss the robust min-max approach where the exact distributions for both 
demand D and yield ρ are not available. Due to Lemma 1, by letting g(Q) = ρQ + κ where κ 

is a constant so that E[g(Q)] = µρQ + κ and Var[g(Q)] = �σρQ�2, we can obtain: 
 

a. Eρ,D[(D − ρQ + K)+] ≤
�σ2+�σρQ�

2+�µρQ−K−µ�
2−(µρQ−K−µ)

2
, and 

b. Eρ,D ��D − �ρQ − K + K
γ
��

+

� ≤
�σ2+�σρQ�

2+�µρQ−K+K/γ−µ�2−(µρQ−K+K/γ−µ)

2
. 

 
By applying the results above, the objective function for the corresponding robust min-max 
model, C� (2)(𝑄), is derived as 
 

𝐶
(2)

(𝑄) =

(1 − γ)(p − v)
�𝜎2+�σρQ�

2+�µρQ−K−µ�
2−�µρQ−K−µ�

2
                       +

γ(p − v)
�𝜎2+�σρQ�

2+�µρQ−K+K/γ−µ�
2
−�µρQ−K+K/γ−µ�

2
+ �c − vµρ�Q. 

 
Similarly, the distribution-free fill-rate constraint for the random yield case becomes 

𝑆𝐿
(2)

(𝑄) ≤ 0 where 𝑆𝐿
(2)

(𝑄) =
�𝜎2+�σρQ�

2+�µρQ−K+K/γ−µ�
2
−�µρQ−K+K/γ−µ�

2
− (1 − 𝜉)𝜇. Therefore 

the corresponding robust min-max decision model with random yield reduces to  

min𝑄 �𝐶
(2)

(𝑄): 𝑆𝐿
(2)

(𝑄) ≤ 0�. 
 

Since it can be shown that 𝐶
(2)

(𝑄) is convex in 𝑄, we set the first derivative of 𝐶
(2)

(𝑄) with 
respect to 𝑄 equal to zero, which leads to 

  (1 − 𝛾) �𝜇𝜌2+𝜎𝜌2�𝑄−𝜇𝜌(𝐾+𝜇)

�𝜎2+�σρQ�
2+�µρQ−K−µ�

2
+ γ �𝜇𝜌2+𝜎𝜌2�𝑄−𝜇𝜌(𝐾−𝐾/𝛾+𝜇)

�𝜎2+�σρQ�
2+�µρQ−K+K/γ−µ�

2
= 𝜇𝜌(𝑝+𝑣)−2𝑐

𝑝−𝑣
   

And let 𝑄𝑌
′
 be 𝑄 satisfying the first-order condition above. If 𝑆𝐿

(2)
�𝑄𝑌

′
� ≤ 0 holds, then 𝑄𝑌

′
 is 

the optimal order quantity for the robust min-max model with random yield. Otherwise, in 

a similar way to the base model case 𝑄𝑌
′′
, satisfying the fill-rate constraint with equality 
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(i.e. 𝑆𝐿
(2)
�𝑄𝑌

′′
� = 0) is the optimal solution for the model. Thus we can summarise a simple 

procedure to seek the optimal order quantity 𝑄𝑌
∗
 for the robust min-max model with 

random yield as presented in Algorithm 4. 
 

1. Find 𝑄𝑌
′
 satisfying the first-order condition d𝐶

(2)
(𝑄)

dQ
|𝑄=𝑄𝑌

′ = 0 - i.e. 

• (1 − 𝛾) �𝜇𝜌2+𝜎𝜌2�𝑄𝑌
′
−𝜇𝜌(𝐾+𝜇)

�𝜎2+�σρ𝑄𝑌
′
�
2
+�µρ𝑄𝑌

′
−K−µ�

2 + γ �𝜇𝜌2+𝜎𝜌2�𝑄𝑌
′
−𝜇𝜌(𝐾−𝐾/𝛾+𝜇)

�𝜎2+�σρ𝑄𝑌
′
�
2
+�µρ𝑄𝑌

′
−K+K/γ−µ�

2
= 𝜇𝜌(𝑝+𝑣)−2𝑐

𝑝−𝑣
. 

If 𝑆𝐿
(2)
� 𝑄𝑌

′
� ≤ 0 , then 𝑄𝑌

∗
=  𝑄𝑌

′
 and stop. Otherwise, go to step 2. 

2. Find 𝑄𝑌
′′
satisfying the distribution-free fill-rate constraint with equality – i.e. 

𝑆𝐿
(2)
�𝑄𝑌

′′
� = 0 or 

• �𝜎2 + �σρ𝑄𝑌
′′
�
2

+ �µρ𝑄𝑌
′′
− K + K/γ − µ�

2
− µρ𝑄𝑌

′′
= −𝐾 + 𝐾/𝛾 + (1 − 2𝜉)𝜇. 

Then, 𝑄𝑌
∗

=  𝑄𝑌
′′
. 

Algorithm 4: Procedure to determine the optimal order quantity 𝑸𝒀
∗
 for the robust min-

max model with random yield 

Example 3. In order to illustrate the random yield extension, we use the parameter values 

in Example 1. We additionally assume that 𝜇𝜌 = 0.9 and 𝜎𝜌 = 0.1. If 𝜉 = 0.85, 𝑄𝑌
′
≈ 846, and 

it satisfies 𝑆𝐿
(2)
�𝑄𝑌

′
� ≤ 0, then, according to Algorithm 4, the optimal order quantity is 

𝑄𝑌
∗
≈ 846. However, if 𝜉 = 0.95, the fill-rate constraint is violated, and so, from Step 2 in 

Algorithm 4, 𝑄𝑌
′′
≈ 986, which is the optimal order quantity in this case. We note that the 

order quantities under perfect yield assumptions in Example 1 are 804 if 𝜉 = 0.85, and 851 
if 𝜉 = 0.95. Due to the the random yield effect of produced or ordered quantity, the order 
quantity increases, and its increasing rate seems higher as the targeted fill-rate increases. 

5 COMPUTATIONAL RESULTS: PERFORMANCE OF THE ROBUST MIN-MAX APPROACH 

We have performed extensive computational experiments to evaluate the performance and 
robustness of this distribution-free approach. For the experiments, 1,000 problem instances 
are randomly generated, and all the parameters for each instance are drawn from the 
uniform distributions specified in Table 2. We take some parameter values from Moon & 
Choi [11]. 

Table 2:  Parameters 

Parameter 𝒑 𝒄 𝒗 𝑲 𝜸 𝝁 𝝈 

Range 𝑈(80,100) 𝑈(40,60) 𝑈(10,30) 𝑈(100,300) 𝑈(0.5,0.9) 𝑈(700, 
1000) 

𝑈(0.1,0.5)
× 𝜇 

 
For each instance, we evaluate three different distributions (i.e. normal, uniform, and 
triangle distributions), and compare them with results from the robust min-max approach. 
We note that the information on the mode 𝑐 of a triangle distribution is additionally 
required, and it is drawn from 𝑈(750,900). In addition, for a given instance, we evaluate 
(%𝐸𝑉𝐴𝐼)  for four different levels of the desired fill-rate 𝜉 as {0.8, 0.85, 0.9, 0.95}. 
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Figure 1: Effects of changing the targeted fill-rate 𝛏 

Figure 1 presents the box plots of the ratio (%𝐸𝑉𝐴𝐼)  from the 1,000 randomly-generated 
instances for each distributional form while varying the value of 𝜉 in order to see the effect 
of the desired service level on the performance of the robust min-max approach. Appendix 
B provides the closed-form formulas for the cumulative density function 𝑃(𝐷 ≤ 𝜅) and 
𝐸[(𝐷 − 𝜅)+] for each distributional form, which are essential to calculate 𝐶𝐹(Q). We note 
that we replaced median with the sample average in the box plots. The results indicate (i) 
that the percentage gap (%𝐸𝑉𝐴𝐼)  is less than 3 per cent on average for all the targeted 
service levels, and (ii) that when the targeted fill-rate 𝜉 is less than or equal to 0.9 (90 per 
cent), the maximum value of (%𝐸𝑉𝐴𝐼) remains less than 3 per cent. However, we can 
observe that both the variability and the average of (%𝐸𝑉𝐴𝐼)  increase significantly at 
𝜉 = 0.95, compared with the cases for 𝜉 ≤ 0.9, and its maximum reaches to 10-12 per cent. 
For 𝜉 ≤ 0.95, it turns out that its application to the normal distribution results in better 
performance than in the other distributions. Furthermore, these computational results 
partly provide justification for the use of the robust min-max approach if (i) the desired fill-
rate is less than 90 per cent, and (ii) it is difficult to estimate the form of a demand 
distribution function, but the information of mean and variance is readily available or can 
be estimated. When the targeted fill-rate is 95 per cent, the performance of the robust 
min-max approach becomes degraded, and it seems that the degradation would be 
exacerbated for a fairly high fill-rate (close to 1). However, use of the robust min-max 
approach could still be recommended (at least for the cases we examined in this 
experiment), since the 75-percentile of (%𝐸𝑉𝐴𝐼) from the set of problem instances is still 
below 4 per cent. Therefore the robust min-max approach is likely to work well or to be 

(a) Uniform Distribution  

ξ

(b) Triangle Distribution  

ξ

(c) Normal Distribution  

ξ

(d) Comparison of Averages among 
Distributions 
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acceptable in most cases. However, the increased mean and variance of (%EVAI) for the 
min-max model, compared with the base model, could mainly be because the optimal 
solutions for the robust min-max model are likely to lie on the constraint boundary of the 
distribution-free fill-rate constraint for a high ξ, and even more conservative decisions of 
the robust min-max model could be made when the service level is high 
 
We now investigate how the change in variance of the demand affects the performance of 
the robust min-max approach depending on the targeted fill-rate 𝜉. Let 𝜔 be the 
coefficient of variation (i.e., 𝜔 = 𝜎/𝜇). We note that, in the previous numerical 
experiment, we restricted the value of 𝜔 to between 0.1 and 0.5 (refer to Table 2). In 
order to see the effect of changes in the variance of demand for the uniform distribution, 
we choose 1,000 random instances in the same way as the previous experiments. For each 
value of 𝜉 ∈ {0.8,0,85,0.9,0.95}, we vary the value of 𝜔 from 0.1 to 1.0 by a 0.1 increment, 
and calculate (%𝐸𝑉𝐴𝐼) as shown in Figure 2. 
 

 

Figure 2: Effects of changing variance 𝛔𝟐 of the demand when the demand follows 
uniform distribution 

(                                                
                                                               

95.0=ξ

(                                                
                                                               

85.0=ξ(                                                
                                                               

8.0=ξ
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9.0=ξ
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As seen in Figure 2, the variance of demand has a significant impact on the performance of 
the robust min-max approach, and the impact increases as the desired service level 
increases. In general, the variability and average of (%𝐸𝑉𝐴𝐼) from a set of randomly-
generated problem instances increase as 𝜔 increases. For 𝜉 equal to either 0.8 or 0.85, the 
robust min-max approach could still be recommended on average, even for a higher 
variance in demand. The robust min-max approach performs moderately well in the cases 
when the demand variance is low (𝜔 ≤ 0.4) for 𝜉 ≥ 0.9cases, and the performance 
degradation becomes significant when 𝜉 is equal to 0.95. This suggests to practitioners that 
there may be a reason to explore the underlying true demand distribution if both the 
targeted fill-rate and the coefficient of variation are high enough. As mentioned earlier, 
decision-makers tend to make conservative decisions when they lack the exact demand 
distribution information for higher fill-rate cases. This often leads to a larger information 
gap and an increased variability of (%𝐸𝑉𝐴𝐼). In earlier works discussing robust min-max 
models [1,11], their numerical experiments used the value of 𝜔 less than 0.3 to conclude 
that the distribution-free approach is robust. Although none of these studies attempted to 
investigate the impact of the variance of demand on the performance of the robust min-
max approach, our results could indicate that robust the min-max models in the earlier 
literature might be robust even in the cases where demand distributions have high variance 
(see the cases when the desired service level 𝜉 is not too high). As mentioned earlier, one 
reason that our model is more likely to be conservative as the targeted service level 
increases is due to the incorporation of the fill-rate constraint, which results in a 
performance degradation of robust min-max approaches. In harsh conditions, the fill-rate 
constraint could possibly raise the value of the order quantity 𝑄 too high. However, their 
models have no such constraint, and we presume that the optimal order quantity obtained 
from the first-order condition may not be too conservative. 
 
Lastly, we also performed numerical experiments to examine the effect of the threshold K, 
and found that its effect is insignificant. 

6 CONCLUSION 

In this paper we have investigated the robust min-max approach for the classic newsvendor 
model with customer balking under a service-level constraint. In the approach, we only 
require the first two moments of the demand distribution to determine an order quantity 
where the demand distributional form is hardly estimated, which in practice is usually the 
case. In order to control the lost-sales and customer balking effects in a tangible way, we 
incorporate the service rate constraint in our model, rather than include a lost-sales cost 
penalty, which is generally difficult to estimate in practice. We present the procedure to 
identify an optimal order quantity for the robust min-max model, and we extend the base 
model into two cases: one with a fixed ordering cost, and the other with imperfect yield. 
We also examine the effects of the variability of the demand and the targeted fill-rate on 
the information gap (%𝐸𝑉𝐴𝐼). Extensive numerical experiments indicate that the robust 
min-max approach generally performs well and efficiently; but we also observe that the 
quality of the solutions determined by the robust min-max approach is degraded for the 
very high targeted fill-rate, and the degradation accelerates as the fill-rate comes close to 
1. Similarly, its performance becomes less robust as the coefficient of variation for the 
demand distribution increases for the high targeted fill-rate. Thus the distribution-free 
model is generally efficient and robust, especially for situations where the coefficient of 
variation 𝜔 ≤ 0.4 or 0.5, and the targeted service level 𝜉 ≤ 0.9. 

REFERENCES 

[1] Alfares, H.K. & Elmorra, H.H. 2005. The distribution-free newsboy problem: Extensions to the 
shortage penalty case, International Journal of Production Economics, 93-94, pp. 465-477. 

[2] Bassok, Y., Hopp, W.J. & Rohatgi, M. 2002. A simple linear heuristic for the service constrained 
random yield problem, IIE Transactions, 34(5), pp. 479-487.  

[3] Bolton, J.M. & Liu, W.B. 2006. Creating an effective china cold supply chain - 
Current status, challenges and implementation considerations, Accenture Report, 

95 



http://www.procurementleaders.com/8201/23171/ (Accessed on 19 September 2011). 
[4] Feldman, R.M. & Valdez-Flores, C. 2010. Applied probability and stochastic processes, 2nd 

edition, Springer-Verlag.  
[5] Gallego, G. & Moon, I. 1993. The distribution free newsboy problem: Review and extensions, 

Journal of the Operational Research Society, 44, pp. 825-834. 
[6] Jung, U. & Lee, S. W. 2012. Robust newsvendor model with random yield and customer balking, 

Journal of the Korean Society for Quality Management, 40(4), pp. 441-452. 
[7] Keren, B. 2009. The single-period inventory problem: Extension to random yield from the 

perspective of the supply chain, Omega, 37(4), pp. 801-810.  
[8] Khouja, M. 1999. The single-period (news-vendor) problem: Literature review and suggestions for 

future research, Omega, 27, pp. 537-553. 
[9] Liao, Y., Banerjee, A. & Yan, C. 2011. A distribution-free newsvendor model with balking and 

lost sales penalty, International Journal of Production Economics, 133, pp. 224-227. 
[10] Lundquvist, J., Fraiture, C. & Molden, D. 2008. Saving water: From field to fork - Curbing losses 

and wastage in the food chain, SIWI Policy Brief, SIWI. 
[11] Moon, I. & Choi, S. 1995. The distribution free newsboy problem with balking, Journal of the 

Operational Research Society, 46, pp. 537-542. 
[12] Nahmias, S. 2005. Production and operation analysis, 5th edition, McGraw-Hill/Irwin. 
[13] O’Neil, S., Zhao, X. & Sun, D. 2008. Coping with demand shocks: A distribution-free algorithm 

for solving newsvendor problems with limited demand information, Working paper, University 
of Notre Dame, Notre Dame, IN. 

[14] Pasternack, B.A. 1990. The newsboy problem with balking, ORSA/TIMS Conference, Philadelphia. 
[15] Perakis, G. & Roels, G. 2008. Regret in the newsvendor model with partial information, 

Operations Research, 56(1), pp.188-203. 
[16] Petruzzi, N.C. & Dada, M. 1999. Pricing and the newsvendor problem: A review with extensions, 

Operations Research, 47, pp.183-194. 
[17] Porteus, E. 2002. Foundations of stochastic inventory theory, Stanford University Press, CA. 
[18] Scarf, H. 1958. A min-max solution of an inventory problem. In K. Arrow, S. Karlin, H. Scarf 

(eds), Studies in the mathematical theory of inventory and production, Stanford University 
Press, CA, pp. 201-209. 

[19] Yano, C.A. & Lee, H.L. 1995. Lot sizing with random yields: A review. Operations Research, 
43(2), pp. 311-334.  

APPENDICES 

Appendix A: Proof of Lemma 1 

a. By and large, this lemma is a generalised version of all the corresponding lemmas from 
[5], and its proof is also based on the proofs in those lemmas. Note that 

�D − g(Q)�+ =  
|D − g(Q)| + �D − g(Q)�

2 .  
Due to Cauchy-Schwarz inequality and Jensen’s inequality, 

E[|D − g(Q)|] ≤ E ���D − g(Q)�2� ≤ �E ��D − g(Q)�2� = �E[D2] − 2µE[g(Q)] + E[g(Q)2]

= �µ2 + σ2 − 2µE[g(Q)] + E[g(Q)]2 + Var[g(Q)]
= �(E[g(Q)] − µ)2 + σ2 + Var[g(Q)] 

and hence 

E ��D − g(Q)�+� =  
�σ2 + Var[g(Q)] + (E[g(Q)] − µ)2 − (E[g(Q)] − µ)

2 . 
b. To show the existence of a demand random variable that yields the tight bound in 

Equation (3) when g(Q) is a constant, consider the following random variable D: 

D =

⎩
⎪
⎨

⎪
⎧µ − σ�

1 − ζ
ζ w. p.  ζ       

µ + σ�
ζ

1 − ζ w. p. 1 − ζ

 

where ζ = ��σ2 + (g(Q) − µ)2 + (g(Q) − µ)� �2�σ2 + (g(Q) − µ)2�� .  
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Since �σ2 + (g(Q) − µ)2 ≥ (g(Q) − µ), ζ ∈ [0,1] implies that D is a proper random 
variable unless σ = 0. Then it is straightforward to show that E[D] = µ and Var[D] =

σ2. Also, note that µ − σ�1−ζ
ζ

= g(Q) −�σ2 + (g(Q) − µ)2 and µ + σ� ζ
1−ζ

= g(Q) +

�σ2 + (g(Q) − µ)2. Therefore, 

E ��D − g(Q)�+� = �𝜇 + 𝜎�
𝜁

1 − 𝜁 − 𝑔(𝑄)� × (1 − 𝜁)

= �𝜎2 + (𝑔(𝑄) − 𝜇)2 ×
�𝜎2 + (𝑔(𝑄) − 𝜇)2 − (𝑔(𝑄) − 𝜇)

2�𝜎2 + (𝑔(𝑄) − 𝜇)2

=
�𝜎2 + (𝑔(𝑄) − 𝜇)2 − (𝑔(𝑄) − 𝜇)

2
 

which completes the proof. 
A 
A 
A 
A 

Appendix B: List of explicit expressions for 𝐅(𝛋) and 𝐄[(𝐃 − 𝛋)+] 

Table 3:  List of explicit formulas for 𝐅(𝛋) and 𝐄[(𝐃− 𝛋)+] 

Distribution 𝑭(𝜿) = 𝑷(𝑫 ≤ 𝜿) 𝑬[(𝑫− 𝜿)+] 

Uniform 𝑼(𝒂,𝒃) 𝜅−𝑎
𝑏−𝑎

  (𝑏−𝜅)2

2(𝑏−𝑎)
  if 𝑎 ≤ 𝜅 ≤ 𝑏  

Triangle 𝑻𝒓𝒊(𝒂,𝒄,𝒃) 

⎩
⎪
⎨

⎪
⎧ (𝜅 − 𝑎)2

(𝑏 − 𝑎)(𝑐 − 𝑎)
𝑓𝑜𝑟 𝑎 ≤ 𝜅 ≤

1−
(𝑏 − 𝜅)2

(𝑏 − 𝑎)(𝑏 − 𝑐)
𝑓𝑜𝑟 𝑐 ≤ 𝜅 ≤

 

⎩
⎪
⎨

⎪
⎧(𝜇 − 𝜅) +

(𝜅 − 𝑎)3

3(𝑏 − 𝑎)(𝑐 − 𝑎)
𝑓𝑜𝑟 𝑎 ≤ 𝜅 ≤ 𝑐

(𝑏 − 𝜅)3

3(𝑏 − 𝑎)(𝑏 − 𝑐)
𝑓𝑜𝑟 𝑐 ≤ 𝜅 ≤ 𝑏

 

Normal 𝑵(𝝁,𝝈𝟐) 1
2
�1 + erf �𝜅−𝜇

𝜎√2
��  (𝜇 − 𝜅) + 𝜎

√2𝜋
𝑒−

(𝜅−𝜇)2

2𝜎2 + 𝜅−𝜇
2
�1 + erf �𝜅−𝜇

𝜎√2
��   

   where erf(x) = 2
√𝜋
∫ 𝑒−𝑡2𝑑𝑡 = ∑ (−1)𝑛𝑥2𝑛+1

(2𝑛+1)𝑛!
∞
𝑛=0

𝑥
0  is the error function‡.  

‡ http://en.wikipedia.org/wiki/Error_function; http://www.maths.abdn.ac.uk/sim 
igc/tch/ma2001/notes/node61.html 
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