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ABSTRACT 

Analysis by modelling production throughput is an efficient way to provide information for 
production decision-making. Observation and investigation based on a real-life tile 
production line revealed that the five main uncertain variables are demand rate, 
breakdown time, scrap rate, setup time, and lead time. The volatile nature of these 
random variables was observed over a specific period of 104 weeks. The processes were 
sequential and multi-stage. These five uncertain variables of production were modelled to 
reflect the performance of overall production by applying Bayesian inference using Gibbs 
sampling. The application of Bayesian inference for handling production uncertainties 
showed a robust model with 2.5 per cent mean absolute percentage error. It is 
recommended to consider the five main uncertain variables that are introduced in this 
study for production decision-making. The study proposes the use of Bayesian inference for 
superior accuracy in production decision-making.  

OPSOMMING 

Analise deur middel van die modellering van produksie deurset is ‘n effektiewe manier om 
inligting vir produksiebesluitneming te verskaf. Die waarneem en ondersoek van ‘n 
teëlproduksielyn het getoon dat die vyf hoof onsekerheidsveranderlikes die vraagtempo, 
breektyd, skraptempo, opsteltyd en leityd is. Die vlugtige aard van hierdie 
toevalsveranderlikes is waargeneem oor ‘n tydperk van 104 weke. Die prosesse was 
opeenvolgend en multi-stadium. Die vyf onsekerheidsveranderlikes van produksie is 
gemodelleer om die algehele vertoning van die produksie te weerspieël deur gebruik te 
maak van Bayesiese afleiding met Gibbs monsterneming. Die toepassing van Bayesiese 
afleiding vir die hanteer van produksie onsekerhede het ‘n robuuste model, met ‘n twee-
en-‘n-half persent gemiddelde absolute persentasie fout, tot gevolg gehad. Dit word 
aanbeveel dat die vyf belangrikste onsekerheidsveranderlikes, wat in hierdie studie 
bekendgestel is, oorweeg moet word vir produksiebesluitneming. Die studie stel die gebruik 
van die Bayesiese afleiding tegniek voor om sodoende beter akkuraatheid in 
produksiebesluitneming te verkry. 

                                                      
∗ Corresponding author 
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1 INTRODUCTION 

Manufacturing industries should derive new approaches so that they can be agile and 
responsive in changing and uncertain manufacturing conditions, in order to survive the 
rapidly-changing and uncertain manufacturing environments of the 21st century [1]. The 
rapid rate of technology innovation and new customer expectations has caused production 
modelling to ignore many fluctuating variables, such as demand changes over time caused 
by product redesign and potential uncertainties due to rate variation, and the designs 
consisting of mixed variation [2, 3]. Machines and processes are subject to random failures, 
and time loss is incurred when a setup change is required for different product types. 
Machine failures, demand fluctuations, and setup changes are the major production 
uncertainties [4]. These uncertainties cause changes in pre-described breakdown time, 
setup time, scrap rate, and lead time, thus causing non-adherence to initial production 
planning. These uncertainties occur randomly, and their values are not easily predicted.  
  
It is essential to evaluate and analyse the causes of disruption and the uncertain variables 
on the production line through better estimates using robust approaches. Production 
throughput is commonly considered in analysis and modelling to be an important measure 
of production line performance [5-7]. Production modelling in uncertain conditions becomes 
even more complex if the manufacturing environment includes multi-stage production on 
multi-products [8]. The challenge in multi-stage production is in the propagation and 
accumulation of production uncertainties, which affect the production throughput. 
Therefore, the insufficiency of models in analysing and tackling uncertainties in production 
is the main problem in trying to generate more accurate decisions on production 
throughput.  
 
This paper emphasises the production uncertainties of modelling. The Markov Chain Monte 
Carlo (MCMC) algorithm for Bayesian modelling was used to produce an accurate model of 
production rate estimation, with scrap rate, setup time, breakdown time, demand, and 
manufacturing lead time as input variables.  

2 LITERATURE REVIEW 

Koh & Gunasekaran [9] stated that the significant uncertainty factors in manufacturing 
environments are demand changes, lead time variations, and breakdown of machines. 
Models for production planning that consider uncertainty make superior planning decisions 
compared with models that do not [10]. Deif & El Maraghy [11] showed through simulation 
that ignoring uncertainty sources leads to wrong decisions. Processing time and breakdown 
time affect the production throughput [7, 12]. Peidro et al. [13] described the process of 
uncertainty as a result of an unreliable production process due to machinery breakdown 
time. Researchers recently worked on different uncertainty factors in several different 
manufacturing industries using different approaches. For example, Stratton et al. [14] 
proposed the use of a buffer to manage uncertainty in production systems. Kouvelis & Li 
[15] worked on supply-demand mismatches, and believed that tardy delivery was caused by 
the uncertain lead time within a production system, which led to loss of sales. Their 
proposed methodology to manage lead time uncertainty assumed a constant rate of 
demand, and did not consider other production uncertainties. Deif & El Maraghy [11] 
examined the effects of three uncertainties: demand, manufacturing delay, and capacity 
scalability delay, where the manufacturing delay had the highest effect. 
 
A linear regression model was applied to formulate the strategy, environmental 
uncertainty, and performance measurement [16]. Associations of material shortage, labour 
shortage, machine shortage, and scrap towards product late delivery were shown through 
analysis of variance, correlation analysis, and cluster analysis [17]. Chen-Ritzo et al. [18] 
stochastically examined the order configuration uncertainty, where a stochastic model was 
applied to represent the problem of aligning demand to supply in configure-to-order 
systems; they demonstrated the relationship of order configuration to the value of 
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accounting uncertainty, using the sample average approximation method. Al-Emran et al. 
[19] examined the effect of uncertainty in operational release planning on the total 
duration, using Monte Carlo (MC) simulation. They concluded that every uncertain factor 
individually increases makespan, where the effect of any combination of uncertainty 
factors was larger than the summation of their individual effects. 
 
Baker & Powell [20] presented an analytical algorithm to analyse and predict production 
throughput at unbalanced workstations, where the operation times of stations were 
random. Simulation method and approximation algorithm were applied to analyse 
throughput under uncertainties such as unreliable machines and random processing times 
[21, 22]. Alden [12] provided an analytical equation in a general case where there were two 
workstations in a serial production line. The workstations had unequal processing time, 
downtime, and buffer size, whereas Blumenfeld & Li [5] considered a serial production line 
including two workstations with the same speed and buffer size. Wazed et al. [23] 
considered a production system under machine breakdown and quality variation. They 
examined the effect of common processes on throughput and lead time using the WITNESS 
software, and found that changes in the level of common process in the system significantly 
affected production throughput and lead time.  
 
Probabilistic analyses require analysts to have information on the probability of all events. 
When this information is unavailable, the uniform distribution function is often used, which 
is justified by Laplace’s principle of insufficient reason [24]. A measurement of probability 
is considered as an interval or a set whenever uncertainty is impossible to characterise 
using precise measurement methods. Probabilities that quantify uncertainties are based on 
the occurrence of events. Measurements of uncertainty have been almost exclusively 
investigated in terms of disjunctive variables. A disjunctive variable has a single value at 
any given time, but it is often tentative due to limited evidence. 
 
Spiegelhalter et al. [25] developed Bayesian inference using the Gibbs sampling software 
version 0.5 to solve complex statistical problems. Spiegelhalter et al. [26] defined a 
Bayesian approach as “the explicit use of external evidence in the design, monitoring, 
analysis, interpretation, and reporting of scientific investigations”. The most modern 
method of Bayesian inference is clearly Markov Chain Monte Carlo (MCMC) [27], a widely 
used simulation tool for Bayesian inference, which is introduced by Tanner [28]. The 
popular MCMC procedure is Gibbs sampling, which has also been widely used for sampling 
from the posterior distribution based on stochastic simulations for complex problems [29]. 

3 METHODOLOGY 

The case study data involving five uncertain variables – breakdown time, lead time of 
manufacturing, demand, setup time, and scrap – was collected through real-time 
observations and face-to-face interviews with the production line experts of a tile industry 
located in Qazvin, Iran. Altogether 104 weekly recorded data extracted from 20 highly 
requested types of tiles were used as the inputs for each uncertain variable to estimate the 
production throughput. These are statistically described in Table 1 and Figure 1.  

  
Table 1: Statistical description of study parameters 

 
 Breakdown time 

(min) 
Demand 

(m2) 
Lead time 

(min) 
Setup time 

(min) 
Scrap 
(m2) 

Minimum 128 6240 4900 180 1265 

Maximum 600 19380 6980 250 5875 

Mean 352 11815.51 5980.38 219.53 3032.17 

Standard deviation 116.73 2771.18 545.54 18.78 945.07 
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Figure 1: Visual layout of the recorded uncertain variables 
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For each uncertain variable, different continuous probability distributions were examined, 
such as uniform, exponential, and normal. Then from the prior probability distribution 
function, the posterior probability distribution function of the model parameters was 
computed. Different interpretations and justifications of non-informative (traditionally 
called ‘uninformative’) priors have been suggested over the years, including invariance – for 
example, [30, 31]. Nowadays, however, uninformative priors do not actually exist, because 
all priors are informative in some way[32]. Proper distributions with inverse gamma such as 
0.001 for BUGS modelling were presented by [25, 26]. Weakly-informative prior (WIP) 
distributions are the most common priors in practice, and are favoured by subjective 
Bayesians because they use enough prior information for regularisation and stabilisation 
[33]. A highly popular WIP for a centred and scaled predictor is the normal distribution with 
a mean of 0 and a variance of 10000, which is equivalent to a standard deviation of 100, or 
precision of 1.0E-4 [25, 33, 34]. Statisticat [35] suggests a normal distribution with a mean 
of 0 and a variance of 1000 as a proper prior. The variance is dependent on the number of 
samples; if the sample is too large a variance of 10000 is a good choice. Hence, different 
variances for WIP were examined based on the experts’ idea. Following Spiegelhalter et al. 
[25], the variances were fixed for the Bayesian model based on the smallest deviance 
information criterion (DIC) obtained. The DIC was introduced by Spiegelhalter [36] for 
model assessment as the most popular method of assessing model fit according to 
Statisticat [33].  DIC is the sum of the differences between the posterior mean of the 
model-level deviance and the complexity of model [36]. DIC measures the distance of the 
data to each of the approximate models, and is a better and simpler model [33]. Another 
non-informative prior distribution sometimes proposed in the Bayesian literature is uniform, 
which is not recommended by Gelman [34] because of its miscalibration. Thus, two 
different data sets of normal prior distribution are generated for each uncertain parameter 
of β, producing two chains to check for convergence.  
 
The need to calculate high-dimensional integrals caused the Bayesian method for complex 
problems with several random parameters to become difficult. A sampling approach is 
proposed to overcome these difficulties. The popular procedure of MCMC, Gibbs sampling, 
was used to compute the Bayesian model. A generation of samples was examined to test 
the error of the model to reach the convergence by having five simulation runs: 1000, 5000, 
8000, 10000, and 20000. For moderate-sized datasets involving standard statistical models, 
a few thousand iterations should be sufficient [37]. The model written was checked 
according to BUGS language. The checking showed that the model written was syntactically 
correct because the data was completely loaded, the model was correctly compiled, and 
the values were initially generated from distributions. Thus, the model was checked for 
completeness and consistency with the data.  
 
In the Bayesian model (equation 1), all parameters are random, with normal distributions as 
priors while the variances are constant. The error term, denoted by εt, has a zero mean and 
a constant variance that is statistically independent. 
 
Pt�  ~ β0 + β1Bt + β2Dt +  β3Lt + β4 Set  + β5 St +  εt  (1) 
 
β0~ Normal (0,10). 
β1~ Normal (0,100). 
β2~ Normal (0,1000). 
β3~ Normal (0,100). 
β4~ Normal (0,10). 
β5~ Normal (0,1000). 
 εt~N(0,σ2).     
 
where  
St = Scrap (1265 m2 ≤  St ≤ 5875 m2)  
Bt = Break time (128 min ≤ Bt≤ 600 min ) 
Dt = Demand (6240 m2≤ Dt ≤ 19,380 m2) 
Lt = Lead time of manufacturing (4900 m2≤ Lt ≤ 6980 m2)  
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Pt = Production throughput (5962 m2 ≤ Pt ≤19,000 m2 ) 
β0 = Intercept 
β1 … , β4= Coefficient of variables (parameters of Bayesian model) 
 εt = Random error 
 
The model generates valid results when the model presents convergence using a dynamic 
trace plot, autocorrelation function, and Brooks-Gelman-Rubin (BGR). The BGR diagnostic 
shows the convergence ratio[38]. The convergence showed graphically how quickly the 
distribution of uncertainty – for example β1 – approaches the conditional probability of 
p(β1|Bt). First checking was performed by visual inspection of trace/history plots. The 
model convergence was achieved when the two chains were overlapping. The convergence 
graphically shows how quickly the prior distributions of uncertainties approach the posterior 
distributions. Second checking was based on the autocorrelation test. The autocorrelation is 
defined between 0 and 1 or -1. A slow convergence of two chains graphically shows the high 
autocorrelation within chains. It implies that two chains are mixed slowly because true 
distributions are defined. Thus, the mixed or convergence chain contains most of the 
information to estimate an accurate posterior that indicates the validity of the model. The 
third check was done using the BGR diagnostic, which shows numerically the convergence 
ratio, which should be near to 1. The idea is to generate multiple chains starting at over-
dispersed initial values, and assess convergence by comparing within and between chain 
variability over the second half of those chains. The model produces accurate estimations 
when it shows more efficiency based on lower MC error. 

4 RESULTS 

Table 2 presents the different variances of normal distributions and the calculated DIC 
respectively. Although set 1 resulted in lower DIC, as shown in Table 2, the other sets 
(different values given to the prior distributions) did not affect the DIC much. Thus, 
according to Bolstad [40], the prior is correct because it did not have a substantial effect.  

Table 2: Different parameters assigned as prior distributions 

Sets Variances DIC 
1 β0 and β4 = 10, β1 and β3 = 100, β2 and β5 = 1000 1847 
2 β0 and β4 = 100, β1 and β3 = 1000, β2 and β5 = 10 1848 
3 βi = 100, i = 0,...,5 1848 
4 βi = 1000, i = 0,...,5 1849 
5 βi = 10000, i = 0,...,5 1850 

 
Figure 2 shows that the normal distribution is the best fit for the likelihood function of 
production throughput, with a 95 per cent confidence interval among the three other 
popular probability distributions – Weibull, logistic, and exponential. 
 
Figure 3 shows the descriptive statistics summary of a normal distribution function of 
production throughput with a mean value of 11602 and variance of 7482517. The Anderson-
Darling normality test indicated the p-value of 0.198. This means that the data followed a 
normal distribution, because the p-value is greater than 0.05.  
The regression model that was presented earlier in equation (1) is considered as the mean 
value of production throughput according to the Bayes theorem for the regression model 
[40], because the expectation vector is a linear function of a vector of the regression 
parameters (βi). Hence, the production throughput (output variable of the model) is 
distributed normally, according to the expectation vector and its scalar variance. 
 
The Bayesian model was built after 20000 simulations for the situation under independent 
observation using BUGS software. The convergence diagnostics were checked through two 
obtained chains results. The chains show the generated samples in blue and red in Figure 4. 
Convergence was achieved because both chains overlapped each other[38]. The dynamic 
trace plots of the uncertain parameters are shown in Figure 4, with a 95 per cent credible 
interval.  
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Figure 2: Four popular probability distributions for throughput 

 

Figure 3: Anderson-Darling normality test for throughput 

In Figure 5, there was no convergence problem because the chain looks like a fat hairy 
caterpillar[29, 41-43]. 
 
The autocorrelation functions for the chain of each parameter shown in Figure 6 indicated a 
gradual integrating of dimensions of the posterior distribution. Gradual integrating is often 
associated with high posterior correlations between parameters. The plots indicated that 
all parameters were integrated well, with autocorrelation vanishing before 20 lags for each 
case. 
 
The BGR statistic was calculated for all five uncertain parameters using equation (2)[38]. 
The idea was to generate multiple chains, starting at over-dispersed initial values, and to 
assess convergence by comparing within and between chain variability over the second half 
of those chains.  
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Figure 4: Dynamic trace plots of the uncertain parameters (see online version for colour 
image) 

 

 

Figure 5: Time series trend of the uncertain parameters (see online version for colour 
image) 
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Figure 5 (cont): Time series trend of the uncertain parameters (see online version for 
colour image) 

 

Figure 6: Autocorrelation function of the uncertain parameters (see online version for 
colour image) 
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BGR = W
A

 (2) 
 
where 
W= width of the empirical credible interval of two chains based on all samples, and 
A= width average of the empirical credible intervals across the two chains. 
 
The calculated value of BGR approached 1; thus the 20000 iterations were proven 
sufficient, and model convergence was achieved[41]. Figure 7 shows that the convergence 
of uncertain parameters approached 1 in all cases, especially after 12000 iterations. The 
BGR was depicted by the dotted line. W and A are properly overlapped to each other under 
the dotted line. It means that they are stabilised to tend to approximately constant value, 
which proves the model convergence[38]. This causes BGR (the dotted line) to come nearer 
to 1.  
 
Figure 8 shows the running mean plots with 95 per cent confidence intervals after 1000 
iterations. Bivariate posterior scatter plots present the correlation between two stochastic 
parameters. For example, Figure 9 shows the correlation between β5 and β1.  
 

 

Figure 7: BGR statistics for unknown uncertain parameters (see online version for 
colour image) 
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Figure 8: Running mean of the uncertain parameters (see online version for colour 
image) 

 

 

Figure 9: Pairwise correlation of 𝛃𝟓 and 𝛃𝟏 (see online version for colour image) 

The values of the pairwise correlations between all parameters were calculated in Table 3. 
The highest value of correlations was between β2 and β5, and the lowest value of 
correlations was between β0 and β3. 
 
The estimated means of posterior distributions of the uncertain parameters (βi) were 
computed using Gibbs sampling and Bayesian rules with a 95 per cent posterior credible 
interval. The results are summarised in Table 4. 
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Table 3: Pairwise correlations of all inputs 

Variables Correlation values Variables Correlation values 
β0 β1 -0.00705918 β1 β5 -0.0436661 
β0 β2 -1.65774E-4 β2 β3 -0.873166 
β0 β3 2.87397E-5 β2 β4 -0.0208795 
β0 β4 -0.00629102 β2 β5 0.592831 
β0 β5 0.00675832 β3 β4 -0.155095 
β1 β2 0.319391 β3 β5 -0.817384 
β1 β3 -0.384504 β4 β5 -0.0179657 
β1 β4 -0.00271504   

Table 4: Summary of the posterior distribution of uncertain parameters 

Coefficient Mean SD MC error 2.5% 97.5% 

β0 0.005581 3.207 0.009202 -6.231 6.301 

β1 -0.4704 4.266 0.01033 -8.876 7.923 

β2 0.9526 0.1233 0.000305 0.7132 1.194 

β3 -0.1594 0.5537 0.001327 -1.235 0.9357 

β4 -0.01433 3.161 0.008634 -6.24 6.16 

β5 -0.1461 0.471 0.001331 -1.074 0.7919 

 
The lower value of MC error shows a more accurate model for Bayesian. The MC error for 
each unknown parameter is less than 5 per cent of the sample standard deviation. Finally, 
the Bayesian model is formulated in equation (3). 
 
Pt,ı�  ~ 0.005581 − 0.4704 Bt + 0.9526 Dt − 0.1594 Lt − 0.01433  Set − 0.1461  St  +  εt (3) 
 
The outputs of the Bayesian model (equation (3)) were graphically compared with the 
actual throughput data to see any gap, as shown in Figure 10. 
 

Figure 10: Outputs of the Bayesian and actual throughput (see online version for colour 
image) 

The Bayesian model shows a high level of efficiency for the estimated parameters of 
production uncertainties when the MC errors are less than 5 per cent of the standard 
deviation of coefficients, according to [39].  
 
The value of the mean absolute percentage error (MAPE) of the Bayesian model was 
computed in equation (4) according to [44]. The value obtained was 2.5 per cent.  
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MAPE = 1
n (∑ �

�Actual value−Forecasted value�
Actual value 

�n
t=1 ) ×  100 (4) 

5 CONCLUSION AND RECOMMENDATION 

Five significant uncertain variables in a dynamic manufacturing environment were modelled 
and analysed by applying Bayesian inference using Gibbs sampling. The Bayesian model 
results generated the posterior information on propagation of uncertainties and the 
relationship between them and the production throughput, with a 95 per cent credible 
interval under Bayes rules. The Bayesian model forecast production throughput under five 
production uncertainties with 2.5 per cent MAPE. The proposed Bayesian model provided a 
correct insight for the industrial planner and controller to decide how to match the 
production rate with production uncertainties when analytical solutions were unavailable. 
Therefore, researchers can concentrate on models of empirical relevance rather than 
models of convenient mathematical form.  
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