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ABSTRt-\CT

This paper discusses the mathematical concept of ageing. It is shown that while in most cases

a probabilistic definition of age is sufficient, in some cases a calendaric definition must be

added in order to preserve the relationship between time and age.

OPSOIVIMING

Hierdie artikel bespreek die wiskundige betekenis van veroudering. Daar word getoon dat

alhoewel 'n waarskynlikheidsgebaseerde definisie van ouderdom meestal voldoende is, daar

in sommige gevalle 'n tydgebaseerde definisie nodig is om die verwantskap tussen tyd en

ouderdom te behou.
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1. INTRODUCTION

The intuitive meaning of age is well known and commonly used in every aspect of

life. Age usually refers to the time elapsed from the beginning of operation of an

element (a birth time) to the current time. Age is therefore measured in time units

appropriate to the element under consideration. Human life is measured in years,

while the age of a rocket engine may be measured in seconds or minutes. The

concept of age is also related to probability. By stating the age of an element one also

gives some information on the probability that an event (a failure or any other type

of change) will occur to the element in the near future. In order to have an idea about

the probability of such an event, one must know the expected life of the element under

considera tion. For a human an age of 78 years implies a considerably higher

probability of an event occuring within the next 5 years then at an age of 20 years.

Terms such as young, middle aged and old refer to a range of ages which, (relative

to the expected life time), gives information on the time elapsed since the birth time,

and about the probability that a change will occur in a future time interval.

With the ability to model and analyse the behaviour of extremely complex systems,

provided by general statistical simulation computer programs such as AMIR and

SPAR(I), it becomes essential to introduce the concept of age of tl..e system elements.

Used in the context of the time behaviour analysis of systems, the concept of age must

be uniquely and precisely defined. For example: What happens to the age of a

system when a restoration operation is applied? Is it reset to zero, implying that the

system becomes as good as new? What happens to the age of a system when it

changes its mode of operation, for example from being in storage or being passive to

being in an active state. All these questions are essential for realistic modeling. It

is thus important to have a clear , unique and precise definition of the concept of age.

The purpose of this paper is to discuss the mathematical concept of ageing and to

suggest a definition of this concept.
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2. mE EXPONE..l'I/TIAL CASE

Let a component have a failure (or event) time distribution given by

fit) = Ae -1..

f(t) is the probability density function (pdf) and t is a random variable indicating the

time of the event. Consider the situation shown in Figure 1. The component starts

its life at t., it is currently at 1;" i.e. it reached the time point t, without any event

occurring. The probability that a failure will occur between 1;, and 4, which is some

point in the future, is denoted by Pete' tf I to' t). It is the conditional probability

for an event in «, t) given that no event happened in (to' te) and can be

expressed in general as:

(1)

where

o

F(t) is the cumulative distribution of the failure time distribution.

birth current
point time

+ +
to t c t f

time

Figure 1. Time points in a component's life

Equation 1 is a good basis for a proper definition of age, as it describes the effect of

the elapsed time since birth (te - t.) ,on the probability of an event occuring in the

future. For the exponential distribution
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F(t - tJ = 1 - Ae-}.(t - t,)

Substitution into equation (1) yields:

(2)

The event probability for the exponential case is therefore independent of the elapsed

time. It depends only on ('i - tc) , which is the future time interval under

consideration. This result may be interpreted to indicate that the exponential

distribution has no memory - the past has no effect on the future. One may say that

every time point reached, is a birth point, or that the distribution is ageless. Thus a

component is ageless with respect to an event governed by the exponential distribution

and it is therefore appropriate to define the age under the exponential distribution as

Age == O.

The exponential distribution is the only distribution that has this peculiar property.

This can easily be shown by proving the inverse statement of equation (2) i.e. by

proving that if P(tc' 'il to' tc) = get! - tc) (namely the conditional probability is

a function of the future time interval only) then the governing cumulative probability

density function (Cdt), F(t - to) , must be an exponential distribution. This

ageless property makes the mathematical handling of the distribution simple as one

does not need to consider the past. This is, presumably, the reason why this

distribution is so popular in reliability analysis and systems engineering. One should

realize that when an exponential distribution is assumed, it implies that the component

remains new at all times. Furthermore, even if the component fails, upon repair it

is again new and remains new. Also note that the concept of preventive maintenance
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becomes meaningless with the exponential distribution. Preventive maintenance is

intended to renovate a component and thus to reduce its age - this is of course

meaningless if the age is zero at all times. Yet, any attempt to consider a distribution

other than the exponential, makes the calculations (accept those of first event analysis

or steady state properties of statistically independent components) prohibitively

difficult. The calculation of the time dependent availability of a single component ,

with non-exponential distributions for either failure or repair, leads to an infinite

convolution integrals series(2,3). In this situation the Markov equations collapse (since

they are only valid for systems with no memory i.e. Markovian systems) and instead

a simultaneous set of voltera type integral equations'? hold.

In reality nothing is ageless. All entities age - a wallet, a cigarette lighter, a television

set, a telephone, even planets and the universe as a whole go through physical

processes of aging. Thus, modeling reality in terms of the exponential distribution is

often unfounded. Still one may argue that over certain life time intervals an

exponential approximation isjustified. This argument combined with the difficulty in

handling "aging" distributions and the lack of data (and one may wonder to what

extent the desire to obtain exponential distributions, influences the data collection

process) makes the exponential distribution a "default" choice.

However, the emergence of multipurpose simulation tools as well as other stochastic

simulation methods, make the handling of non-exponential distributions a feasible

engineering option. Thus the consideration and definition of age becomes relevant.

3. DEFINITION OF AGE

Since age is measured in units of time, it would seem that time elapsed since birth,

would serve as an appropriate measure of age. However this unit of measure , suffers

from two serious deficiencies which makes it undesirable. Firstly, age may range to

infinity and thus involves large numbers which may be inconvenient to handle and

secondly, and more importantly, such a definition of age would not yield an idea about

the actual state of a component. If, for example, the age of a component is stated as

200 hours it is not clear whether the component is young or old. If the mean life of
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the component is 130 hours then 200 hours is a rather old age, yet if the mean life is

2x106 hours the component is very young. Thus age, measured in time units elapsed

since birth, does not indicate the true age of the component under consideration.

What is needed is a definition of age that gives information on the probability state of

the component and will have the same applicability independent of the specific

distribution which governs the component's behaviour. A definition that meets this

demand and does not suffer from the deficiencies described above is

Age (t) = F(t - to) (3)

This is simply the Cdf of the failure (or event) time distribution for the component.

It is a monotonic increasing function and its range is between 0 and 1. If the age is,

for example 0.02, 0.5 or 0.99 it means that the component is very young, in mid life

or very old respectively. Thus it yields direct information as to the state of life of the

component, independent of the specific age distribution. An age of 0.32 means that

the component traversed a time interval, in which it had a probability of 0.32 to fail,

without failure. Note also that P(tc' 'il to' te) takes the form

(4)

The hazard function can also be expressed in this form

(5)

Consider a simple example to demonstrate the growth of age and its relation to future
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event probability. Let the age of a component be described by the cumulative

distribution of a Weibull distribution of the form

with A :: 3 . (10-5) , K :: 1.3 and to:: 0

At t :: 1600 hours the age oj the component is 0.3552, calculated as follows:

Age (l6OO) :: 1 - e -.\ . (1600)1.3 :: 0.3552

The probability that a failure will occur in the 200 hours between 1600 and 1800 is

(using equation (1»:

F(l800) - 0.3552 :: 0.07025 .
1 - 0.3552

As time progresses to 3000 hours the age of the component reaches 0.6299. The

probability for an event in the next 200 hours is now:

p :: F(3200) - 0.6299 :: 0.08331
2 1 - 0.6299

The mean life of the above distribution is 2773.4 hours . At 5400 hours the age

reaches 0.8816 and the probability for an event in the next 200 hours is 0.0986. Thus

it is seen that the age increase is much faster than the increase in the probability of

the future event for a given time interval. It should also be noted that for any given

distribution the age and the time uniquely determines each other. Knowing the

probabilistic age the time unit age can be found by solving the inverse of equation (3).
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4. AGE CONSERVATION RULES

Consider a component or a system which changes its operating conditions,such as a

car changing from being parked to being in motion, from motion into high speed

motion or into motion on a difficult road or even from city traffic into open road

conditions. Each different operational state will be referred to as a different profile

state of the system. Most systems are operating with at least two profile states such

as operation and rest. In each profile state the component is governed by a different

pdf. Assume that the component is in state 1 up to time 1;, at which the profile state

changes into state 2. In state 1 the failure (or event) distribution is 11 (t - to) and

in state 2 it is A (t - t;). At point 'l> the age of the component is

Age (t) = F1(tp - to) . What happens to the age as the component moves to the

second profile state? How should one calculate the future event probability

p (tp' ~ I to' tp) in this case? Although this is an interesting mathematical question

its importance lies within the realm of reality . Since this situation is part of the

everyday reality of many systems, the above questions are relevant to the way in

which one models this reality . It is to be noted that A (t - t;) ,contains the birth

point t: ,as an undefined parameter since the component did not start its life at any

point with this distribution. A reasonable modeling assumption would be a

conservation rule stating that the component retains the age accumulated up to 1;, and

proceeds into the future from that point on. This assumption is supported by the

argument that just by changing the governing distribution the system does not suddenly

get "older" or "younger". The age conservation assumption suggests that at 1;,

(6)
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hence t: is set as

(7)

This implies that in profile state 2 the situation is viewed as if the system follows the

distribution h (t - t:) with a birth point that is determied by the age accumulated

up to t; Note that t: may be negative. The probability for a future event is then

given by

t
P = Fz (t - to) - Age (t)

1 - Age (t)

where t: is defined by equation (7).

(8)

An interesting problem arises when the profile change leads the system from a non­

exponential distribution into a state governed by an exponential distribution. Noting

that the exponential distribution has no memory and that the age imposed under it is

zero, one may wonder what should be the age or, what happens to the age

accumulated in the first profile state. Obviously, equations (6), (7) and (8) are

meaningless for the exponential distribution, and independent of the age reached,

equation (2) applies, which means that if we transfer to an exponential distribution the

age is reset to zero. If the distribution reverts back to a non-exponential distribution

(see fig 2), with what age does the system start at t2• It can be either a zero age or

the age reached at t1• Both possibilities are mathematically consistent and at t2

equations (6) to (8) apply. The choice between zero age or preserved age only

depends on the real situation being modelled. If the system is a "as good as new"

upon reaching t2 then the age at !z is zero, otherwise the age at t1 is preserved. If the

age increases that from t1 to t2 then the distribution between t1 and t2 cannot be

exponential.
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age preserved

. / age reset
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timeo t
non-exponent ial

pdf applies

t
exponential
pdf applies

t
non-exponential

pdf applies

Figure 2: Flipping from non-exponential to exponential distribution and back

5. NON-PARAMETRIC DISTRffiUTIONS

In many cases the data collection process results in a piecewise constant pdf rather

than a continuous pdf. Thus f(t) is constant over a set of time intervals (see figure 3).

This implies that the probability that the event

f(t)

I
I

o

Figure 3 : Non-parametric distribution

time

will occur in the i 'th interval is Pi = 1; (t i - ti_l ) and the distribution within each

interval is uniform . The definition of equation (3) would still apply , taking the form

i-I

Age (t) = F(t) = I: f t (tt+1 - tt) + 1; (t - ti_l) for ti_1 ~ t ~ t,
t-o

(9)

However, an interesting problem arises if the Pdf has a zero value in one or more

intervals (note that this can never be the last interval).

http://sajie.journals.ac.za

http://sajie.journals.ac.za



-22-

Consider the situation in which arepair event of a system may take up to 120 hours.

The first 100 hours 'are used for various preliminary activities (diagnostics,

dismantling, documentation etc) such that the repair is never completed before 100

hours. Following the 100 hours the repair may be completed uniformly at any point

between 100 and 120 hours. The Pdf of such a repair event is adequately modelled

by a piecewise constant Pdf being zero in (0,100) and

illustrated in Figure 4.

1

20
in (100, 120) as

f(t) [ interrupt
point

0.05 - - - - - - - - - - -t----I
o 75 100

Figure 4 : Zero interval repair pdf

L
120 time

The probability definition of age implies that within the first interval the age remains

zero. What is the "reality" interpretation of such a situation? Does it mea~ that while

time is progressing the "age" is "frozen"? Consider the possibility that in the above

example the repair process is interrupted at (t + 75) for 72 hours and then continued.

Where does it continue from? Since the age is zero it may continue at any point in

the first interval. The one to one relation of time as function of age is lost i.e. the

probabilistic age is not sufficient to define the time unit age. Obviously , the restart

point for the repair, in the above example, depends on the "real ity" of the situation.

If during the interrupt period all the information about the repair is lost, then the

repair restarts again at the beginning. If, on the other hand, the repair constitutes a

set of ordered preliminery operations and the information concerning them is not lost,

then the repair should restart at the interrupt point.

Since the probabilistic definition of age does not preserve the information about

elapsed time in the case of zero Pdf intervals , a calendaric definition of age seems

appropriate for piecewize constant Pdf's with zero intervals. Such a definition would
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be:

Agee (t)
TIl1lI.X

(10)

where Tmax is the domain of the distribution. Since non-parametric distributions

have a finite domain this definition is also defined in the range [0,1] and preserves the

one to one relation between time and age. Note that from the calendaric age one can

always obtain the probabilistic age but not vice versa. Also in the calculation of the

future event probability (equation (8)) the probabilistic age must be used.

CONCLUSION

The concept of "age" plays a significant role in the modelingof systems characterised by non­

exponential distributions. The considerations involved in the definition and relation of age

and time were discussed. It was shown that whereas in most cases a probabilistic definition

of age is appropriate, in some cases a calendaric definition must be added to preserve the

relation between time and age. These definitions of age are extensively used in the general

multi purpose stochastic simulation codes, AMIR and SPAR, to analyse the time dependent

performance and behavior of complex realistic systems.
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