
ISSN 1012-277X S.Afr.j.ind.eng.

-15-

S A Jo~na£ o£ Ind~;~ Eng~ne~~lg, Vat. 2, No 2, Vecemb~ 1999 pp 15-24

EXPERIENCES WITH BUlLDING A KNOWLEDGE SYSTEM
AN APPUCATIOK IN INDUSTRIAL CQNTROL -

AR Greef and R Reinecke
Department of Industrial Engineering

University of Stellenbosch

ABSTRACT

The Centre for Robotics at the University of Stellenbosch set itself the objective of
building a fairly complex manufactu.ring ceH, including .'.11 unskilled human as a system
componenL As a precursor to this effort we constmcted a simple cell requiring both
supervision of a robot and supenision of a human using a Micro-Prolog knowledge system
to do so. l1tis was successfully done but at the costar low execution speed and difficulty
in integrating machine code instructions for machine control interfacing with the largely
consultation orientated softv,are which rendered the approach unsuitable fortbe more
complex cell. MiCroExpert "..as used for this new effort but we a1sa tried Turbo-Prolog 10
mimick the inference engine of the former software. This experience made us decide 10
trade the higher speed achieved by Turbo-Prolog for the much more rapid knowledge
base development in MicroExpen. To do so it was necess::.uy to bulld a special frame data
sLrUtTille and to enhance. Micro-Expert for supervising such manufactlrring cells.

OPSOMMING

Die Seotrunl vir Robotika aan die Universiteit van Stellenbosch is die taak gestel am'n
komplekse vervaardigingsel to bOll wat 'n ongeskoolde mens as stelselkomponent sou
moes insluiL As voorloper vir hierdie paging het ons eers 'n eenv0udige scI daargeste!
waarby loesig oar sJeg 'n robot en 'n mens nodig v.'as deur IT'JddeJ van 'n kcn..IDsste!sel
gegrond op Micro-Prolog. Oit was suksesvol maar len koste van betreklike lae ultvaer
spoed en omslagtige instruksies in masjienkode vir die toesig oor die robot 5e werking,
met die progranllnatuur was eintlik toegesr.its is op diagnose en konsultzsie. Ter'J''Y1
hierdie paging geslaagd was was dil duideltk dat die benadering nie so suhesvol op die
beplance komplekse scI sou wees nie. Daarom is MicfoExpert aangewend vir die finale
sel waarby OTIS verder Turbo-Prolog gebruik het om die infercnsie-enjin van Micro··Prolog
na Ie boots_ Hierdie ervaring het gelei tot die besluit om die huidige hoer spoed van
Turbo-Prolog in te boet vir die gema.!{ waarmee die ontwikkeling van kel1l1.isstelsels in
Micro-E)[pert gedoen kan word. Die gebruik van Microfu'Pert vIr die besondere toepass
iug het ous egter genoodsaak om 'n spesiale raam datastruktuur daar te stel en am
l\(licrofu'Pert verder uit te bOlL

http://sajie.journals.ac.za



-16-

1.0 INTRODUCTION

The method of building a kIlOwledge system (KS) is not an exact science but rather an
experimental process of testing and modification until. the desired results are obtained.
To simplify this process, a number of construction steps, which have been developed
through the experience of ki'1owledge engineers, can be followed. These iterative steps
are fully described in Hayes-Roth et al (1983) who deals with building large expert systems
(500 - 3000 rules) and Harmon & King (1985) who recognize a distinction between large
and small knowledge systems thereby providing construction guidelines for both.

What is evident is that knowledge system construction can use a large amount of time and
money. It is important therefore to test ideas on KS's which allow rapid prototyping and
easy modification such as shells and symbol processing languages. Once the best knowl
edge representation, control system and inference strategy has been determined a more
specific construction tool can be used.

To build a micro-computer based knowledge system for control applications in an indus
trial environment we ipjtially constructed a prototype KS. This Mark-l KS was tested in a
simplified control application to test its architectural feasibility and limitations. The
prototype was then discarded in favour of a Mark-2 sysiem. The Mark-2 version of the
knowledge based controller, although nota complete system,.does contain the compo
nents and organizational structure suited to solving the problems. associated. with control
applications. What remains to be done.isthe streamlining of the control system's oper
ation and the development of a knowledge base capable of solving a wider range of
problems.

2.0 THE APPUCATION AREA

The machining sector of the manufacturing industry has become increasingly dependant
on computer controlled automated equipment such as Computer Numerica} Controlled
(CNC) milling machines and robots for the production of low cost, higb quality parts. In
certain instances material transfer devices (eg. robots) and material transformation
de'vices (eg. milling machines) may be synchwl'Jzed to manufacture a set of products. The
resulting system is termed a Flexible Manufacturing Cell (FMC) which is dnven by two
levels of control. The first level concerns the control of a device and the second level
concerns the ma...'1agement of the FMC. The FMC is said to be data driven as manufacture
is determined by information indicating the status of parts, fixtures, tools and devices. It is
performed by executing robot task programmes and machine tool programmes on the
device controllers. A change in the data thus results in a cha.'1ge in device and H"iC
operation.

Data driven manufacture, however, is not intended or suitable for supporting humans in
fault diagnosis, error recovery and in the mana$ement of systems of automated ecuipment
which requires logical problem solving. Manuracturing have needs to be both knowledge
driven and data driven. This is particularly so in South Africa where automation should
be llsed to support unskilled workers in skilled work. Industrial controllers need to be
able to retain a skilJed human's knowledge concerning a particular device or process, on
site for use i.i1 supportinpan unskilled worker in the initialization, operation, synchroniza
tion and mairltenan,;e 0, micro-computer controlled devices and FMC's.

A lI'Jcro-computer based k.nowledge system was thus conceptualized which could SUDer
vise man and device in an industrial environment. The KS, termed a Device Suoemsor

•

http://sajie.journals.ac.za



-17-

(DS), is required to intcrpretthe current sit,uation existing in the real world and thus
instruct a device controller to execute a particular programme required to perform a
material transformation or transfer task. A DS is piggy-backed onro each device and is
considered as an extension of tbe device controller. FMC control is performed by linking
tbe DS computers together with a network communications medium. This then forms a
distributed FMC supervisory system. The DS integrates knowledge and data which is used
to drive tbe FMC and support an unskilled worker in the FMC environment.

Two other miero-computer based KS controllers; HEXCON (Lattimer Wright et aI,
1986) and SeD (Komoda et aI, 1984) have been applied to problems involving the real
time control of industrial equipment. Their knowledge representation and architectural
limitations does not allow them to manipulate control data. That renders them unsuitable
for implementing the DS. Their organizational structures which enable the KS's to
operate in realtime, however, demonstrate the specific programming techniques which
need to be considered when building a miero·computer based KS controller. These
programming techniques are not needed with the more common micro-computer based
consultation 1(5's.

3.0 BUILDING THE PROTOTYPE DEVICE SUPERVISOR

3.1 ToolSeIection

The software tool seleCTion criteria for the rapid development of a prototype KS is usually
based on availability, the degree of user familiarity with the rool, the problems knowledge
representation structural requirements, and the inference engine characteristics. The
most rapid prototype development is obtained through the use of a KS sbell which
provides a knowledge representation structure and an inference engil1e so that knowledge
concerning the problem domain can be immediately coded into the knowledge base and
tested for validity. Most commercially available micro-computer based shells, however,
tend to be designed as consultation systems which lack the communications interface
features required for the DS control computer. The next best tool, therefore, was consid
ered to be the Micro-Prolog1 symbolic programming language. The raw Micro-Prolog
environment could be used as a KS sheil as it provided a built-in relational data base, a
control S'fttem, i.n.ierence strategy and knowledge representation structure. A
logic/conventional interface was also provided for linking user defined routines to
primitive predicates for performing data communications management. Micro-Prolog was
thus used as a KS shell to implement the prototype DS.

3.2 probt~m Identification

Tne prototype DS was designed to implement only a part of the complete DS function,
namely that of supervising a single device. This was demonstrated by the use to the
prototype to supervise a robot in a robot-centred FMC. As shown in figure I, the DS was
assigned to the robot controller and all other devices in the cell (a milling machine, lathe,
camera and pneumatic chuck) were treated as peripheral equipment. The DS was
required to solve three problems. The first problem was that of supporting a human
during the initialization of the robot controller and the robot arm. This was performed by
instructing the robot and human to perform certain initialization checks and tasks.
Secondly, the DS was required to operate the robot by instructing it as to which pro
gramme to execute for perfolTI'ing a specific material transfer task. Thirdly, the DS was

1 r'licro_Prolog is a trademark of Logic Programming Associates Ltd

http://sajie.journals.ac.za



-18-

required to synchronize the robot and peripheral equipment motion during the loading
and unloading of parts into and out of a device's fixtures. The FMC's operation is detailed
elsewhere (Greef & Reinecke, 1987.)

I NEWE·
: "} 1I -- ';;6'

MILL LATHE I
CAMERA

!
I

I 11
I MILL LATHE

I 0" ROBOT SUPERVISORI SIGNAL LINES,
I
I 0= ROBOT CONTROLLER

l ==== PARALLEL I/O PORT
; __ •••• 0 .• :: SERIAL INTERFACE 0= DEVICE CONTROLLER

FIGURE 1 ; TIm PROTOTYPE DS AND FMC INTERCONNECTIONS

33 Conceptualizing the ¥J1owl~

Both declarative ai,d procedural knowledge was required for DS operation. The procedu
ral knowledge consisted of three parts. One part was concerned wIth the initialization of
the robot, the second ",,<jth the operation of the robot and the third with the synchroniza
tion of the robot and the peripheral devices. This procedural knowledge was represented

. as Prolog Horn cla)Jse implications which could be given a procedural interpretation..I\.n
exalnple of a Horn clause implication is :

is( robot-,>l7fipper, loaded) if
is (robotffipper, not_loaded) and
is (instructJobot, pick_up.-8ripper).

The dedarati;/e knowledge consisted of a static and dynamic part. The static part formed
a data base of facts, such as which grippers were available for the robot. These facts
remained constant during robot operation. An example static fact is :

http://sajie.journals.ac.za



-19-

robotpipper(flat~ripper).

The dynamic part of the data base formed 1.I'1e world model which represented the state of
the robot (eg. up, down" idle, busy), its components (eg. which gripper was attached) and
its jobs to be performed. An example dynai1uc fact is :

robot state(idle).

This declarative knawledfe, represented as unary Hom clauses could be modified from
vnthin the procedurallogJc 1111es.

3.4 Jmplememinj?: the.Know~System

Assembler coded procedures, for transmittIng and receivinsdata via a serial lh'"1d net\'vork
interface, as well as for.sening and detecting signals appearmg on a parallel port, were
linked into the l>£cro-Prolog interpreter. This created a number of primitive predicates
which transfered parameters and control to, and which received instantiated variables
from, the interface routines.

The solution space of the DS could be depicted using an AND/OR graph as shown in
figure 2 and subsequently tranSlated into logic mles and facts. At power up; ule DSpo!led
the keyooardand serial i.l1terfacecomrnuously until the user was ready to start.

FIGURE 2: THE DS's PARTML A..l'IJD/OR GRAPH

http://sajie.journals.ac.za



-20-

The DS then leads the human through the initialization routine until the robot controller
and arm are initialized. Once initialization is complete, the DS continuously polls the
serial and network interfaces, and the internal job queues. Messages arriving on the
interfaces are used to synchronize the robot or update the world model and batch queues.
The operation of the robot is dependant on the state of the job queues and the world
model. Micro-Prolog's backward-chaining, depth-first control system searches the rules
and facts in the knowledge base and attempts to evaluate the operation and synchroniza
tion goals. This goal driven process drives the supervision of the robot during the
manufacture of parts.

3.5 Assessment of the Prototype Knowledge System

The protoiype Mark-I DS demonstrated the feasibility of using a KS for the supervision of
a device in a device-centred FMC. Rules and facts proved adequate for representing the
procedural and declarative knowledge required for the initialization, operation and
synchronization of a device. Using Micro-Prolog as a KS shell, furthermore enabled the
knowledge part of the DS to be rapidly constructed.

There were however, a numberofdrawbacksassociated. with usin~ Micro__Prolog, As itis
an interpretive language, it has a slow execution speed.. The interface message handling
routines had to be written in machine code and were difficult to interface to the Micro
Prolog environment. McCabe et al (1984) suggests that due to these difficulties, complo:
data structures such as lists should not be passed from a user routine to a Micro-Prolog
primitive predicate and that only constants and numbers should be passed. This limits the
amount o. data which can be passed between the conventional and logic parts of the
knowledge system which is a severe limitation when working in an information rich
environment. The continued use of Micro-Prolog as a shell was further negated by
comments from the literature such as:

"Prolog is a program.ming language, just as LISP is. It is
not a knowledgerepresentat:i,on language, (Jackson,
1986, p. 184), and

.. in most cases Prolog ,,,ill act as a good vehicle for
'knocking off' a cheap prototype before building an effi
cient system, using the appropriate tools." (YaZdani,
1984, p. 107)

Ultimately, the undesirable points of Micro-Prolog outweighed its desirable points leading
to it being abandoned as a vehicle for the construction of the Mark-2 version of the DS.

4.0 BUILDING THE Mark-2 DEVICE SUPERV1S0R

4.1 Reconsidering the Tool

The prototype KS showed that a simple knowledge/conventional interface as well as a
procedural and declarative k.'1owledge representation stfl2cture was required for the
operation of a DS. p.~'1 expert system shell, MicroExpert, implemented in PASCAL ami

2 MicroExpert is a trademark of Micro Expert Systems

http://sajie.journals.ac.za



-21-

desitTned as a developmental package, provided such a simple knowledge /conventional
inte;face, a production rule knowledge representation structure and an inference engine.
There were however, no facilities for holding and manipulating declarative knowledge.
Therefore, as it is much easier to design and use knowledge stmctures in Prolog, which
leads to rapid knowledge base development, a Prolog compiler, Turbo-Prolog, was also
considered for use in developing the the Mark-2 DS.

As a comparison between conventional and symbolic programming languages, MicroEx
vert's knowledge representation structure and inference engine was mimicked using
'furbo-Prolog.J .Although there was a large reduction in the number of programming lines
(approximately 800 in Turbo-Prolog compared to 2400 in Pascal) there was no noticeable
difference bem'een the two shells' executIon speeds. The decision of which language to
use, then, was a play-off between rapid knowledge representation development in
Turbo-Prolog with a slower, cumbersome logic/conventional interface development; and
slower know-ledge representational structure development in PASCAL with an existing,
simple knowledge/ conventional interface. Based on previous experience with Micro
Prolog and the fact that the PASCAL system could be structured to execute at a much
faster rate, the IvlicroExpert shell was chosen as the development package for the IVlark-2
DS.

4.2 EJrnandiIl:;' the Problem

The prototype DS integrated data and knowledge driven manufacturing at the device level
of control. The expanded problem entailed the integration of data and knowledge also at
the cell level of control. A demonstration FMC was constmcted as shown in figure 3
which could manufacture anyone of 54 different key-rings, in any order and at any time.
A DS was assigned to supervise each device in the ceIl and co-operate in the distributed
supervision of the FMC. The Mark-2 DS would indicate the feasibility of using a KS in
tins control application and show the architecturallinlitations of the en11anced MicroEx
"~rt <heHl.... ...- ~ ......

MicroE'qJert provided a production rule Kno'Nledge representation structure which
comprised attribute-value pair condition and conclusion clauses. For example:

.IF robot gripper IS not loaded
A.l"1D robot instruction IS pick up gripper
THEN robot gripper IS loaded

Futherrnore, PASCAL functions could be executed from within a rule's condiction clauses
, • ~ • 1 . , , " I Th" I • h d 13J1Ct proc.edures lIOL.'1 vntllin a nue S COl1CHlSlOn c~aU5es. ,-...IS Imp ementea t ~e proce ura",

k.nov.fledge rt:nresentatiof1 structure and the knov/ledge/conventlorral programming
il'Tr-r.;,rr"'·~ ..."-J:._·v~_"'" .....ce~

A. simplified frame data structure was built to collect related data together for a more
expres~ivedeclarative .knowledge representation and data base. An example frame is :

.FPAlvtE robot~

gripped = flat gripper,
gripper2 = round gripper

3 Turbo-PJ:olog is a trademark of Borland International Inc

http://sajie.journals.ac.za



-22-

The frames comprised a header (eg. robot) by which it was indexed and slots (eg. gripper!
= flat gripper) consisting of attribute-value pairs. As well as representing static and
dynamic declarative knowledge as in the prototype KS, it was now possible to hold FMC
related data such as part data and production statistics in the frame structure. Functions
and procedures, invoked from within the rules, enabled frames to be created, deleted,
modified (by changing a slot's value) and transmitted over the serial and network inter
faces. Frames received over the interface ports were added directly to the knowledge
base.

CAME:RA cc>

CM>

C1-,>

DRILL.

V m F'XL=:: SC::RVE:R

H - HUMAN SUPERVISOR

FIGURE 3 : THE Mark-2 DS AND FMC INTERCONNECTIONS

A 'single-fact' internal data structure was designed to hold message information received
over the interface ports. A &)'mbolic nanle was assigned to each I/O part which formed the
attribute of the value message received. The attribute-value pairs were then retained in
the knowledge base for matching against the rule's condition clauses. Messages were
transmitted to the interface ports by rule invoked functions.

4.4 Re-implementing the Device Supervisor

MicroExpert's inference engine was enhanced to force the control system to verify an
unknown attribute by looking in the message and frame data base if a rule could not be
found to evaluate. If an attiibute could not be matched in the data base then the KS
prompted the user for input. Using this control strategy, the KS continuously assessed the
Current world representation modelled in the data base and reacted accordingly.

http://sajie.journals.ac.za



-23-

The FMC was driven by pan data held in frames which were transferred and trarisfonned
along with the transfer and transformation of the parts. Part data contained a parts type,
order number, quality, location and destination; This information was sufficient for the
DS's to coordinate the production of the key-rings. Messages were exchanged between
the DS's to indicate device states and to synchrorJze iJlteracting devices.

The knowledge contained in each DS performed the initialization, operation and synchro
nization of each device and ultimately the entire FMC. This required an expanded DS
knowledge base S{) as to encompass the knowledge and data driven requirements of the
FMC.

4.5 Assessment of the Mark-2 Device Suoervisor

The DS was kept simple by retaining separate facts and rules knowledge bases. Both
knowledge and FMC driven data were adequately represented and manipulated using
frames and production rules. These data structures gave the knowledge base a more
explicit appearance. The knowledge/conventional programming interface allowed a
number of knowledge representation structures, data handling and control strategies to be
rapidly constructed and tested.

Each DS's knowledge. base contained less than 9Qrules, One rule was required to hold
each one of a device controllers programme activation conditions and one rule was
required to hold each of a device controllers programme termination conditions. This
resulted in the large number of rules which could be reduced at a later state through the
use of variables, as in the SCD controller. This would decrease the amount of rules in a
knowledge base and increase the number of facts held in the frame data structure thereby
making system operation more efficient. Reaction times of the KS ranged from 5 to 8
seconds. In terms of the machining times actually needed in the FMC this was effectively
real time operation. For significantly shorter cycle times of procedures this Mark-2
controller would be slow although we believe that the current personal computers using
80286 and 80386 processors would bring reaction times to under one second. That implies
real time control for quite short cycle operations. Choosing PASCAL as the KS imple
mentation language, however, allowed for the future implementation of more effiCIent
data structures and knowledge compilation techniques as used in the SCD and HEXCON
controllers (also see Hayes-Roth et al). This could not be done vrith a Prolog system.

5.0 CONCLUSIQ,'.!

1,Vhen building a small KS, a tool should be selected which allows rapid protot)'ping of the
system. This enables a knowledge representation structure and inference engme to be
quickly constructed for testing the problem suitability for solution using KS techniques.
For control applications, where as much emphasis is placed onto the data manipulation
,,'..nd interchange as is on the reasoning process, it is best to use a KS development tool
which allows for the rapid construction of the knowledge and conventional parts of the
KS. This is essential as the construction of the KS is an iterative process which means
comtantly revi...sing and modifying the original KS and concepts.

6.0 REFERENCES

http://sajie.journals.ac.za



-24-

Greef, A.R., Reinecke, R., "Logic for Robot Programming and Control", Interdisciplinary
Conference on Mathematical Logic and Related Subjects, ITERLOGICON 87, University
of Natal, Durban, July, 1987.

Harmon, P., King, D., "Expert Systems. Artificial Intelligence in Business", John Wiley &
Sons, Inc., New York, USA, 1985.

Hayes-Roth, F., Waterman, D.A., Lena!, D.E., "Building Expert Systems", Addison
Wesley Publishing Co., Massachusetts, USA, 1983.

Jackson, P., "Introduction to Expert Systems", Addison-Wesley Publishing Company, Inc.,
1986.

Komoda, W., Kera, K, Kubo, T., "An Autonomous; Decentralized Control System for
Factory Automation", IEEE Computer, December, 1984.

Lattimer Wright, M., Green, M.W., Fiegl, G., Cross, P.F., "An Expert System for Real
Time Control", IEEE Software, March, 1986.

McCabe, EG., Clark,.KL., Steel, RD., "Micro-Prolog 3.1, Programmer's Reference
Manual, MSDOS version", Logic ProgrammingAssociates Ltd., London, UK, 1984.

Yazdani, M., "Knowledge engineering in PROLOG", in Forsyth,R., "Expert Systems.
Principles and case studies", Chapman and Hall, London, UK, 1984, pp 91-111.

http://sajie.journals.ac.za




